library(MASS)
library(AER)
library(broom)
library(knitr)
library(stargazer)
library(sjPlot)
library(ggplot2)
library(ggpubr)
library(gt)
library(olsrr)
library(arm)
library(coefplot)
library(effects)
library(vtable)
library(flextable)
library(DT)
library(tidyverse)
library(reshape2)
library(corrplot)
library(interflex)

source("wl_graph.R")
source("wl_utils.R")
source("wl_reg_report.R")

This document summarizes the quantitative analysis for Brecher research ‘Tax Moral in the Haredi Community’. The research is uses data collected from a quastionaire distributed in Haredi population - see: https://docs.google.com/forms/d/1KdVid-ExT86wjs-nuCrakBeccwNgaDCSu3nhPjIHYqY/edit?ts=648b12b5 .

The analysis was developed using R version 4.1.3 (2022-03-10) and RStudio 2022.07.2+576 release for Windows.

To view the code - click on the ‘Code’ buttons on the right side of the page.

1 Research data

Note: All ordered categorical variables with 5 levels or more are treated as as numeric due to the ‘small number of samples’ limitation.

  raw_data=read.csv("tax_data_150223.csv",sep=";")
    
  names(raw_data)[1] <- "id" #fix name of id column - move between pc and mac
  
   # Dependent Variables
  raw_data$tax_moral_a <- factor(raw_data$tax_morale_a, ordered = TRUE)
  raw_data$tax_moral_b <- factor(raw_data$tax_morale_b, ordered = TRUE)
  raw_data$tax_moral_N <- raw_data$tax_morale
  raw_data$tax_moral <- factor(raw_data$tax_morale, ordered = TRUE)
  
  # Nominal Covariates
  raw_data$tax_returns <- factor(raw_data$tax_returns)
  levels(raw_data$tax_returns) <- c("No", "Low", "Yes", "High")
  raw_data$charity <- factor(raw_data$charity)
  levels(raw_data$charity) <- c("Below 10%", "Around 10%", "Above 10%")
  raw_data$tax_social <- factor(raw_data$tax_social)
  levels(raw_data$tax_social) <- c("No", "Low", "Yes")
  raw_data$gender <- factor(raw_data$isMale)
  levels(raw_data$gender) <- c("Female", "Male")
  
  # Create Generation factor field (3 levels and 5 levels)

  raw_data$gen3_N <- as.numeric(cut(raw_data$age, breaks = c(20, 30, 40, 67)))
  raw_data$gen3 <- factor(cut(raw_data$age, breaks = c(20, 30, 40, 67)),
                    labels = c("20-30", "30-40", "40-67"))
  raw_data$gen7 <- factor(cut(raw_data$age, breaks = c(20, 25, 30, 35, 40, 45, 50, 67)),
                    labels = c("20-25", "25-30", "30-35", "35-40", "40-45", "45-50", "50-67"))
    

  
  dependents <- c("Tax Moral" = "tax_moral",                    #Ordinal (1-6)
                  "Tax Moral (Numeric)" = "tax_moral_N",        #Numeric (1-6)
                  "Tax Moral A (1:4:1)" = "tax_moral_a",        #Ordinal (1-3)
                  "Tax Moral B (2:2:2)" = "tax_moral_b")        #Ordinal (1-3)
  
  cov_full <- c("Strictness" = "strictness",                    #Numeric (1-7)
                "Modernity" = "modernity",                      #Numeric (1-7)
                "Belonging" = "belonging",                      #Numeric (1-6)
                "Egality" = "egality",                          #Numeric (1-6)
                "Shame" = "shame",                              #Numeric (1-6)
                "Tax Returns" = "tax_returns",                  #Nominal (1-4)
                "Social Safety" = "tax_social",                 #*Nominal (1-4)
                "Income Level" = "income_current",              #Numeric (1-5)
                "Gender" = "gender",                            #Binary  (0/1)
                "Age" = "age",                                  #Numeric (0-120)
                "Generation(3)" = "gen3",                       #Ordinal (1-3)
                "Generation(3)N" = "gen3_N",                    #Numeric (1-3)
                "Generation(7)" = "gen7"                        #Ordinal (1-7)
  )
  
  cov_full_1 <- wl_setdiff(cov_full, c("gen3", "gen3_N", "gen7"))
  
  # remove factors from VIF calculation
  cov_vif <- wl_setdiff(cov_full_1, c("tax_returns", "charity", "tax_social"))
  
  # Handle colinearity between Strictness and Modernity
  cov_a <- wl_setdiff(cov_full_1, c("strictness"))
  cov_b <- wl_setdiff(cov_full_1, c("modernity"))
  
  data <- raw_data[, c(dependents, cov_full)]  
  data <- data[complete.cases(data), ]

1.1 Descriptive tables

  d <- wl_descriptive(data, vars=c(dependents, cov_full_1),
                      labs=c(names(dependents), names(cov_full_1)), display=FALSE)
  save_as_html(d, path = "out/descriptive.html")
  d

Variable

N

Mean

Std. Dev.

Min

Pctl. 25

Pctl. 75

Max

Tax Moral

88

... 1

7

8%

... 2

15

17%

... 3

15

17%

... 4

22

25%

... 5

12

14%

... 6

17

19%

Tax Moral (Numeric)

88

3.8

1.6

1

2.8

5

6

Tax Moral A (1:4:1)

88

... 1

7

8%

... 2

64

73%

... 3

17

19%

Tax Moral B (2:2:2)

88

... 1

22

25%

... 2

37

42%

... 3

29

33%

Strictness

88

3.5

1.6

1

2

4

7

Modernity

88

4.2

1.7

1

3

6

7

Belonging

88

3.9

1.6

1

3

5

6

Egality

88

2.4

1.4

1

1

3

6

Shame

88

2.8

1.9

1

1

4.2

6

Tax Returns

88

... No

24

27%

... Low

33

38%

... Yes

20

23%

... High

11

12%

Social Safety

88

... No

36

41%

... Low

32

36%

... Yes

20

23%

Income Level

88

2.3

0.87

1

2

3

5

Gender

88

... Female

37

42%

... Male

51

58%

Age

88

36

8.2

21

31

41

67

1.2 Correlation Matrix

  ndata <- data[, c(dependents, cov_full_1)] 
  ndata <- ndata[, sapply(ndata, is.numeric)] #get only the numeric data
  cdata <- cor(ndata)
  rownames(cdata) <- colnames(cdata) <- c(names(dependents[2]), 
                                          names(cov_full[1:5]),
                                          names(cov_full[8]), 
                                          names(cov_full[10]))
  png("out/corrplot.png", width = 1600, height = 1600, res = 300)
  corrplot::corrplot(cdata, type="upper", addCoef.col = 'black', tl.pos="lt", tl.cex = 0.8, diag=FALSE)
  dev.off()
#> png 
#>   2
    
  corrplot::corrplot(cdata, type="upper", addCoef.col = 'black', tl.pos="lt", diag=FALSE)

  
  # Create a grayscale color palette
  grayscale_palette <- 
    colorRampPalette(c("#FFFFFF", "#FAFAFA", "#F5F5F5", "#EEEEEE", "#E0E0E0", 
                       "#D9D9D9", "#CFCFCF", "#BFBFBF", "#9E9E9E", "#757575"))(10)
  
  png("out/corrplot_bw.png", width = 1600, height = 1600, res = 300)
  corrplot::corrplot(cdata, type="upper", addCoef.col = 'black', tl.pos="lt", diag=FALSE, 
                     col = grayscale_palette, tl.col = "black")
  dev.off()
#> png 
#>   2
  
  corrplot::corrplot(cdata, type="upper", addCoef.col = 'black', tl.pos="lt", diag=FALSE, 
                     col = grayscale_palette, tl.col = "black")

1.3 Descriptive Plots

1.3.1 Tax Moral & Strictness

wl_plot_xy (data, cov_full[1], dependents[2])

ggsave("out/tax_moral_and_strictness.png", height=3)

1.3.2 Tax Moral & Modernity

wl_plot_xy (data, cov_full[2], dependents[2])

ggsave("out/tax_moral_and_modernity.png", height=3)

1.3.3 Tax Moral & Belonging

wl_plot_xy (data, cov_full[3], dependents[2])

ggsave("out/tax_moral_and_belongings.png", height=3)

1.3.4 Tax Moral & Egality

wl_plot_xy (data, cov_full[4], dependents[2])

ggsave("out/tax_moral_and_egality.png", height=3)

1.3.5 Tax Moral & Shame

wl_plot_xy (data, cov_full[5], dependents[2])

ggsave("out/tax_moral_and_shame.png", height=3)

1.4 VIF (Multi-Collinearity) Test

The below VIF test table indicates multi-colinearity between strictness and modernity.

  mvif <- ols_regression(data, "tax_moral_N", cov_vif)
  vif_table (mvif, labs=names(cov_vif))
Tolerance VIF
Strictness 0.4816570 2.076166
Modernity 0.4569115 2.188608
Belonging 0.7037359 1.420988
Egality 0.7077823 1.412864
Shame 0.7525072 1.328891
Income Level 0.9128725 1.095443
Gender 0.7730160 1.293634
Age 0.7465754 1.339449
Tolerance: Percent of variance in the predictor that cannot be accounted for by other predictors

The cor function calculates the correlation coefficient between two variables. The correlation coefficient measures the strength and direction of the linear relationship between two variables. A value of 1 indicates a perfect positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear relationship. As can be seen from the bewlow results we have ~70% correlation in the same direction between the two variables.

  #Strictness and Modernity correlation
  cor(data$strictness, data$modernity)
#> [1] 0.7009564

2 Regression models

The dependent variable, Tax Moral, is an ordered categorical variable with 6 levels. To analyze the effects of the independent variables and control for additional covariates we use Proportional odds logistic regression (POLR). We also use as a reference Ordinary Least Squares (OLS) regression. In both types of regressions we calculate two models: one with the independent variable Strictness and the other with Modernity (we can not use both due to multi-collinearity).

  # Main Regression Models
  m1 <- polr_regression(data, "tax_moral", cov_a)
  m2 <- polr_regression(data, "tax_moral", cov_b)
  
  m3 <- ols_regression(data, "tax_moral_N", cov_a)
  m4 <- ols_regression(data, "tax_moral_N", cov_b)
  
  main_models <- list(m1,m2,m3,m4)
  
  # Regression Table
  cov_labels_ab <- c(names(cov_a[1]),
                  names(cov_b[1]),
                  names(cov_a[2]),
                  names(cov_a[3]), 
                  names(cov_a[4]),
                  paste0(names(cov_a[5])," [", levels(data[,cov_a[5]])[2],"]"),
                  paste0(names(cov_a[5])," [", levels(data[,cov_a[5]])[3],"]"),
                  paste0(names(cov_a[5])," [", levels(data[,cov_a[5]])[4],"]"),
                  paste0(names(cov_a[6])," [", levels(data[,cov_a[7]])[2],"]"),
                  paste0(names(cov_a[6])," [", levels(data[,cov_a[7]])[3],"]"),
                  names(cov_a[7]),
                  paste0(names(cov_a[8])," [", levels(data[,cov_a[9]])[2],"]"),
                  names(cov_a[9])
                  )
  wl_stargazer (main_models, "tax_moral_reg", cov_labels = cov_labels_ab, coef_exp = TRUE) 
#> 
#> ----------------------------------------------------------------
#>                             ordered                 OLS         
#>                            logistic                             
#>                         (1)        (2)        (3)        (4)    
#> ----------------------------------------------------------------
#> Modernity              0.907                 0.959              
#>                       (0.139)               (0.090)             
#> Strictness                        0.802                 0.886   
#>                                  (0.146)               (0.096)  
#> Belonging             2.078***   2.122***   1.598***   1.621*** 
#>                       (0.169)    (0.167)    (0.102)    (0.100)  
#> Egality                1.463*     1.472*     1.204      1.207   
#>                       (0.190)    (0.187)    (0.117)    (0.115)  
#> Shame                  1.245      1.249      1.128      1.129   
#>                       (0.132)    (0.133)    (0.087)    (0.086)  
#> Tax Returns [Low]      2.251      2.560      1.581      1.700   
#>                       (0.525)    (0.535)    (0.339)    (0.339)  
#> Tax Returns [Yes]      1.383      1.544      1.262      1.368   
#>                       (0.601)    (0.605)    (0.403)    (0.405)  
#> Tax Returns [High]     1.970      1.942      1.510      1.534   
#>                       (0.802)    (0.805)    (0.509)    (0.504)  
#> Social Safety []       1.016      1.191      0.921      0.993   
#>                       (0.488)    (0.500)    (0.328)    (0.331)  
#> Social Safety []       1.296      1.508      1.203      1.276   
#>                       (0.620)    (0.634)    (0.397)    (0.396)  
#> Income Level           0.868      0.843      0.944      0.940   
#>                       (0.255)    (0.257)    (0.162)    (0.160)  
#> Gender []              1.888      2.143      1.408      1.491   
#>                       (0.455)    (0.470)    (0.303)    (0.304)  
#> Age                   0.918**    0.911**    0.945**    0.942**  
#>                       (0.028)    (0.029)    (0.018)    (0.019)  
#> N                        88         88         88         88    
#> R2                                           0.473      0.483   
#> Adjusted R2                                  0.389      0.400   
#> ----------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001                                
#> All estimates of oredered logistic models are exponentiated.
#> 
#> ----------------------------------------------------------------
#>                             ordered                 OLS         
#>                            logistic                             
#>                         (1)        (2)        (3)        (4)    
#> ----------------------------------------------------------------
#> Modernity              0.907                 0.959              
#>                       (0.139)               (0.090)             
#> Strictness                        0.802                 0.886   
#>                                  (0.146)               (0.096)  
#> Belonging             2.078***   2.122***   1.598***   1.621*** 
#>                       (0.169)    (0.167)    (0.102)    (0.100)  
#> Egality                1.463*     1.472*     1.204      1.207   
#>                       (0.190)    (0.187)    (0.117)    (0.115)  
#> Shame                  1.245      1.249      1.128      1.129   
#>                       (0.132)    (0.133)    (0.087)    (0.086)  
#> Tax Returns [Low]      2.251      2.560      1.581      1.700   
#>                       (0.525)    (0.535)    (0.339)    (0.339)  
#> Tax Returns [Yes]      1.383      1.544      1.262      1.368   
#>                       (0.601)    (0.605)    (0.403)    (0.405)  
#> Tax Returns [High]     1.970      1.942      1.510      1.534   
#>                       (0.802)    (0.805)    (0.509)    (0.504)  
#> Social Safety []       1.016      1.191      0.921      0.993   
#>                       (0.488)    (0.500)    (0.328)    (0.331)  
#> Social Safety []       1.296      1.508      1.203      1.276   
#>                       (0.620)    (0.634)    (0.397)    (0.396)  
#> Income Level           0.868      0.843      0.944      0.940   
#>                       (0.255)    (0.257)    (0.162)    (0.160)  
#> Gender []              1.888      2.143      1.408      1.491   
#>                       (0.455)    (0.470)    (0.303)    (0.304)  
#> Age                   0.918**    0.911**    0.945**    0.942**  
#>                       (0.028)    (0.029)    (0.018)    (0.019)  
#> N                        88         88         88         88    
#> R2                                           0.473      0.483   
#> Adjusted R2                                  0.389      0.400   
#> ----------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001                                
#> All estimates of oredered logistic models are exponentiated.

2.1 Interpretations

2.1.1 Model 1 Interpretation

#> [1] "Ordinal Proportional Odds Logistic regression was used to analyze the effects on Tax Moral.<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases the odds to move from one category of Tax Moral to the next one by 107.8%, assuming all other covariates stay constant.<br/>The Egality covariate has statistically significant effect. An increase of 1 unit in Egality increases the odds to move from one category of Tax Moral to the next one by 46.33%, assuming all other covariates stay constant.<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases the odds to move from one category of Tax Moral to the next one by 8.179%, assuming all other covariates stay constant."

2.1.2 Model 2 Interpretation

#> [1] "Ordinal Proportional Odds Logistic regression was used to analyze the effects on Tax Moral.<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases the odds to move from one category of Tax Moral to the next one by 112.2%, assuming all other covariates stay constant.<br/>The Egality covariate has statistically significant effect. An increase of 1 unit in Egality increases the odds to move from one category of Tax Moral to the next one by 47.2%, assuming all other covariates stay constant.<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases the odds to move from one category of Tax Moral to the next one by 8.852%, assuming all other covariates stay constant."

2.1.3 Model 3 Interpretation

#> [1] "OLS Linear regression was used to analyze the effects on Tax Moral (Numeric).<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases Tax Moral (Numeric) by 0.4687 units, assuming all other covariates stay constant. This represents a change of more than 0.2992 standard deviations (SD[Tax Moral (Numeric)]= 1.566).<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases Tax Moral (Numeric) by 0.05634 units, assuming all other covariates stay constant. This represents a change of more than 0.03597 standard deviations (SD[Tax Moral (Numeric)]= 1.566)."

2.1.4 Model 4 INterpretation

#> [1] "OLS Linear regression was used to analyze the effects on Tax Moral (Numeric).<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases Tax Moral (Numeric) by 0.4828 units, assuming all other covariates stay constant. This represents a change of more than 0.3082 standard deviations (SD[Tax Moral (Numeric)]= 1.566).<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases Tax Moral (Numeric) by 0.06001 units, assuming all other covariates stay constant. This represents a change of more than 0.03831 standard deviations (SD[Tax Moral (Numeric)]= 1.566)."

2.2 Coefficiant plots

The standardized coefficient plots enable to compare the magnitude of the effects. Belonging has the highest positive statistically significant magnitude and age has the highest negative statistically significant magnitude.

Note: The intercepts at the top of the tables represent the probability boundaries between Tax Moral levels.

2.2.1 Model 1 - POLR, Strictness

  cov_labels_a <- cov_labels_ab[c(1,3:length(cov_labels_ab))]
  cov_labels_b <- cov_labels_ab[2:length(cov_labels_ab)]
  cov_labels_i = c("Intercept 5|6","Intercept 4|5","Intercept 3|4","Intercept 2|3","Intercept 1|2")
  
  png("out/model1.png", width = 1200, height = 800)
  arm::coefplot(m1, main="",
                varnames = c(cov_labels_a, rev(cov_labels_i)), 
                mar = c(5, 12, 4, 2) + 0.1,
                cex.pts = 1.2, pch.pts = 15, cex.var = 1.)
  dev.off()
#> png 
#>   2
  arm::coefplot(m1, main="",
                varnames = c(cov_labels_a, rev(cov_labels_i)), 
                mar = c(5, 12, 4, 2) + 0.1,
                cex.pts = 1.2, pch.pts = 15, cex.var = 1.)

2.2.2 Model 2 - POLR, Modernity

  png("out/model2.png", width = 1200, height = 800)
  arm::coefplot(m2, main="",
                varnames = c(cov_labels_a, rev(cov_labels_i)), 
                mar = c(5, 12, 4, 2) + 0.1,
                cex.pts = 1.2, pch.pts = 15, cex.var = 1.)
  dev.off()
#> png 
#>   2
  arm::coefplot(m2, main="",
                varnames = c(cov_labels_a, rev(cov_labels_i)), 
                mar = c(5, 12, 4, 2) + 0.1,
                cex.pts = 1.2, pch.pts = 15, cex.var = 1.)

3 Effect Analysis

Make sure to include the data in the model so Effect will work

m1$call$data <- data

3.1 Belonging effect on Tax Moral probabilities

  png("out/age_effect.png", width = 1200, height = 1200)
  plot(Effect(focal.predictors = c("belonging"), m1), rug = FALSE, cex=3.0)
  dev.off()
#> png 
#>   2
  plot(Effect(focal.predictors = c("belonging"), m1), rug = FALSE, cex=3.0)

3.2 Age effect on Tax Moral probabilities

  png("out/age_effect.png", width = 1200, height = 1200)
  plot(Effect(focal.predictors = c("age"), m1), rug = FALSE, cex=3.0)
  dev.off()
#> png 
#>   2
  plot(Effect(focal.predictors = c("age"), m1), rug = FALSE, cex=3.0)

3.3 Egality effect on Tax Moral probabilities

  png("out/egality_effect.png", width = 1200, height = 1200)
  plot(Effect(focal.predictors = c("egality"), m1), rug = FALSE, cex=3.0)
  dev.off()
#> png 
#>   2
  plot(Effect(focal.predictors = c("egality"), m1), rug = FALSE, cex=3.0)

3.4 Gender effect on Tax Moral probabilities

  png("out/gender_effect.png", width = 1200, height = 1200)
  plot(Effect(focal.predictors = c("gender"), m1), rug = FALSE, cex=3.0)
  dev.off()
#> png 
#>   2
  plot(Effect(focal.predictors = c("gender"), m1), rug = FALSE, cex=3.0)

3.5 Income effect om on Tax Moral probabilities

  png("out/income_effect.png", width = 1200, height = 1200)
  plot(Effect(focal.predictors = c("income_current"), m1), rug = FALSE, cex=3.0)
  dev.off()
#> png 
#>   2
  plot(Effect(focal.predictors = c("income_current"), m1), rug = FALSE, cex=3.0)

4 Interactions

As belonging seems to be the highest magnitude effect, we test it’s interactions with Age, Gender and Income.

  cov_int_a <- c(cov_a, "belonging*age")
  mi_age <- polr_regression(data, "tax_moral", cov_int_a)
  cov_int_a <- c(cov_a, "belonging*egality")
  mi_egality<- polr_regression(data, "tax_moral", cov_int_a)
  cov_int_a <- c(cov_a, "egality*age")
  mi_age_egality<- polr_regression(data, "tax_moral", cov_int_a)
  cov_int_a <- c(cov_a, "belonging*gender")
  mi_gender <- polr_regression(data, "tax_moral", cov_int_a)
  cov_int_a <- c(cov_a, "belonging*income_current")
  mi_income <- polr_regression(data, "tax_moral", cov_int_a)
  
  int_models <- list(mi_age, mi_egality, mi_age_egality)
  names(int_models) <- c("Belonging*Age", "Belonging*Egality", "Egality*Age")
  
  cov_labels_ia <- c(cov_labels_a, names(int_models))
  
  wl_stargazer (int_models, "interaction_reg", cov_labels=cov_labels_ia, coef_exp=TRUE)
#> 
#> ---------------------------------------------------------------
#>                     Belonging*Age Belonging*Egality Egality*Age
#>                          (1)             (2)            (3)    
#> ---------------------------------------------------------------
#> Modernity               0.908           0.896          0.886   
#>                        (0.141)         (0.140)        (0.141)  
#> Belonging              8.276**         2.532**       2.096***  
#>                        (0.681)         (0.295)        (0.173)  
#> Egality                 1.404           2.224          5.732   
#>                        (0.194)         (0.534)        (0.940)  
#> Shame                   1.269           1.245          1.276   
#>                        (0.133)         (0.132)        (0.135)  
#> Tax Returns [Low]       2.285           2.274          2.053   
#>                        (0.532)         (0.528)        (0.530)  
#> Tax Returns [Yes]       1.345           1.313          1.148   
#>                        (0.601)         (0.606)        (0.615)  
#> Tax Returns [High]      1.793           2.185          1.626   
#>                        (0.820)         (0.808)        (0.822)  
#> Social Safety []        1.162           0.969          0.999   
#>                        (0.500)         (0.492)        (0.492)  
#> Social Safety []        1.455           1.275          1.459   
#>                        (0.624)         (0.617)        (0.623)  
#> Income Level            0.836           0.847          0.852   
#>                        (0.261)         (0.256)        (0.256)  
#> Gender []               1.921           1.945          1.907   
#>                        (0.462)         (0.456)        (0.459)  
#> Age                     1.036          0.917**         0.992   
#>                        (0.063)         (0.029)        (0.058)  
#> Belonging*Age          0.963*                                  
#>                        (0.018)                                 
#> Belonging*Egality                       0.912                  
#>                                        (0.110)                 
#> Egality*Age                                            0.962   
#>                                                       (0.026)  
#> N                        88              88             88     
#> ---------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001                               
#> All estimates of oredered logistic models are exponentiated.
#> 
#> ---------------------------------------------------------------
#>                     Belonging*Age Belonging*Egality Egality*Age
#>                          (1)             (2)            (3)    
#> ---------------------------------------------------------------
#> Modernity               0.908           0.896          0.886   
#>                        (0.141)         (0.140)        (0.141)  
#> Belonging              8.276**         2.532**       2.096***  
#>                        (0.681)         (0.295)        (0.173)  
#> Egality                 1.404           2.224          5.732   
#>                        (0.194)         (0.534)        (0.940)  
#> Shame                   1.269           1.245          1.276   
#>                        (0.133)         (0.132)        (0.135)  
#> Tax Returns [Low]       2.285           2.274          2.053   
#>                        (0.532)         (0.528)        (0.530)  
#> Tax Returns [Yes]       1.345           1.313          1.148   
#>                        (0.601)         (0.606)        (0.615)  
#> Tax Returns [High]      1.793           2.185          1.626   
#>                        (0.820)         (0.808)        (0.822)  
#> Social Safety []        1.162           0.969          0.999   
#>                        (0.500)         (0.492)        (0.492)  
#> Social Safety []        1.455           1.275          1.459   
#>                        (0.624)         (0.617)        (0.623)  
#> Income Level            0.836           0.847          0.852   
#>                        (0.261)         (0.256)        (0.256)  
#> Gender []               1.921           1.945          1.907   
#>                        (0.462)         (0.456)        (0.459)  
#> Age                     1.036          0.917**         0.992   
#>                        (0.063)         (0.029)        (0.058)  
#> Belonging*Age          0.963*                                  
#>                        (0.018)                                 
#> Belonging*Egality                       0.912                  
#>                                        (0.110)                 
#> Egality*Age                                            0.962   
#>                                                       (0.026)  
#> N                        88              88             88     
#> ---------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001                               
#> All estimates of oredered logistic models are exponentiated.

4.1 Interaction Plots

4.1.1 Age & Belonging Interaction Plot

  sjPlot::plot_model(mi_age, type = "int")

  ggsave("out/age_interaction.png")

4.1.2 egality & Belonging Interaction Plot

  sjPlot::plot_model(mi_egality, type = "int")

  ggsave("out/egality_interaction.png")

4.1.3 egality & age Interaction Plot

  sjPlot::plot_model(mi_age_egality, type = "int")

  ggsave("out/egality_interaction.png")

4.1.4 Gender & Belonging Interaction Plot

  sjPlot::plot_model(mi_gender, type = "int")

  ggsave("out/gender_interaction.png")

4.1.5 Income & Belonging Interaction Plot

  sjPlot::plot_model(mi_income, type = "int")

  ggsave("out/income_interaction.png")

5 Robustness

We use two different coding schemes to test the robustness of our results. The first scheme (1:4:1) emphasize the edges of Tax Moral scale, re-coding level 1 as 1, levels 2-5 as 2, and level 6 as 3. The second scheme (2:2:2) reduces the granularity of Tax Moral levels, re-coding levels 1-2 as 1, levels 3-4 as 2, and levels 5-6 as 3.

 # Robustness Models with different tax_moral coding
  m1_ra <- polr_regression(data, "tax_moral_a", cov_a)
  m2_ra <- polr_regression(data, "tax_moral_a", cov_b)
  
  m3_rb <- polr_regression(data, "tax_moral_b", cov_a)
  m4_rb <- polr_regression(data, "tax_moral_b", cov_b)
  
  coding_models <- list(m1_ra, m2_ra, m3_rb, m4_rb)
  names(coding_models) <- c("1:4:1 Coding", "1:4:1 Coding", 
                                "2:2:2 Coding", "2:2:2 Coding")
  wl_stargazer (coding_models, "coding", cov_labels = cov_labels_ab, coef_exp = TRUE)
#> 
#> ----------------------------------------------------------------------
#>                    1:4:1 Coding 1:4:1 Coding 2:2:2 Coding 2:2:2 Coding
#>                        (1)          (2)          (3)          (4)     
#> ----------------------------------------------------------------------
#> Modernity             0.781                     0.982                 
#>                      (0.206)                   (0.150)                
#> Strictness                         0.867                     0.804    
#>                                   (0.201)                   (0.170)   
#> Belonging            2.974***     2.817***     2.091***     2.196***  
#>                      (0.289)      (0.282)      (0.192)      (0.194)   
#> Egality               1.113        1.079        1.355        1.386    
#>                      (0.242)      (0.238)      (0.207)      (0.205)   
#> Shame                 1.456*       1.482*       1.253        1.253    
#>                      (0.190)      (0.189)      (0.143)      (0.144)   
#> Tax Returns [Low]     2.578        2.931        1.782        2.056    
#>                      (0.746)      (0.754)      (0.567)      (0.584)   
#> Tax Returns [Yes]     1.439        1.355        1.193        1.433    
#>                      (0.852)      (0.855)      (0.670)      (0.679)   
#> Tax Returns [High]    4.672        4.443        1.292        1.388    
#>                      (1.067)      (1.034)      (0.857)      (0.858)   
#> Social Safety []      1.234        1.206        0.821        0.996    
#>                      (0.690)      (0.696)      (0.548)      (0.566)   
#> Social Safety []      0.546        0.537        1.558        1.847    
#>                      (0.867)      (0.863)      (0.670)      (0.686)   
#> Income Level          0.656        0.699        0.958        0.916    
#>                      (0.352)      (0.344)      (0.272)      (0.272)   
#> Gender []             1.383        1.436        1.211        1.410    
#>                      (0.632)      (0.634)      (0.506)      (0.522)   
#> Age                   0.921*       0.919*      0.902**      0.894**   
#>                      (0.041)      (0.041)      (0.036)      (0.037)   
#> N                       88           88           88           88     
#> ----------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001                                      
#> All estimates of oredered logistic models are exponentiated.
#> 
#> ----------------------------------------------------------------------
#>                    1:4:1 Coding 1:4:1 Coding 2:2:2 Coding 2:2:2 Coding
#>                        (1)          (2)          (3)          (4)     
#> ----------------------------------------------------------------------
#> Modernity             0.781                     0.982                 
#>                      (0.206)                   (0.150)                
#> Strictness                         0.867                     0.804    
#>                                   (0.201)                   (0.170)   
#> Belonging            2.974***     2.817***     2.091***     2.196***  
#>                      (0.289)      (0.282)      (0.192)      (0.194)   
#> Egality               1.113        1.079        1.355        1.386    
#>                      (0.242)      (0.238)      (0.207)      (0.205)   
#> Shame                 1.456*       1.482*       1.253        1.253    
#>                      (0.190)      (0.189)      (0.143)      (0.144)   
#> Tax Returns [Low]     2.578        2.931        1.782        2.056    
#>                      (0.746)      (0.754)      (0.567)      (0.584)   
#> Tax Returns [Yes]     1.439        1.355        1.193        1.433    
#>                      (0.852)      (0.855)      (0.670)      (0.679)   
#> Tax Returns [High]    4.672        4.443        1.292        1.388    
#>                      (1.067)      (1.034)      (0.857)      (0.858)   
#> Social Safety []      1.234        1.206        0.821        0.996    
#>                      (0.690)      (0.696)      (0.548)      (0.566)   
#> Social Safety []      0.546        0.537        1.558        1.847    
#>                      (0.867)      (0.863)      (0.670)      (0.686)   
#> Income Level          0.656        0.699        0.958        0.916    
#>                      (0.352)      (0.344)      (0.272)      (0.272)   
#> Gender []             1.383        1.436        1.211        1.410    
#>                      (0.632)      (0.634)      (0.506)      (0.522)   
#> Age                   0.921*       0.919*      0.902**      0.894**   
#>                      (0.041)      (0.041)      (0.036)      (0.037)   
#> N                       88           88           88           88     
#> ----------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001                                      
#> All estimates of oredered logistic models are exponentiated.

5.1 Interpretation

5.1.1 ‘1:4:1 Coding’ - model 1

#> Ordinal Proportional Odds Logistic regression was used to analyze the effects on Tax Moral A (1:4:1).<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases the odds to move from one category of Tax Moral A (1:4:1) to the next one by 197.4%, assuming all other covariates stay constant.<br/>The Egality covariate has statistically significant effect. An increase of 1 unit in Egality increases the odds to move from one category of Tax Moral A (1:4:1) to the next one by 11.33%, assuming all other covariates stay constant.<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases the odds to move from one category of Tax Moral A (1:4:1) to the next one by 7.874%, assuming all other covariates stay constant.

5.1.2 ‘1:4:1 Coding’ - model 2

#> Ordinal Proportional Odds Logistic regression was used to analyze the effects on Tax Moral A (1:4:1).<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases the odds to move from one category of Tax Moral A (1:4:1) to the next one by 181.7%, assuming all other covariates stay constant.<br/>The Egality covariate has statistically significant effect. An increase of 1 unit in Egality increases the odds to move from one category of Tax Moral A (1:4:1) to the next one by 7.894%, assuming all other covariates stay constant.<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases the odds to move from one category of Tax Moral A (1:4:1) to the next one by 8.101%, assuming all other covariates stay constant.

5.1.3 ‘2:2:2 Coding’ - model 3

#> Ordinal Proportional Odds Logistic regression was used to analyze the effects on Tax Moral B (2:2:2).<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases the odds to move from one category of Tax Moral B (2:2:2) to the next one by 109.1%, assuming all other covariates stay constant.<br/>The Egality covariate has statistically significant effect. An increase of 1 unit in Egality increases the odds to move from one category of Tax Moral B (2:2:2) to the next one by 35.48%, assuming all other covariates stay constant.<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases the odds to move from one category of Tax Moral B (2:2:2) to the next one by 9.769%, assuming all other covariates stay constant.

5.1.4 ‘2:2:2 Coding’ - model 4

#> Ordinal Proportional Odds Logistic regression was used to analyze the effects on Tax Moral B (2:2:2).<br/>The Belonging covariate has statistically significant effect. An increase of 1 unit in Belonging increases the odds to move from one category of Tax Moral B (2:2:2) to the next one by 119.6%, assuming all other covariates stay constant.<br/>The Egality covariate has statistically significant effect. An increase of 1 unit in Egality increases the odds to move from one category of Tax Moral B (2:2:2) to the next one by 38.63%, assuming all other covariates stay constant.<br/>The Age covariate has statistically significant effect. An increase of 1 unit in Age decreases the odds to move from one category of Tax Moral B (2:2:2) to the next one by 10.57%, assuming all other covariates stay constant.

6 Belonging and Generation Analysis

6.1 Descriptive

6.1.1 Generation (3 Levels)

# Calculate mean and standard error
grouped_data <- data %>%
  group_by(gen3) %>%
  summarise(
    mean_tax_moral = mean(tax_moral_N),
    count = n(),
    se = sd(tax_moral_N) / sqrt(n())  # Standard error
  )

# Sort the grouped data by gen3
grouped_data <- grouped_data %>%
  arrange(gen3)

# Create the bar chart with error bars and display the SE value
ggplot(grouped_data, aes(x = gen3, y = mean_tax_moral)) +
  geom_bar(stat = "identity", fill = "lightblue") +
  geom_errorbar(aes(ymin = mean_tax_moral - se, ymax = mean_tax_moral + se), 
                width = 0.2) +  # Add error bars
  labs(title = "Average Tax Moral by Gen3",
       x = "Gen3",
       y = "Mean Tax Moral") +
  geom_text(aes(label = paste0("n=", count, ", SE=", round(se, 2))),
            vjust = -0.5,
            hjust = 0.5)


ggsave("out/gen3_barchart.png")

6.1.2 Generation (7 levels)

grouped_data <- data %>%
  group_by(gen7) %>%
  summarise(mean_tax_moral = mean(tax_moral_N), count = n())

# Sort the grouped data by gen7
grouped_data <- grouped_data %>%
  arrange(gen7)

ggplot(grouped_data, aes(x = gen7, y = mean_tax_moral)) +
  geom_bar(stat = "identity") +
  labs(title = "Average Tax Moral by Gen7",
       x = "Gen7",
       y = "Mean Tax Moral") +
  geom_text(aes(label = paste0("n=", count)),
            vjust = -0.5,
            hjust = 0.5)

6.2 Interaction (Regression)

6.2.1 Interaction (Regression)

cov_gen3 <- c(cov_a[1:8],"Generation(3)" = "gen3")
cov_gen3_N <- c(cov_a[1:8],"Generation(3)N" = "gen3_N")
cov_gen7 <- c(cov_a[1:8],"Generation(7)" = "gen7") 

cov_int_gen3 <- c(cov_a, "belonging*gen3")
mi_gen3 <- ols_regression(data, "tax_moral_N", cov_int_gen3)

mi_gen3_F <- ols_regression(data, "tax_moral_N", cov_gen3)
mi_gen3_N <- ols_regression(data, "tax_moral_N", cov_gen3_N)


int_models <- list(mi_gen3_F, mi_gen3_N, mi_gen3)
names(int_models) <- c("Gen3 (Factor)", "Gen3 (Numeric)", "Belonging*Gen3")

cov_labels <- c(names(cov_full[2]),
                names(cov_full[3]),
                names(cov_full[4]), 
                names(cov_full[5]),
                paste0(names(cov_full[6])," [", levels(data[,cov_full[6]])[2],"]"),
                paste0(names(cov_full[6])," [", levels(data[,cov_full[6]])[3],"]"),
                paste0(names(cov_full[6])," [", levels(data[,cov_full[6]])[4],"]"),
                paste0(names(cov_full[7])," [", levels(data[,cov_full[7]])[2],"]"),
                paste0(names(cov_full[7])," [", levels(data[,cov_full[7]])[3],"]"),
                names(cov_full[8]),
                paste0(names(cov_full[9])," [", levels(data[,cov_full[9]])[2],"]"),
                names(cov_full[10]),
                paste0(names(cov_full[11])," [", levels(data[,cov_full[11]])[2],"]"),
                paste0(names(cov_full[11])," [", levels(data[,cov_full[11]])[3],"]"),
                names(cov_full[12]),
                paste0(names(int_models[3])," [", levels(data[,cov_full[11]])[2],"]"),
                paste0(names(int_models[3])," [", levels(data[,cov_full[11]])[3],"]")
                )
 wl_stargazer (int_models, "interaction_reg_gen", cov_labels=cov_labels, coef_exp=FALSE)
#> 
#> ------------------------------------------------------------------
#>                        Gen3 (Factor) Gen3 (Numeric) Belonging*Gen3
#>                             (1)           (2)            (3)      
#> ------------------------------------------------------------------
#> Modernity                 -0.009         -0.038         -0.033    
#>                           (0.092)       (0.092)        (0.087)    
#> Belonging                0.437***       0.466***       0.622**    
#>                           (0.105)       (0.105)        (0.197)    
#> Egality                    0.199         0.213          0.115     
#>                           (0.118)       (0.119)        (0.112)    
#> Shame                      0.122         0.099          0.146     
#>                           (0.089)       (0.089)        (0.083)    
#> Tax Returns [Low]          0.659         0.508          0.416     
#>                           (0.355)       (0.349)        (0.339)    
#> Tax Returns [Yes]          0.341         0.165          0.279     
#>                           (0.420)       (0.413)        (0.393)    
#> Tax Returns [High]         0.570         0.377          0.517     
#>                           (0.528)       (0.524)        (0.495)    
#> Social Safety [Low]       -0.096         -0.023         -0.085    
#>                           (0.336)       (0.338)        (0.316)    
#> Social Safety [Yes]        0.204         0.295          0.170     
#>                           (0.405)       (0.407)        (0.383)    
#> Income Level              -0.010         -0.008         -0.021    
#>                           (0.163)       (0.165)        (0.155)    
#> Gender [Male]              0.208         0.315          0.287     
#>                           (0.316)       (0.314)        (0.300)    
#> Age                                                    -0.085*    
#>                                                        (0.035)    
#> Generation(3) [30-40]      0.048                        0.638     
#>                           (0.372)                      (0.931)    
#> Generation(3) [40-67]     -0.907*                       3.351*    
#>                           (0.435)                      (1.376)    
#> Generation(3)N                          -0.482*                   
#>                                         (0.220)                   
#> Belonging*Gen3 [30-40]                                  -0.014    
#>                                                        (0.215)    
#> Belonging*Gen3 [40-67]                                 -0.680*    
#>                                                        (0.263)    
#> N                           88             88             88      
#> R2                         0.466         0.444          0.554     
#> Adjusted R2                0.372         0.354          0.453     
#> ------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001
#> 
#> ------------------------------------------------------------------
#>                        Gen3 (Factor) Gen3 (Numeric) Belonging*Gen3
#>                             (1)           (2)            (3)      
#> ------------------------------------------------------------------
#> Modernity                 -0.009         -0.038         -0.033    
#>                           (0.092)       (0.092)        (0.087)    
#> Belonging                0.437***       0.466***       0.622**    
#>                           (0.105)       (0.105)        (0.197)    
#> Egality                    0.199         0.213          0.115     
#>                           (0.118)       (0.119)        (0.112)    
#> Shame                      0.122         0.099          0.146     
#>                           (0.089)       (0.089)        (0.083)    
#> Tax Returns [Low]          0.659         0.508          0.416     
#>                           (0.355)       (0.349)        (0.339)    
#> Tax Returns [Yes]          0.341         0.165          0.279     
#>                           (0.420)       (0.413)        (0.393)    
#> Tax Returns [High]         0.570         0.377          0.517     
#>                           (0.528)       (0.524)        (0.495)    
#> Social Safety [Low]       -0.096         -0.023         -0.085    
#>                           (0.336)       (0.338)        (0.316)    
#> Social Safety [Yes]        0.204         0.295          0.170     
#>                           (0.405)       (0.407)        (0.383)    
#> Income Level              -0.010         -0.008         -0.021    
#>                           (0.163)       (0.165)        (0.155)    
#> Gender [Male]              0.208         0.315          0.287     
#>                           (0.316)       (0.314)        (0.300)    
#> Age                                                    -0.085*    
#>                                                        (0.035)    
#> Generation(3) [30-40]      0.048                        0.638     
#>                           (0.372)                      (0.931)    
#> Generation(3) [40-67]     -0.907*                       3.351*    
#>                           (0.435)                      (1.376)    
#> Generation(3)N                          -0.482*                   
#>                                         (0.220)                   
#> Belonging*Gen3 [30-40]                                  -0.014    
#>                                                        (0.215)    
#> Belonging*Gen3 [40-67]                                 -0.680*    
#>                                                        (0.263)    
#> N                           88             88             88      
#> R2                         0.466         0.444          0.554     
#> Adjusted R2                0.372         0.354          0.453     
#> ------------------------------------------------------------------
#> *p < .05; **p < .01; ***p < .001

6.2.2 Generation (3 levels)

# Colored
sjPlot::plot_model(mi_gen3, type = "int") 

ggsave("out/gen3_interaction_ols.png")

# Black & White
sjPlot::plot_model(mi_gen3, type = "int", colors="bw")

ggsave("out/gen3_interaction_ols_bw.png")

6.3 Robustness (Interflex)

6.3.1 Generation (3 Levels)

df <- data[, c("Tax Moral" = "tax_moral_N", cov_gen3)]

interflex(estimator = "raw",
          Y = "tax_moral_N", D = "gen3", X = "belonging", Z = cov_a[1:8], data = df,
          base="20-30", treat.type="discrete",
          weights = NULL, Ylabel = "Tax Moral",
          Dlabel = "Generation", Xlabel="Belonging",
          main = "Generation * Belonging Plot", cex.main = 1.2, pool=TRUE, 
          file = "out/interflex_raw_gen3.png")
#> Baseline group: treat = 20-30


interflex(estimator = "linear",
          Y = "tax_moral_N", D = "gen3", X = "belonging", Z = cov_a[1:8], data = df,
          base="20-30", treat.type="discrete",
          weights = NULL, Ylabel = "Tax Moral",
          Dlabel = "Generation", Xlabel="Belonging",
          main = "Generation * Belonging Plot", cex.main = 1.2, pool=TRUE, 
          file = "out/interflex_linear_gen3.png")
#> Baseline group: treat = 20-30
#> $diff.info
#> $diff.info$diff.values
#> 25% 50% 75% 
#>   3   4   5 
#> 
#> $diff.info$difference.name
#> [1] "50% vs 25%" "75% vs 50%" "75% vs 25%"
#> 
#> 
#> $treat.info
#> $treat.info$treat.type
#> [1] "discrete"
#> 
#> $treat.info$other.treat
#>     30-40     40-67 
#> "Group.2" "Group.3" 
#> 
#> $treat.info$all.treat
#>     20-30     30-40     40-67 
#> "Group.1" "Group.2" "Group.3" 
#> 
#> $treat.info$base
#>     20-30 
#> "Group.1" 
#> 
#> $treat.info$ncols
#> [1] 2
#> 
#> 
#> $est.lin
#> $est.lin$`30-40`
#>              X            ME        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000 -0.1847329620 0.5404521    -1.2621046     0.8926387
#>  [2,] 1.102041 -0.1800020725 0.5273556    -1.2312662     0.8712620
#>  [3,] 1.204082 -0.1752711829 0.5144264    -1.2007615     0.8502192
#>  [4,] 1.306122 -0.1705402934 0.5016777    -1.1706165     0.8295359
#>  [5,] 1.408163 -0.1658094039 0.4891234    -1.1408591     0.8092403
#>  [6,] 1.510204 -0.1610785144 0.4767790    -1.1115202     0.7893631
#>  [7,] 1.612245 -0.1563476249 0.4646612    -1.0826329     0.7699376
#>  [8,] 1.714286 -0.1516167354 0.4527882    -1.0542335     0.7510001
#>  [9,] 1.816327 -0.1468858459 0.4411797    -1.0263615     0.7325899
#> [10,] 1.918367 -0.1421549564 0.4298572    -0.9990596     0.7147497
#> [11,] 2.020408 -0.1374240669 0.4188439    -0.9723740     0.6975259
#> [12,] 2.122449 -0.1326931774 0.4081647    -0.9463546     0.6809683
#> [13,] 2.224490 -0.1279622879 0.3978467    -0.9210551     0.6651305
#> [14,] 2.326531 -0.1232313983 0.3879185    -0.8965328     0.6500700
#> [15,] 2.428571 -0.1185005088 0.3784110    -0.8728491     0.6358480
#> [16,] 2.530612 -0.1137696193 0.3693566    -0.8500685     0.6225293
#> [17,] 2.632653 -0.1090387298 0.3607894    -0.8282592     0.6101817
#> [18,] 2.734694 -0.1043078403 0.3527449    -0.8074919     0.5988762
#> [19,] 2.836735 -0.0995769508 0.3452596    -0.7878394     0.5886855
#> [20,] 2.938776 -0.0948460613 0.3383707    -0.7693757     0.5796836
#> [21,] 3.040816 -0.0901151718 0.3321153    -0.7521749     0.5719446
#> [22,] 3.142857 -0.0853842823 0.3265298    -0.7363095     0.5655409
#> [23,] 3.244898 -0.0806533928 0.3216490    -0.7218490     0.5605422
#> [24,] 3.346939 -0.0759225032 0.3175056    -0.7088583     0.5570133
#> [25,] 3.448980 -0.0711916137 0.3141286    -0.6973955     0.5550123
#> [26,] 3.551020 -0.0664607242 0.3115430    -0.6875103     0.5545889
#> [27,] 3.653061 -0.0617298347 0.3097686    -0.6792423     0.5557826
#> [28,] 3.755102 -0.0569989452 0.3088194    -0.6726192     0.5586213
#> [29,] 3.857143 -0.0522680557 0.3087030    -0.6676563     0.5631202
#> [30,] 3.959184 -0.0475371662 0.3094204    -0.6643554     0.5692811
#> [31,] 4.061224 -0.0428062767 0.3109657    -0.6627051     0.5770926
#> [32,] 4.163265 -0.0380753872 0.3133268    -0.6626809     0.5865301
#> [33,] 4.265306 -0.0333444977 0.3164853    -0.6642464     0.5975574
#> [34,] 4.367347 -0.0286136081 0.3204177    -0.6673547     0.6101274
#> [35,] 4.469388 -0.0238827186 0.3250959    -0.6719496     0.6241842
#> [36,] 4.571429 -0.0191518291 0.3304883    -0.6779682     0.6396645
#> [37,] 4.673469 -0.0144209396 0.3365604    -0.6853419     0.6565000
#> [38,] 4.775510 -0.0096900501 0.3432763    -0.6939989     0.6746188
#> [39,] 4.877551 -0.0049591606 0.3505990    -0.7038655     0.6939471
#> [40,] 4.979592 -0.0002282711 0.3584912    -0.7148674     0.7144109
#> [41,] 5.081633  0.0045026184 0.3669162    -0.7269315     0.7359367
#> [42,] 5.183673  0.0092335079 0.3758382    -0.7399863     0.7584533
#> [43,] 5.285714  0.0139643974 0.3852227    -0.7539630     0.7818918
#> [44,] 5.387755  0.0186952870 0.3950367    -0.7687959     0.8061865
#> [45,] 5.489796  0.0234261765 0.4052489    -0.7844228     0.8312751
#> [46,] 5.591837  0.0281570660 0.4158301    -0.8007851     0.8570993
#> [47,] 5.693878  0.0328879555 0.4267528    -0.8178283     0.8836042
#> [48,] 5.795918  0.0376188450 0.4379915    -0.8355013     0.9107390
#> [49,] 5.897959  0.0423497345 0.4495225    -0.8537569     0.9384564
#> [50,] 6.000000  0.0470806240 0.4613238    -0.8725515     0.9667127
#> 
#> $est.lin$`40-67`
#>              X          ME        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000  0.63553408 0.9199842     -1.198421    2.46948897
#>  [2,] 1.102041  0.57979900 0.8941456     -1.202648    2.36224575
#>  [3,] 1.204082  0.52406393 0.8684814     -1.207222    2.25535004
#>  [4,] 1.306122  0.46832886 0.8430075     -1.212176    2.14883357
#>  [5,] 1.408163  0.41259378 0.8177416     -1.217544    2.04273178
#>  [6,] 1.510204  0.35685871 0.7927035     -1.223367    1.93708433
#>  [7,] 1.612245  0.30112364 0.7679157     -1.229688    1.83193566
#>  [8,] 1.714286  0.24538856 0.7434032     -1.236559    1.72733566
#>  [9,] 1.816327  0.18965349 0.7191940     -1.244033    1.62334044
#> [10,] 1.918367  0.13391842 0.6953198     -1.252176    1.52001316
#> [11,] 2.020408  0.07818334 0.6718165     -1.261058    1.41742505
#> [12,] 2.122449  0.02244827 0.6487243     -1.270760    1.31565644
#> [13,] 2.224490 -0.03328680 0.6260886     -1.281372    1.21479801
#> [14,] 2.326531 -0.08902187 0.6039609     -1.292996    1.11495211
#> [15,] 2.428571 -0.14475695 0.5823990     -1.305748    1.01623414
#> [16,] 2.530612 -0.20049202 0.5614680     -1.319758    0.91877408
#> [17,] 2.632653 -0.25622709 0.5412414     -1.335172    0.82271785
#> [18,] 2.734694 -0.31196217 0.5218008     -1.352153    0.72822873
#> [19,] 2.836735 -0.36769724 0.5032375     -1.370883    0.63548835
#> [20,] 2.938776 -0.42343231 0.4856520     -1.391562    0.54469727
#> [21,] 3.040816 -0.47916739 0.4691543     -1.414409    0.45607469
#> [22,] 3.142857 -0.53490246 0.4538631     -1.439662    0.36985713
#> [23,] 3.244898 -0.59063753 0.4399042     -1.467570    0.28629543
#> [24,] 3.346939 -0.64637261 0.4274081     -1.498395    0.20564983
#> [25,] 3.448980 -0.70210768 0.4165065     -1.532398    0.12818284
#> [26,] 3.551020 -0.75784275 0.4073275     -1.569835    0.05414973
#> [27,] 3.653061 -0.81357783 0.3999896     -1.610943   -0.01621307
#> [28,] 3.755102 -0.86931290 0.3945957     -1.655925   -0.08270078
#> [29,] 3.857143 -0.92504797 0.3912261     -1.704943   -0.14515309
#> [30,] 3.959184 -0.98078304 0.3899332     -1.758101   -0.20346539
#> [31,] 4.061224 -1.03651812 0.3907378     -1.815440   -0.25759659
#> [32,] 4.163265 -1.09225319 0.3936269     -1.876934   -0.30757231
#> [33,] 4.265306 -1.14798826 0.3985552     -1.942494   -0.35348292
#> [34,] 4.367347 -1.20372334 0.4054484     -2.011970   -0.39547664
#> [35,] 4.469388 -1.25945841 0.4142084     -2.085168   -0.43374901
#> [36,] 4.571429 -1.31519348 0.4247197     -2.161857   -0.46853026
#> [37,] 4.673469 -1.37092856 0.4368558     -2.241785   -0.50007235
#> [38,] 4.775510 -1.42666363 0.4504856     -2.324690   -0.52863703
#> [39,] 4.877551 -1.48239870 0.4654777     -2.410312   -0.55448582
#> [40,] 4.979592 -1.53813378 0.4817051     -2.498395   -0.57787225
#> [41,] 5.081633 -1.59386885 0.4990472     -2.588701   -0.59903651
#> [42,] 5.183673 -1.64960392 0.5173919     -2.681006   -0.61820202
#> [43,] 5.285714 -1.70533899 0.5366365     -2.775104   -0.63557374
#> [44,] 5.387755 -1.76107407 0.5566876     -2.870810   -0.65133769
#> [45,] 5.489796 -1.81680914 0.5774612     -2.967957   -0.66566133
#> [46,] 5.591837 -1.87254421 0.5988821     -3.066394   -0.67869454
#> [47,] 5.693878 -1.92827929 0.6208834     -3.165988   -0.69057087
#> [48,] 5.795918 -1.98401436 0.6434055     -3.266620   -0.70140900
#> [49,] 5.897959 -2.03974943 0.6663956     -3.368185   -0.71131417
#> [50,] 6.000000 -2.09548451 0.6898068     -3.470589   -0.72037969
#> 
#> 
#> $pred.lin
#> $pred.lin$`30-40`
#>              X     E(Y)        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000 3.867950 0.6993409      2.473840      5.262061
#>  [2,] 1.102041 3.928262 0.6947158      2.543371      5.313152
#>  [3,] 1.204082 3.988573 0.6903283      2.612429      5.364717
#>  [4,] 1.306122 4.048885 0.6861828      2.681004      5.416765
#>  [5,] 1.408163 4.109196 0.6822840      2.749088      5.469304
#>  [6,] 1.510204 4.169508 0.6786358      2.816672      5.522344
#>  [7,] 1.612245 4.229819 0.6752426      2.883748      5.575891
#>  [8,] 1.714286 4.290131 0.6721080      2.950308      5.629954
#>  [9,] 1.816327 4.350442 0.6692358      3.016345      5.684539
#> [10,] 1.918367 4.410754 0.6666293      3.081853      5.739655
#> [11,] 2.020408 4.471065 0.6642916      3.146824      5.795307
#> [12,] 2.122449 4.531377 0.6622257      3.211254      5.851500
#> [13,] 2.224490 4.591688 0.6604339      3.275137      5.908239
#> [14,] 2.326531 4.652000 0.6589187      3.338470      5.965530
#> [15,] 2.428571 4.712312 0.6576819      3.401247      6.023376
#> [16,] 2.530612 4.772623 0.6567251      3.463466      6.081781
#> [17,] 2.632653 4.832935 0.6560494      3.525124      6.140745
#> [18,] 2.734694 4.893246 0.6556558      3.586220      6.200272
#> [19,] 2.836735 4.953558 0.6555448      3.646753      6.260362
#> [20,] 2.938776 5.013869 0.6557165      3.706722      6.321016
#> [21,] 3.040816 5.074181 0.6561707      3.766128      6.382233
#> [22,] 3.142857 5.134492 0.6569069      3.824972      6.444012
#> [23,] 3.244898 5.194804 0.6579239      3.883256      6.506351
#> [24,] 3.346939 5.255115 0.6592207      3.940983      6.569248
#> [25,] 3.448980 5.315427 0.6607954      3.998155      6.632699
#> [26,] 3.551020 5.375738 0.6626462      4.054777      6.696700
#> [27,] 3.653061 5.436050 0.6647708      4.110854      6.761246
#> [28,] 3.755102 5.496361 0.6671664      4.166390      6.826333
#> [29,] 3.857143 5.556673 0.6698302      4.221391      6.891955
#> [30,] 3.959184 5.616985 0.6727591      4.275864      6.958105
#> [31,] 4.061224 5.677296 0.6759495      4.329815      7.024777
#> [32,] 4.163265 5.737608 0.6793979      4.383253      7.091962
#> [33,] 4.265306 5.797919 0.6831002      4.436184      7.159654
#> [34,] 4.367347 5.858231 0.6870524      4.488617      7.227845
#> [35,] 4.469388 5.918542 0.6912501      4.540560      7.296524
#> [36,] 4.571429 5.978854 0.6956891      4.592023      7.365685
#> [37,] 4.673469 6.039165 0.7003645      4.643014      7.435316
#> [38,] 4.775510 6.099477 0.7052719      4.693543      7.505411
#> [39,] 4.877551 6.159788 0.7104063      4.743619      7.575957
#> [40,] 4.979592 6.220100 0.7157628      4.793253      7.646947
#> [41,] 5.081633 6.280411 0.7213366      4.842453      7.718370
#> [42,] 5.183673 6.340723 0.7271226      4.891231      7.790215
#> [43,] 5.285714 6.401034 0.7331158      4.939595      7.862474
#> [44,] 5.387755 6.461346 0.7393112      4.987556      7.935136
#> [45,] 5.489796 6.521658 0.7457036      5.035125      8.008191
#> [46,] 5.591837 6.581969 0.7522882      5.082310      8.081628
#> [47,] 5.693878 6.642281 0.7590598      5.129122      8.155439
#> [48,] 5.795918 6.702592 0.7660136      5.175572      8.229612
#> [49,] 5.897959 6.762904 0.7731446      5.221668      8.304139
#> [50,] 6.000000 6.823215 0.7804480      5.267421      8.379010
#> 
#> $pred.lin$`40-67`
#>              X     E(Y)        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000 4.688217 1.0235043      2.647899      6.728536
#>  [2,] 1.102041 4.688063 1.0046280      2.685373      6.690752
#>  [3,] 1.204082 4.687908 0.9860782      2.722197      6.653619
#>  [4,] 1.306122 4.687754 0.9678737      2.758333      6.617175
#>  [5,] 1.408163 4.687599 0.9500343      2.793741      6.581458
#>  [6,] 1.510204 4.687445 0.9325810      2.828379      6.546511
#>  [7,] 1.612245 4.687291 0.9155358      2.862203      6.512378
#>  [8,] 1.714286 4.687136 0.8989221      2.895168      6.479105
#>  [9,] 1.816327 4.686982 0.8827641      2.927224      6.446740
#> [10,] 1.918367 4.686827 0.8670874      2.958320      6.415334
#> [11,] 2.020408 4.686673 0.8519184      2.988405      6.384941
#> [12,] 2.122449 4.686518 0.8372848      3.017422      6.355615
#> [13,] 2.224490 4.686364 0.8232151      3.045315      6.327413
#> [14,] 2.326531 4.686210 0.8097388      3.072025      6.300394
#> [15,] 2.428571 4.686055 0.7968860      3.097492      6.274618
#> [16,] 2.530612 4.685901 0.7846872      3.121655      6.250146
#> [17,] 2.632653 4.685746 0.7731734      3.144453      6.227039
#> [18,] 2.734694 4.685592 0.7623758      3.165824      6.205360
#> [19,] 2.836735 4.685437 0.7523250      3.185705      6.185170
#> [20,] 2.938776 4.685283 0.7430514      3.204037      6.166529
#> [21,] 3.040816 4.685129 0.7345845      3.220761      6.149496
#> [22,] 3.142857 4.684974 0.7269525      3.235821      6.134127
#> [23,] 3.244898 4.684820 0.7201818      3.249163      6.120476
#> [24,] 3.346939 4.684665 0.7142970      3.260740      6.108590
#> [25,] 3.448980 4.684511 0.7093201      3.270507      6.098515
#> [26,] 3.551020 4.684356 0.7052704      3.278426      6.090287
#> [27,] 3.653061 4.684202 0.7021639      3.284464      6.083940
#> [28,] 3.755102 4.684048 0.7000131      3.288597      6.079498
#> [29,] 3.857143 4.683893 0.6988268      3.290807      6.076979
#> [30,] 3.959184 4.683739 0.6986101      3.291085      6.076392
#> [31,] 4.061224 4.683584 0.6993637      3.289428      6.077740
#> [32,] 4.163265 4.683430 0.7010846      3.285843      6.081016
#> [33,] 4.265306 4.683275 0.7037657      3.280344      6.086207
#> [34,] 4.367347 4.683121 0.7073960      3.272953      6.093289
#> [35,] 4.469388 4.682967 0.7119610      3.263698      6.102235
#> [36,] 4.571429 4.682812 0.7174429      3.252616      6.113008
#> [37,] 4.673469 4.682658 0.7238209      3.239747      6.125568
#> [38,] 4.775510 4.682503 0.7310714      3.225139      6.139867
#> [39,] 4.877551 4.682349 0.7391689      3.208843      6.155855
#> [40,] 4.979592 4.682194 0.7480858      3.190913      6.173476
#> [41,] 5.081633 4.682040 0.7577932      3.171407      6.192673
#> [42,] 5.183673 4.681886 0.7682611      3.150385      6.213386
#> [43,] 5.285714 4.681731 0.7794589      3.127908      6.235554
#> [44,] 5.387755 4.681577 0.7913556      3.104038      6.259115
#> [45,] 5.489796 4.681422 0.8039201      3.078837      6.284008
#> [46,] 5.591837 4.681268 0.8171218      3.052365      6.310170
#> [47,] 5.693878 4.681113 0.8309301      3.024684      6.337542
#> [48,] 5.795918 4.680959 0.8453155      2.995853      6.366065
#> [49,] 5.897959 4.680805 0.8602488      2.965930      6.395679
#> [50,] 6.000000 4.680650 0.8757022      2.934970      6.426330
#> 
#> $pred.lin$`20-30`
#>              X     E(Y)        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000 4.052683 0.3965357      3.262204      4.843162
#>  [2,] 1.102041 4.108264 0.4047686      3.301372      4.915155
#>  [3,] 1.204082 4.163844 0.4133131      3.339920      4.987769
#>  [4,] 1.306122 4.219425 0.4221502      3.377884      5.060966
#>  [5,] 1.408163 4.275006 0.4312620      3.415301      5.134711
#>  [6,] 1.510204 4.330586 0.4406314      3.452204      5.208969
#>  [7,] 1.612245 4.386167 0.4502423      3.488625      5.283708
#>  [8,] 1.714286 4.441748 0.4600796      3.524596      5.358899
#>  [9,] 1.816327 4.497328 0.4701290      3.560143      5.434513
#> [10,] 1.918367 4.552909 0.4803774      3.595294      5.510524
#> [11,] 2.020408 4.608489 0.4908121      3.630073      5.586906
#> [12,] 2.122449 4.664070 0.5014216      3.664504      5.663636
#> [13,] 2.224490 4.719651 0.5121950      3.698609      5.740693
#> [14,] 2.326531 4.775231 0.5231222      3.732406      5.818056
#> [15,] 2.428571 4.830812 0.5341938      3.765916      5.895708
#> [16,] 2.530612 4.886393 0.5454009      3.799156      5.973629
#> [17,] 2.632653 4.941973 0.5567353      3.832142      6.051805
#> [18,] 2.734694 4.997554 0.5681895      3.864889      6.130219
#> [19,] 2.836735 5.053135 0.5797564      3.897411      6.208858
#> [20,] 2.938776 5.108715 0.5914293      3.929723      6.287708
#> [21,] 3.040816 5.164296 0.6032021      3.961835      6.366757
#> [22,] 3.142857 5.219877 0.6150690      3.993759      6.445994
#> [23,] 3.244898 5.275457 0.6270247      4.025506      6.525408
#> [24,] 3.346939 5.331038 0.6390642      4.057087      6.604989
#> [25,] 3.448980 5.386618 0.6511830      4.088509      6.684728
#> [26,] 3.551020 5.442199 0.6633765      4.119782      6.764616
#> [27,] 3.653061 5.497780 0.6756408      4.150914      6.844645
#> [28,] 3.755102 5.553360 0.6879721      4.181913      6.924808
#> [29,] 3.857143 5.608941 0.7003669      4.212785      7.005097
#> [30,] 3.959184 5.664522 0.7128218      4.243537      7.085506
#> [31,] 4.061224 5.720102 0.7253338      4.274176      7.166029
#> [32,] 4.163265 5.775683 0.7378999      4.304706      7.246660
#> [33,] 4.265306 5.831264 0.7505174      4.335134      7.327393
#> [34,] 4.367347 5.886844 0.7631838      4.365465      7.408223
#> [35,] 4.469388 5.942425 0.7758967      4.395703      7.489147
#> [36,] 4.571429 5.998006 0.7886539      4.425853      7.570158
#> [37,] 4.673469 6.053586 0.8014531      4.455919      7.651254
#> [38,] 4.775510 6.109167 0.8142925      4.485904      7.732429
#> [39,] 4.877551 6.164748 0.8271701      4.515814      7.813681
#> [40,] 4.979592 6.220328 0.8400843      4.545651      7.895006
#> [41,] 5.081633 6.275909 0.8530333      4.575418      7.976400
#> [42,] 5.183673 6.331489 0.8660155      4.605119      8.057860
#> [43,] 5.285714 6.387070 0.8790296      4.634757      8.139384
#> [44,] 5.387755 6.442651 0.8920741      4.664333      8.220968
#> [45,] 5.489796 6.498231 0.9051477      4.693852      8.302610
#> [46,] 5.591837 6.553812 0.9182492      4.723316      8.384308
#> [47,] 5.693878 6.609393 0.9313774      4.752726      8.466060
#> [48,] 5.795918 6.664973 0.9445311      4.782085      8.547862
#> [49,] 5.897959 6.720554 0.9577093      4.811395      8.629713
#> [50,] 6.000000 6.776135 0.9709111      4.840659      8.711611
#> 
#> 
#> $link.lin
#> $link.lin$`30-40`
#>              X     E(Y)        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000 3.867950 0.6993409      2.473840      5.262061
#>  [2,] 1.102041 3.928262 0.6947158      2.543371      5.313152
#>  [3,] 1.204082 3.988573 0.6903283      2.612429      5.364717
#>  [4,] 1.306122 4.048885 0.6861828      2.681004      5.416765
#>  [5,] 1.408163 4.109196 0.6822840      2.749088      5.469304
#>  [6,] 1.510204 4.169508 0.6786358      2.816672      5.522344
#>  [7,] 1.612245 4.229819 0.6752426      2.883748      5.575891
#>  [8,] 1.714286 4.290131 0.6721080      2.950308      5.629954
#>  [9,] 1.816327 4.350442 0.6692358      3.016345      5.684539
#> [10,] 1.918367 4.410754 0.6666293      3.081853      5.739655
#> [11,] 2.020408 4.471065 0.6642916      3.146824      5.795307
#> [12,] 2.122449 4.531377 0.6622257      3.211254      5.851500
#> [13,] 2.224490 4.591688 0.6604339      3.275137      5.908239
#> [14,] 2.326531 4.652000 0.6589187      3.338470      5.965530
#> [15,] 2.428571 4.712312 0.6576819      3.401247      6.023376
#> [16,] 2.530612 4.772623 0.6567251      3.463466      6.081781
#> [17,] 2.632653 4.832935 0.6560494      3.525124      6.140745
#> [18,] 2.734694 4.893246 0.6556558      3.586220      6.200272
#> [19,] 2.836735 4.953558 0.6555448      3.646753      6.260362
#> [20,] 2.938776 5.013869 0.6557165      3.706722      6.321016
#> [21,] 3.040816 5.074181 0.6561707      3.766128      6.382233
#> [22,] 3.142857 5.134492 0.6569069      3.824972      6.444012
#> [23,] 3.244898 5.194804 0.6579239      3.883256      6.506351
#> [24,] 3.346939 5.255115 0.6592207      3.940983      6.569248
#> [25,] 3.448980 5.315427 0.6607954      3.998155      6.632699
#> [26,] 3.551020 5.375738 0.6626462      4.054777      6.696700
#> [27,] 3.653061 5.436050 0.6647708      4.110854      6.761246
#> [28,] 3.755102 5.496361 0.6671664      4.166390      6.826333
#> [29,] 3.857143 5.556673 0.6698302      4.221391      6.891955
#> [30,] 3.959184 5.616985 0.6727591      4.275864      6.958105
#> [31,] 4.061224 5.677296 0.6759495      4.329815      7.024777
#> [32,] 4.163265 5.737608 0.6793979      4.383253      7.091962
#> [33,] 4.265306 5.797919 0.6831002      4.436184      7.159654
#> [34,] 4.367347 5.858231 0.6870524      4.488617      7.227845
#> [35,] 4.469388 5.918542 0.6912501      4.540560      7.296524
#> [36,] 4.571429 5.978854 0.6956891      4.592023      7.365685
#> [37,] 4.673469 6.039165 0.7003645      4.643014      7.435316
#> [38,] 4.775510 6.099477 0.7052719      4.693543      7.505411
#> [39,] 4.877551 6.159788 0.7104063      4.743619      7.575957
#> [40,] 4.979592 6.220100 0.7157628      4.793253      7.646947
#> [41,] 5.081633 6.280411 0.7213366      4.842453      7.718370
#> [42,] 5.183673 6.340723 0.7271226      4.891231      7.790215
#> [43,] 5.285714 6.401034 0.7331158      4.939595      7.862474
#> [44,] 5.387755 6.461346 0.7393112      4.987556      7.935136
#> [45,] 5.489796 6.521658 0.7457036      5.035125      8.008191
#> [46,] 5.591837 6.581969 0.7522882      5.082310      8.081628
#> [47,] 5.693878 6.642281 0.7590598      5.129122      8.155439
#> [48,] 5.795918 6.702592 0.7660136      5.175572      8.229612
#> [49,] 5.897959 6.762904 0.7731446      5.221668      8.304139
#> [50,] 6.000000 6.823215 0.7804480      5.267421      8.379010
#> 
#> $link.lin$`40-67`
#>              X     E(Y)        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000 4.688217 1.0235043      2.647899      6.728536
#>  [2,] 1.102041 4.688063 1.0046280      2.685373      6.690752
#>  [3,] 1.204082 4.687908 0.9860782      2.722197      6.653619
#>  [4,] 1.306122 4.687754 0.9678737      2.758333      6.617175
#>  [5,] 1.408163 4.687599 0.9500343      2.793741      6.581458
#>  [6,] 1.510204 4.687445 0.9325810      2.828379      6.546511
#>  [7,] 1.612245 4.687291 0.9155358      2.862203      6.512378
#>  [8,] 1.714286 4.687136 0.8989221      2.895168      6.479105
#>  [9,] 1.816327 4.686982 0.8827641      2.927224      6.446740
#> [10,] 1.918367 4.686827 0.8670874      2.958320      6.415334
#> [11,] 2.020408 4.686673 0.8519184      2.988405      6.384941
#> [12,] 2.122449 4.686518 0.8372848      3.017422      6.355615
#> [13,] 2.224490 4.686364 0.8232151      3.045315      6.327413
#> [14,] 2.326531 4.686210 0.8097388      3.072025      6.300394
#> [15,] 2.428571 4.686055 0.7968860      3.097492      6.274618
#> [16,] 2.530612 4.685901 0.7846872      3.121655      6.250146
#> [17,] 2.632653 4.685746 0.7731734      3.144453      6.227039
#> [18,] 2.734694 4.685592 0.7623758      3.165824      6.205360
#> [19,] 2.836735 4.685437 0.7523250      3.185705      6.185170
#> [20,] 2.938776 4.685283 0.7430514      3.204037      6.166529
#> [21,] 3.040816 4.685129 0.7345845      3.220761      6.149496
#> [22,] 3.142857 4.684974 0.7269525      3.235821      6.134127
#> [23,] 3.244898 4.684820 0.7201818      3.249163      6.120476
#> [24,] 3.346939 4.684665 0.7142970      3.260740      6.108590
#> [25,] 3.448980 4.684511 0.7093201      3.270507      6.098515
#> [26,] 3.551020 4.684356 0.7052704      3.278426      6.090287
#> [27,] 3.653061 4.684202 0.7021639      3.284464      6.083940
#> [28,] 3.755102 4.684048 0.7000131      3.288597      6.079498
#> [29,] 3.857143 4.683893 0.6988268      3.290807      6.076979
#> [30,] 3.959184 4.683739 0.6986101      3.291085      6.076392
#> [31,] 4.061224 4.683584 0.6993637      3.289428      6.077740
#> [32,] 4.163265 4.683430 0.7010846      3.285843      6.081016
#> [33,] 4.265306 4.683275 0.7037657      3.280344      6.086207
#> [34,] 4.367347 4.683121 0.7073960      3.272953      6.093289
#> [35,] 4.469388 4.682967 0.7119610      3.263698      6.102235
#> [36,] 4.571429 4.682812 0.7174429      3.252616      6.113008
#> [37,] 4.673469 4.682658 0.7238209      3.239747      6.125568
#> [38,] 4.775510 4.682503 0.7310714      3.225139      6.139867
#> [39,] 4.877551 4.682349 0.7391689      3.208843      6.155855
#> [40,] 4.979592 4.682194 0.7480858      3.190913      6.173476
#> [41,] 5.081633 4.682040 0.7577932      3.171407      6.192673
#> [42,] 5.183673 4.681886 0.7682611      3.150385      6.213386
#> [43,] 5.285714 4.681731 0.7794589      3.127908      6.235554
#> [44,] 5.387755 4.681577 0.7913556      3.104038      6.259115
#> [45,] 5.489796 4.681422 0.8039201      3.078837      6.284008
#> [46,] 5.591837 4.681268 0.8171218      3.052365      6.310170
#> [47,] 5.693878 4.681113 0.8309301      3.024684      6.337542
#> [48,] 5.795918 4.680959 0.8453155      2.995853      6.366065
#> [49,] 5.897959 4.680805 0.8602488      2.965930      6.395679
#> [50,] 6.000000 4.680650 0.8757022      2.934970      6.426330
#> 
#> $link.lin$`20-30`
#>              X     E(Y)        sd lower CI(95%) upper CI(95%)
#>  [1,] 1.000000 4.052683 0.3965357      3.262204      4.843162
#>  [2,] 1.102041 4.108264 0.4047686      3.301372      4.915155
#>  [3,] 1.204082 4.163844 0.4133131      3.339920      4.987769
#>  [4,] 1.306122 4.219425 0.4221502      3.377884      5.060966
#>  [5,] 1.408163 4.275006 0.4312620      3.415301      5.134711
#>  [6,] 1.510204 4.330586 0.4406314      3.452204      5.208969
#>  [7,] 1.612245 4.386167 0.4502423      3.488625      5.283708
#>  [8,] 1.714286 4.441748 0.4600796      3.524596      5.358899
#>  [9,] 1.816327 4.497328 0.4701290      3.560143      5.434513
#> [10,] 1.918367 4.552909 0.4803774      3.595294      5.510524
#> [11,] 2.020408 4.608489 0.4908121      3.630073      5.586906
#> [12,] 2.122449 4.664070 0.5014216      3.664504      5.663636
#> [13,] 2.224490 4.719651 0.5121950      3.698609      5.740693
#> [14,] 2.326531 4.775231 0.5231222      3.732406      5.818056
#> [15,] 2.428571 4.830812 0.5341938      3.765916      5.895708
#> [16,] 2.530612 4.886393 0.5454009      3.799156      5.973629
#> [17,] 2.632653 4.941973 0.5567353      3.832142      6.051805
#> [18,] 2.734694 4.997554 0.5681895      3.864889      6.130219
#> [19,] 2.836735 5.053135 0.5797564      3.897411      6.208858
#> [20,] 2.938776 5.108715 0.5914293      3.929723      6.287708
#> [21,] 3.040816 5.164296 0.6032021      3.961835      6.366757
#> [22,] 3.142857 5.219877 0.6150690      3.993759      6.445994
#> [23,] 3.244898 5.275457 0.6270247      4.025506      6.525408
#> [24,] 3.346939 5.331038 0.6390642      4.057087      6.604989
#> [25,] 3.448980 5.386618 0.6511830      4.088509      6.684728
#> [26,] 3.551020 5.442199 0.6633765      4.119782      6.764616
#> [27,] 3.653061 5.497780 0.6756408      4.150914      6.844645
#> [28,] 3.755102 5.553360 0.6879721      4.181913      6.924808
#> [29,] 3.857143 5.608941 0.7003669      4.212785      7.005097
#> [30,] 3.959184 5.664522 0.7128218      4.243537      7.085506
#> [31,] 4.061224 5.720102 0.7253338      4.274176      7.166029
#> [32,] 4.163265 5.775683 0.7378999      4.304706      7.246660
#> [33,] 4.265306 5.831264 0.7505174      4.335134      7.327393
#> [34,] 4.367347 5.886844 0.7631838      4.365465      7.408223
#> [35,] 4.469388 5.942425 0.7758967      4.395703      7.489147
#> [36,] 4.571429 5.998006 0.7886539      4.425853      7.570158
#> [37,] 4.673469 6.053586 0.8014531      4.455919      7.651254
#> [38,] 4.775510 6.109167 0.8142925      4.485904      7.732429
#> [39,] 4.877551 6.164748 0.8271701      4.515814      7.813681
#> [40,] 4.979592 6.220328 0.8400843      4.545651      7.895006
#> [41,] 5.081633 6.275909 0.8530333      4.575418      7.976400
#> [42,] 5.183673 6.331489 0.8660155      4.605119      8.057860
#> [43,] 5.285714 6.387070 0.8790296      4.634757      8.139384
#> [44,] 5.387755 6.442651 0.8920741      4.664333      8.220968
#> [45,] 5.489796 6.498231 0.9051477      4.693852      8.302610
#> [46,] 5.591837 6.553812 0.9182492      4.723316      8.384308
#> [47,] 5.693878 6.609393 0.9313774      4.752726      8.466060
#> [48,] 5.795918 6.664973 0.9445311      4.782085      8.547862
#> [49,] 5.897959 6.720554 0.9577093      4.811395      8.629713
#> [50,] 6.000000 6.776135 0.9709111      4.840659      8.711611
#> 
#> 
#> $diff.estimate
#> $diff.estimate$`30-40`
#>            diff.estimate    sd z-value p-value lower CI(95%) upper CI(95%)
#> 50% vs 25%         0.046 0.157   0.295   0.768        -0.267         0.360
#> 75% vs 50%         0.046 0.157   0.295   0.768        -0.267         0.360
#> 75% vs 25%         0.093 0.315   0.295   0.768        -0.534         0.720
#> 
#> $diff.estimate$`40-67`
#>            diff.estimate    sd z-value p-value lower CI(95%) upper CI(95%)
#> 50% vs 25%        -0.546 0.280  -1.948   0.051        -1.105         0.013
#> 75% vs 50%        -0.546 0.280  -1.948   0.051        -1.105         0.013
#> 75% vs 25%        -1.092 0.561  -1.948   0.051        -2.211         0.026
#> 
#> 
#> $vcov.matrix
#> $vcov.matrix$`30-40`
#>                [,1]         [,2]          [,3]         [,4]         [,5]
#>  [1,]  0.2920885088  0.284967374  0.2778462398  0.270725105  0.263603971
#>  [2,]  0.2849673743  0.278103883  0.2712403925  0.264376902  0.257513411
#>  [3,]  0.2778462398  0.271240393  0.2646345452  0.258028698  0.251422851
#>  [4,]  0.2707251053  0.264376902  0.2580286979  0.251680494  0.245332291
#>  [5,]  0.2636039708  0.257513411  0.2514228507  0.245332291  0.239241730
#>  [6,]  0.2564828363  0.250649920  0.2448170034  0.238984087  0.233151170
#>  [7,]  0.2493617019  0.243786429  0.2382111561  0.232635883  0.227060610
#>  [8,]  0.2422405674  0.236922938  0.2316053088  0.226287680  0.220970050
#>  [9,]  0.2351194329  0.230059447  0.2249994615  0.219939476  0.214879490
#> [10,]  0.2279982984  0.223195956  0.2183936142  0.213591272  0.208788930
#> [11,]  0.2208771639  0.216332465  0.2117877669  0.207243068  0.202698370
#> [12,]  0.2137560294  0.209468975  0.2051819197  0.200894865  0.196607810
#> [13,]  0.2066348950  0.202605484  0.1985760724  0.194546661  0.190517250
#> [14,]  0.1995137605  0.195741993  0.1919702251  0.188198457  0.184426690
#> [15,]  0.1923926260  0.188878502  0.1853643778  0.181850254  0.178336130
#> [16,]  0.1852714915  0.182015011  0.1787585305  0.175502050  0.172245570
#> [17,]  0.1781503570  0.175151520  0.1721526832  0.169153846  0.166155009
#> [18,]  0.1710292225  0.168288029  0.1655468360  0.162805643  0.160064449
#> [19,]  0.1639080881  0.161424538  0.1589409887  0.156457439  0.153973889
#> [20,]  0.1567869536  0.154561047  0.1523351414  0.150109235  0.147883329
#> [21,]  0.1496658191  0.147697557  0.1457292941  0.143761032  0.141792769
#> [22,]  0.1425446846  0.140834066  0.1391234468  0.137412828  0.135702209
#> [23,]  0.1354235501  0.133970575  0.1325175995  0.131064624  0.129611649
#> [24,]  0.1283024156  0.127107084  0.1259117522  0.124716421  0.123521089
#> [25,]  0.1211812812  0.120243593  0.1193059050  0.118368217  0.117430529
#> [26,]  0.1140601467  0.113380102  0.1127000577  0.112020013  0.111339969
#> [27,]  0.1069390122  0.106516611  0.1060942104  0.105671809  0.105249409
#> [28,]  0.0998178777  0.099653120  0.0994883631  0.099323606  0.099158848
#> [29,]  0.0926967432  0.092789630  0.0928825158  0.092975402  0.093068288
#> [30,]  0.0855756087  0.085926139  0.0862766685  0.086627198  0.086977728
#> [31,]  0.0784544743  0.079062648  0.0796708212  0.080278995  0.080887168
#> [32,]  0.0713333398  0.072199157  0.0730649740  0.073930791  0.074796608
#> [33,]  0.0642122053  0.065335666  0.0664591267  0.067582587  0.068706048
#> [34,]  0.0570910708  0.058472175  0.0598532794  0.061234384  0.062615488
#> [35,]  0.0499699363  0.051608684  0.0532474321  0.054886180  0.056524928
#> [36,]  0.0428488018  0.044745193  0.0466415848  0.048537976  0.050434368
#> [37,]  0.0357276674  0.037881702  0.0400357375  0.042189773  0.044343808
#> [38,]  0.0286065329  0.031018212  0.0334298903  0.035841569  0.038253248
#> [39,]  0.0214853984  0.024154721  0.0268240430  0.029493365  0.032162688
#> [40,]  0.0143642639  0.017291230  0.0202181957  0.023145162  0.026072127
#> [41,]  0.0072431294  0.010427739  0.0136123484  0.016796958  0.019981567
#> [42,]  0.0001219949  0.003564248  0.0070065011  0.010448754  0.013891007
#> [43,] -0.0069991395 -0.003299243  0.0004006538  0.004100551  0.007800447
#> [44,] -0.0141202740 -0.010162734 -0.0062051935 -0.002247653  0.001709887
#> [45,] -0.0212414085 -0.017026225 -0.0128110407 -0.008595857 -0.004380673
#> [46,] -0.0283625430 -0.023889716 -0.0194168880 -0.014944061 -0.010471233
#> [47,] -0.0354836775 -0.030753206 -0.0260227353 -0.021292264 -0.016561793
#> [48,] -0.0426048120 -0.037616697 -0.0326285826 -0.027640468 -0.022652353
#> [49,] -0.0497259464 -0.044480188 -0.0392344299 -0.033988672 -0.028742913
#> [50,] -0.0568470809 -0.051343679 -0.0458402772 -0.040336875 -0.034833473
#>                [,6]         [,7]         [,8]         [,9]        [,10]
#>  [1,]  0.2564828363  0.249361702  0.242240567  0.235119433  0.227998298
#>  [2,]  0.2506499199  0.243786429  0.236922938  0.230059447  0.223195956
#>  [3,]  0.2448170034  0.238211156  0.231605309  0.224999462  0.218393614
#>  [4,]  0.2389840869  0.232635883  0.226287680  0.219939476  0.213591272
#>  [5,]  0.2331511704  0.227060610  0.220970050  0.214879490  0.208788930
#>  [6,]  0.2273182539  0.221485337  0.215652421  0.209819504  0.203986588
#>  [7,]  0.2214853374  0.215910065  0.210334792  0.204759519  0.199184246
#>  [8,]  0.2156524209  0.210334792  0.205017162  0.199699533  0.194381904
#>  [9,]  0.2098195044  0.204759519  0.199699533  0.194639547  0.189579562
#> [10,]  0.2039865880  0.199184246  0.194381904  0.189579562  0.184777220
#> [11,]  0.1981536715  0.193608973  0.189064274  0.184519576  0.179974878
#> [12,]  0.1923207550  0.188033700  0.183746645  0.179459590  0.175172535
#> [13,]  0.1864878385  0.182458427  0.178429016  0.174399605  0.170370193
#> [14,]  0.1806549220  0.176883154  0.173111387  0.169339619  0.165567851
#> [15,]  0.1748220055  0.171307881  0.167793757  0.164279633  0.160765509
#> [16,]  0.1689890890  0.165732609  0.162476128  0.159219648  0.155963167
#> [17,]  0.1631561725  0.160157336  0.157158499  0.154159662  0.151160825
#> [18,]  0.1573232561  0.154582063  0.151840869  0.149099676  0.146358483
#> [19,]  0.1514903396  0.149006790  0.146523240  0.144039690  0.141556141
#> [20,]  0.1456574231  0.143431517  0.141205611  0.138979705  0.136753799
#> [21,]  0.1398245066  0.137856244  0.135887982  0.133919719  0.131951457
#> [22,]  0.1339915901  0.132280971  0.130570352  0.128859733  0.127149115
#> [23,]  0.1281586736  0.126705698  0.125252723  0.123799748  0.122346772
#> [24,]  0.1223257571  0.121130425  0.119935094  0.118739762  0.117544430
#> [25,]  0.1164928407  0.115555153  0.114617464  0.113679776  0.112742088
#> [26,]  0.1106599242  0.109979880  0.109299835  0.108619791  0.107939746
#> [27,]  0.1048270077  0.104404607  0.103982206  0.103559805  0.103137404
#> [28,]  0.0989940912  0.098829334  0.098664577  0.098499819  0.098335062
#> [29,]  0.0931611747  0.093254061  0.093346947  0.093439834  0.093532720
#> [30,]  0.0873282582  0.087678788  0.088029318  0.088379848  0.088730378
#> [31,]  0.0814953417  0.082103515  0.082711689  0.083319862  0.083928036
#> [32,]  0.0756624252  0.076528242  0.077394059  0.078259877  0.079125694
#> [33,]  0.0698295088  0.070952969  0.072076430  0.073199891  0.074323352
#> [34,]  0.0639965923  0.065377697  0.066758801  0.068139905  0.069521009
#> [35,]  0.0581636758  0.059802424  0.061441172  0.063079919  0.064718667
#> [36,]  0.0523307593  0.054227151  0.056123542  0.058019934  0.059916325
#> [37,]  0.0464978428  0.048651878  0.050805913  0.052959948  0.055113983
#> [38,]  0.0406649263  0.043076605  0.045488284  0.047899962  0.050311641
#> [39,]  0.0348320098  0.037501332  0.040170654  0.042839977  0.045509299
#> [40,]  0.0289990933  0.031926059  0.034853025  0.037779991  0.040706957
#> [41,]  0.0231661769  0.026350786  0.029535396  0.032720005  0.035904615
#> [42,]  0.0173332604  0.020775513  0.024217767  0.027660020  0.031102273
#> [43,]  0.0115003439  0.015200241  0.018900137  0.022600034  0.026299931
#> [44,]  0.0056674274  0.009624968  0.013582508  0.017540048  0.021497589
#> [45,] -0.0001654891  0.004049695  0.008264879  0.012480063  0.016695246
#> [46,] -0.0059984056 -0.001525578  0.002947249  0.007420077  0.011892904
#> [47,] -0.0118313221 -0.007100851 -0.002370380  0.002360091  0.007090562
#> [48,] -0.0176642386 -0.012676124 -0.007688009 -0.002699895  0.002288220
#> [49,] -0.0234971550 -0.018251397 -0.013005638 -0.007759880 -0.002514122
#> [50,] -0.0293300715 -0.023826670 -0.018323268 -0.012819866 -0.007316464
#>              [,11]       [,12]       [,13]      [,14]      [,15]      [,16]
#>  [1,]  0.220877164 0.213756029 0.206634895 0.19951376 0.19239263 0.18527149
#>  [2,]  0.216332465 0.209468975 0.202605484 0.19574199 0.18887850 0.18201501
#>  [3,]  0.211787767 0.205181920 0.198576072 0.19197023 0.18536438 0.17875853
#>  [4,]  0.207243068 0.200894865 0.194546661 0.18819846 0.18185025 0.17550205
#>  [5,]  0.202698370 0.196607810 0.190517250 0.18442669 0.17833613 0.17224557
#>  [6,]  0.198153671 0.192320755 0.186487838 0.18065492 0.17482201 0.16898909
#>  [7,]  0.193608973 0.188033700 0.182458427 0.17688315 0.17130788 0.16573261
#>  [8,]  0.189064274 0.183746645 0.178429016 0.17311139 0.16779376 0.16247613
#>  [9,]  0.184519576 0.179459590 0.174399605 0.16933962 0.16427963 0.15921965
#> [10,]  0.179974878 0.175172535 0.170370193 0.16556785 0.16076551 0.15596317
#> [11,]  0.175430179 0.170885481 0.166340782 0.16179608 0.15725139 0.15270669
#> [12,]  0.170885481 0.166598426 0.162311371 0.15802432 0.15373726 0.14945021
#> [13,]  0.166340782 0.162311371 0.158281959 0.15425255 0.15022314 0.14619373
#> [14,]  0.161796084 0.158024316 0.154252548 0.15048078 0.14670901 0.14293725
#> [15,]  0.157251385 0.153737261 0.150223137 0.14670901 0.14319489 0.13968076
#> [16,]  0.152706687 0.149450206 0.146193726 0.14293725 0.13968076 0.13642428
#> [17,]  0.148161988 0.145163151 0.142164314 0.13916548 0.13616664 0.13316780
#> [18,]  0.143617290 0.140876096 0.138134903 0.13539371 0.13265252 0.12991132
#> [19,]  0.139072591 0.136589041 0.134105492 0.13162194 0.12913839 0.12665484
#> [20,]  0.134527893 0.132301986 0.130076080 0.12785017 0.12562427 0.12339836
#> [21,]  0.129983194 0.128014932 0.126046669 0.12407841 0.12211014 0.12014188
#> [22,]  0.125438496 0.123727877 0.122017258 0.12030664 0.11859602 0.11688540
#> [23,]  0.120893797 0.119440822 0.117987847 0.11653487 0.11508190 0.11362892
#> [24,]  0.116349099 0.115153767 0.113958435 0.11276310 0.11156777 0.11037244
#> [25,]  0.111804400 0.110866712 0.109929024 0.10899134 0.10805365 0.10711596
#> [26,]  0.107259702 0.106579657 0.105899613 0.10521957 0.10453952 0.10385948
#> [27,]  0.102715003 0.102292602 0.101870201 0.10144780 0.10102540 0.10060300
#> [28,]  0.098170305 0.098005547 0.097840790 0.09767603 0.09751128 0.09734652
#> [29,]  0.093625606 0.093718492 0.093811379 0.09390427 0.09399715 0.09409004
#> [30,]  0.089080908 0.089431438 0.089781967 0.09013250 0.09048303 0.09083356
#> [31,]  0.084536209 0.085144383 0.085752556 0.08636073 0.08696890 0.08757708
#> [32,]  0.079991511 0.080857328 0.081723145 0.08258896 0.08345478 0.08432060
#> [33,]  0.075446812 0.076570273 0.077693734 0.07881719 0.07994065 0.08106412
#> [34,]  0.070902114 0.072283218 0.073664322 0.07504543 0.07642653 0.07780764
#> [35,]  0.066357415 0.067996163 0.069634911 0.07127366 0.07291241 0.07455115
#> [36,]  0.061812717 0.063709108 0.065605500 0.06750189 0.06939828 0.07129467
#> [37,]  0.057268018 0.059422053 0.061576088 0.06373012 0.06588416 0.06803819
#> [38,]  0.052723320 0.055134998 0.057546677 0.05995836 0.06237003 0.06478171
#> [39,]  0.048178621 0.050847944 0.053517266 0.05618659 0.05885591 0.06152523
#> [40,]  0.043633923 0.046560889 0.049487855 0.05241482 0.05534179 0.05826875
#> [41,]  0.039089224 0.042273834 0.045458443 0.04864305 0.05182766 0.05501227
#> [42,]  0.034544526 0.037986779 0.041429032 0.04487129 0.04831354 0.05175579
#> [43,]  0.029999827 0.033699724 0.037399621 0.04109952 0.04479941 0.04849931
#> [44,]  0.025455129 0.029412669 0.033370209 0.03732775 0.04128529 0.04524283
#> [45,]  0.020910430 0.025125614 0.029340798 0.03355598 0.03777117 0.04198635
#> [46,]  0.016365732 0.020838559 0.025311387 0.02978421 0.03425704 0.03872987
#> [47,]  0.011821033 0.016551504 0.021281975 0.02601245 0.03074292 0.03547339
#> [48,]  0.007276335 0.012264450 0.017252564 0.02224068 0.02722879 0.03221691
#> [49,]  0.002731636 0.007977395 0.013223153 0.01846891 0.02371467 0.02896043
#> [50,] -0.001813062 0.003690340 0.009193742 0.01469714 0.02020055 0.02570395
#>            [,17]      [,18]      [,19]      [,20]      [,21]      [,22]
#>  [1,] 0.17815036 0.17102922 0.16390809 0.15678695 0.14966582 0.14254468
#>  [2,] 0.17515152 0.16828803 0.16142454 0.15456105 0.14769756 0.14083407
#>  [3,] 0.17215268 0.16554684 0.15894099 0.15233514 0.14572929 0.13912345
#>  [4,] 0.16915385 0.16280564 0.15645744 0.15010924 0.14376103 0.13741283
#>  [5,] 0.16615501 0.16006445 0.15397389 0.14788333 0.14179277 0.13570221
#>  [6,] 0.16315617 0.15732326 0.15149034 0.14565742 0.13982451 0.13399159
#>  [7,] 0.16015734 0.15458206 0.14900679 0.14343152 0.13785624 0.13228097
#>  [8,] 0.15715850 0.15184087 0.14652324 0.14120561 0.13588798 0.13057035
#>  [9,] 0.15415966 0.14909968 0.14403969 0.13897970 0.13391972 0.12885973
#> [10,] 0.15116082 0.14635848 0.14155614 0.13675380 0.13195146 0.12714911
#> [11,] 0.14816199 0.14361729 0.13907259 0.13452789 0.12998319 0.12543850
#> [12,] 0.14516315 0.14087610 0.13658904 0.13230199 0.12801493 0.12372788
#> [13,] 0.14216431 0.13813490 0.13410549 0.13007608 0.12604667 0.12201726
#> [14,] 0.13916548 0.13539371 0.13162194 0.12785017 0.12407841 0.12030664
#> [15,] 0.13616664 0.13265252 0.12913839 0.12562427 0.12211014 0.11859602
#> [16,] 0.13316780 0.12991132 0.12665484 0.12339836 0.12014188 0.11688540
#> [17,] 0.13016897 0.12717013 0.12417129 0.12117246 0.11817362 0.11517478
#> [18,] 0.12717013 0.12442894 0.12168774 0.11894655 0.11620536 0.11346416
#> [19,] 0.12417129 0.12168774 0.11920419 0.11672064 0.11423709 0.11175354
#> [20,] 0.12117246 0.11894655 0.11672064 0.11449474 0.11226883 0.11004293
#> [21,] 0.11817362 0.11620536 0.11423709 0.11226883 0.11030057 0.10833231
#> [22,] 0.11517478 0.11346416 0.11175354 0.11004293 0.10833231 0.10662169
#> [23,] 0.11217595 0.11072297 0.10926999 0.10781702 0.10636404 0.10491107
#> [24,] 0.10917711 0.10798178 0.10678645 0.10559111 0.10439578 0.10320045
#> [25,] 0.10617827 0.10524058 0.10430290 0.10336521 0.10242752 0.10148983
#> [26,] 0.10317943 0.10249939 0.10181935 0.10113930 0.10045926 0.09977921
#> [27,] 0.10018060 0.09975820 0.09933580 0.09891340 0.09849099 0.09806859
#> [28,] 0.09718176 0.09701700 0.09685225 0.09668749 0.09652273 0.09635797
#> [29,] 0.09418292 0.09427581 0.09436870 0.09446158 0.09455447 0.09464736
#> [30,] 0.09118409 0.09153462 0.09188515 0.09223568 0.09258621 0.09293674
#> [31,] 0.08818525 0.08879342 0.08940160 0.09000977 0.09061794 0.09122612
#> [32,] 0.08518641 0.08605223 0.08691805 0.08778386 0.08864968 0.08951550
#> [33,] 0.08218758 0.08331104 0.08443450 0.08555796 0.08668142 0.08780488
#> [34,] 0.07918874 0.08056984 0.08195095 0.08333205 0.08471316 0.08609426
#> [35,] 0.07618990 0.07782865 0.07946740 0.08110615 0.08274489 0.08438364
#> [36,] 0.07319107 0.07508746 0.07698385 0.07888024 0.08077663 0.08267302
#> [37,] 0.07019223 0.07234626 0.07450030 0.07665433 0.07880837 0.08096240
#> [38,] 0.06719339 0.06960507 0.07201675 0.07442843 0.07684011 0.07925179
#> [39,] 0.06419455 0.06686388 0.06953320 0.07220252 0.07487184 0.07754117
#> [40,] 0.06119572 0.06412268 0.06704965 0.06997662 0.07290358 0.07583055
#> [41,] 0.05819688 0.06138149 0.06456610 0.06775071 0.07093532 0.07411993
#> [42,] 0.05519804 0.05864030 0.06208255 0.06552480 0.06896706 0.07240931
#> [43,] 0.05219921 0.05589910 0.05959900 0.06329890 0.06699879 0.07069869
#> [44,] 0.04920037 0.05315791 0.05711545 0.06107299 0.06503053 0.06898807
#> [45,] 0.04620153 0.05041672 0.05463190 0.05884709 0.06306227 0.06727745
#> [46,] 0.04320270 0.04767552 0.05214835 0.05662118 0.06109401 0.06556683
#> [47,] 0.04020386 0.04493433 0.04966480 0.05439527 0.05912574 0.06385622
#> [48,] 0.03720502 0.04219314 0.04718125 0.05216937 0.05715748 0.06214560
#> [49,] 0.03420619 0.03945194 0.04469770 0.04994346 0.05518922 0.06043498
#> [50,] 0.03120735 0.03671075 0.04221415 0.04771755 0.05322096 0.05872436
#>            [,23]      [,24]      [,25]      [,26]      [,27]      [,28]
#>  [1,] 0.13542355 0.12830242 0.12118128 0.11406015 0.10693901 0.09981788
#>  [2,] 0.13397057 0.12710708 0.12024359 0.11338010 0.10651661 0.09965312
#>  [3,] 0.13251760 0.12591175 0.11930590 0.11270006 0.10609421 0.09948836
#>  [4,] 0.13106462 0.12471642 0.11836822 0.11202001 0.10567181 0.09932361
#>  [5,] 0.12961165 0.12352109 0.11743053 0.11133997 0.10524941 0.09915885
#>  [6,] 0.12815867 0.12232576 0.11649284 0.11065992 0.10482701 0.09899409
#>  [7,] 0.12670570 0.12113043 0.11555515 0.10997988 0.10440461 0.09882933
#>  [8,] 0.12525272 0.11993509 0.11461746 0.10929984 0.10398221 0.09866458
#>  [9,] 0.12379975 0.11873976 0.11367978 0.10861979 0.10355980 0.09849982
#> [10,] 0.12234677 0.11754443 0.11274209 0.10793975 0.10313740 0.09833506
#> [11,] 0.12089380 0.11634910 0.11180440 0.10725970 0.10271500 0.09817030
#> [12,] 0.11944082 0.11515377 0.11086671 0.10657966 0.10229260 0.09800555
#> [13,] 0.11798785 0.11395844 0.10992902 0.10589961 0.10187020 0.09784079
#> [14,] 0.11653487 0.11276310 0.10899134 0.10521957 0.10144780 0.09767603
#> [15,] 0.11508190 0.11156777 0.10805365 0.10453952 0.10102540 0.09751128
#> [16,] 0.11362892 0.11037244 0.10711596 0.10385948 0.10060300 0.09734652
#> [17,] 0.11217595 0.10917711 0.10617827 0.10317943 0.10018060 0.09718176
#> [18,] 0.11072297 0.10798178 0.10524058 0.10249939 0.09975820 0.09701700
#> [19,] 0.10926999 0.10678645 0.10430290 0.10181935 0.09933580 0.09685225
#> [20,] 0.10781702 0.10559111 0.10336521 0.10113930 0.09891340 0.09668749
#> [21,] 0.10636404 0.10439578 0.10242752 0.10045926 0.09849099 0.09652273
#> [22,] 0.10491107 0.10320045 0.10148983 0.09977921 0.09806859 0.09635797
#> [23,] 0.10345809 0.10200512 0.10055214 0.09909917 0.09764619 0.09619322
#> [24,] 0.10200512 0.10080979 0.09961445 0.09841912 0.09722379 0.09602846
#> [25,] 0.10055214 0.09961445 0.09867677 0.09773908 0.09680139 0.09586370
#> [26,] 0.09909917 0.09841912 0.09773908 0.09705903 0.09637899 0.09569895
#> [27,] 0.09764619 0.09722379 0.09680139 0.09637899 0.09595659 0.09553419
#> [28,] 0.09619322 0.09602846 0.09586370 0.09569895 0.09553419 0.09536943
#> [29,] 0.09474024 0.09483313 0.09492601 0.09501890 0.09511179 0.09520467
#> [30,] 0.09328727 0.09363780 0.09398833 0.09433886 0.09468939 0.09503992
#> [31,] 0.09183429 0.09244246 0.09305064 0.09365881 0.09426699 0.09487516
#> [32,] 0.09038132 0.09124713 0.09211295 0.09297877 0.09384458 0.09471040
#> [33,] 0.08892834 0.09005180 0.09117526 0.09229872 0.09342218 0.09454564
#> [34,] 0.08747537 0.08885647 0.09023757 0.09161868 0.09299978 0.09438089
#> [35,] 0.08602239 0.08766114 0.08929989 0.09093863 0.09257738 0.09421613
#> [36,] 0.08456941 0.08646581 0.08836220 0.09025859 0.09215498 0.09405137
#> [37,] 0.08311644 0.08527047 0.08742451 0.08957854 0.09173258 0.09388661
#> [38,] 0.08166346 0.08407514 0.08648682 0.08889850 0.09131018 0.09372186
#> [39,] 0.08021049 0.08287981 0.08554913 0.08821846 0.09088778 0.09355710
#> [40,] 0.07875751 0.08168448 0.08461145 0.08753841 0.09046538 0.09339234
#> [41,] 0.07730454 0.08048915 0.08367376 0.08685837 0.09004298 0.09322759
#> [42,] 0.07585156 0.07929382 0.08273607 0.08617832 0.08962058 0.09306283
#> [43,] 0.07439859 0.07809848 0.08179838 0.08549828 0.08919817 0.09289807
#> [44,] 0.07294561 0.07690315 0.08086069 0.08481823 0.08877577 0.09273331
#> [45,] 0.07149264 0.07570782 0.07992300 0.08413819 0.08835337 0.09256856
#> [46,] 0.07003966 0.07451249 0.07898532 0.08345814 0.08793097 0.09240380
#> [47,] 0.06858669 0.07331716 0.07804763 0.08277810 0.08750857 0.09223904
#> [48,] 0.06713371 0.07212183 0.07710994 0.08209806 0.08708617 0.09207428
#> [49,] 0.06568074 0.07092649 0.07617225 0.08141801 0.08666377 0.09190953
#> [50,] 0.06422776 0.06973116 0.07523456 0.08073797 0.08624137 0.09174477
#>            [,29]      [,30]      [,31]      [,32]      [,33]      [,34]
#>  [1,] 0.09269674 0.08557561 0.07845447 0.07133334 0.06421221 0.05709107
#>  [2,] 0.09278963 0.08592614 0.07906265 0.07219916 0.06533567 0.05847218
#>  [3,] 0.09288252 0.08627667 0.07967082 0.07306497 0.06645913 0.05985328
#>  [4,] 0.09297540 0.08662720 0.08027899 0.07393079 0.06758259 0.06123438
#>  [5,] 0.09306829 0.08697773 0.08088717 0.07479661 0.06870605 0.06261549
#>  [6,] 0.09316117 0.08732826 0.08149534 0.07566243 0.06982951 0.06399659
#>  [7,] 0.09325406 0.08767879 0.08210352 0.07652824 0.07095297 0.06537770
#>  [8,] 0.09334695 0.08802932 0.08271169 0.07739406 0.07207643 0.06675880
#>  [9,] 0.09343983 0.08837985 0.08331986 0.07825988 0.07319989 0.06813991
#> [10,] 0.09353272 0.08873038 0.08392804 0.07912569 0.07432335 0.06952101
#> [11,] 0.09362561 0.08908091 0.08453621 0.07999151 0.07544681 0.07090211
#> [12,] 0.09371849 0.08943144 0.08514438 0.08085733 0.07657027 0.07228322
#> [13,] 0.09381138 0.08978197 0.08575256 0.08172314 0.07769373 0.07366432
#> [14,] 0.09390427 0.09013250 0.08636073 0.08258896 0.07881719 0.07504543
#> [15,] 0.09399715 0.09048303 0.08696890 0.08345478 0.07994065 0.07642653
#> [16,] 0.09409004 0.09083356 0.08757708 0.08432060 0.08106412 0.07780764
#> [17,] 0.09418292 0.09118409 0.08818525 0.08518641 0.08218758 0.07918874
#> [18,] 0.09427581 0.09153462 0.08879342 0.08605223 0.08331104 0.08056984
#> [19,] 0.09436870 0.09188515 0.08940160 0.08691805 0.08443450 0.08195095
#> [20,] 0.09446158 0.09223568 0.09000977 0.08778386 0.08555796 0.08333205
#> [21,] 0.09455447 0.09258621 0.09061794 0.08864968 0.08668142 0.08471316
#> [22,] 0.09464736 0.09293674 0.09122612 0.08951550 0.08780488 0.08609426
#> [23,] 0.09474024 0.09328727 0.09183429 0.09038132 0.08892834 0.08747537
#> [24,] 0.09483313 0.09363780 0.09244246 0.09124713 0.09005180 0.08885647
#> [25,] 0.09492601 0.09398833 0.09305064 0.09211295 0.09117526 0.09023757
#> [26,] 0.09501890 0.09433886 0.09365881 0.09297877 0.09229872 0.09161868
#> [27,] 0.09511179 0.09468939 0.09426699 0.09384458 0.09342218 0.09299978
#> [28,] 0.09520467 0.09503992 0.09487516 0.09471040 0.09454564 0.09438089
#> [29,] 0.09529756 0.09539045 0.09548333 0.09557622 0.09566910 0.09576199
#> [30,] 0.09539045 0.09574098 0.09609151 0.09644204 0.09679257 0.09714310
#> [31,] 0.09548333 0.09609151 0.09669968 0.09730785 0.09791603 0.09852420
#> [32,] 0.09557622 0.09644204 0.09730785 0.09817367 0.09903949 0.09990530
#> [33,] 0.09566910 0.09679257 0.09791603 0.09903949 0.10016295 0.10128641
#> [34,] 0.09576199 0.09714310 0.09852420 0.09990530 0.10128641 0.10266751
#> [35,] 0.09585488 0.09749363 0.09913237 0.10077112 0.10240987 0.10404862
#> [36,] 0.09594776 0.09784416 0.09974055 0.10163694 0.10353333 0.10542972
#> [37,] 0.09604065 0.09819468 0.10034872 0.10250276 0.10465679 0.10681083
#> [38,] 0.09613354 0.09854521 0.10095689 0.10336857 0.10578025 0.10819193
#> [39,] 0.09622642 0.09889574 0.10156507 0.10423439 0.10690371 0.10957303
#> [40,] 0.09631931 0.09924627 0.10217324 0.10510021 0.10802717 0.11095414
#> [41,] 0.09641220 0.09959680 0.10278141 0.10596602 0.10915063 0.11233524
#> [42,] 0.09650508 0.09994733 0.10338959 0.10683184 0.11027409 0.11371635
#> [43,] 0.09659797 0.10029786 0.10399776 0.10769766 0.11139755 0.11509745
#> [44,] 0.09669085 0.10064839 0.10460593 0.10856347 0.11252102 0.11647856
#> [45,] 0.09678374 0.10099892 0.10521411 0.10942929 0.11364448 0.11785966
#> [46,] 0.09687663 0.10134945 0.10582228 0.11029511 0.11476794 0.11924076
#> [47,] 0.09696951 0.10169998 0.10643045 0.11116093 0.11589140 0.12062187
#> [48,] 0.09706240 0.10205051 0.10703863 0.11202674 0.11701486 0.12200297
#> [49,] 0.09715529 0.10240104 0.10764680 0.11289256 0.11813832 0.12338408
#> [50,] 0.09724817 0.10275157 0.10825498 0.11375838 0.11926178 0.12476518
#>            [,35]      [,36]      [,37]      [,38]      [,39]      [,40]
#>  [1,] 0.04996994 0.04284880 0.03572767 0.02860653 0.02148540 0.01436426
#>  [2,] 0.05160868 0.04474519 0.03788170 0.03101821 0.02415472 0.01729123
#>  [3,] 0.05324743 0.04664158 0.04003574 0.03342989 0.02682404 0.02021820
#>  [4,] 0.05488618 0.04853798 0.04218977 0.03584157 0.02949337 0.02314516
#>  [5,] 0.05652493 0.05043437 0.04434381 0.03825325 0.03216269 0.02607213
#>  [6,] 0.05816368 0.05233076 0.04649784 0.04066493 0.03483201 0.02899909
#>  [7,] 0.05980242 0.05422715 0.04865188 0.04307661 0.03750133 0.03192606
#>  [8,] 0.06144117 0.05612354 0.05080591 0.04548828 0.04017065 0.03485303
#>  [9,] 0.06307992 0.05801993 0.05295995 0.04789996 0.04283998 0.03777999
#> [10,] 0.06471867 0.05991633 0.05511398 0.05031164 0.04550930 0.04070696
#> [11,] 0.06635742 0.06181272 0.05726802 0.05272332 0.04817862 0.04363392
#> [12,] 0.06799616 0.06370911 0.05942205 0.05513500 0.05084794 0.04656089
#> [13,] 0.06963491 0.06560550 0.06157609 0.05754668 0.05351727 0.04948785
#> [14,] 0.07127366 0.06750189 0.06373012 0.05995836 0.05618659 0.05241482
#> [15,] 0.07291241 0.06939828 0.06588416 0.06237003 0.05885591 0.05534179
#> [16,] 0.07455115 0.07129467 0.06803819 0.06478171 0.06152523 0.05826875
#> [17,] 0.07618990 0.07319107 0.07019223 0.06719339 0.06419455 0.06119572
#> [18,] 0.07782865 0.07508746 0.07234626 0.06960507 0.06686388 0.06412268
#> [19,] 0.07946740 0.07698385 0.07450030 0.07201675 0.06953320 0.06704965
#> [20,] 0.08110615 0.07888024 0.07665433 0.07442843 0.07220252 0.06997662
#> [21,] 0.08274489 0.08077663 0.07880837 0.07684011 0.07487184 0.07290358
#> [22,] 0.08438364 0.08267302 0.08096240 0.07925179 0.07754117 0.07583055
#> [23,] 0.08602239 0.08456941 0.08311644 0.08166346 0.08021049 0.07875751
#> [24,] 0.08766114 0.08646581 0.08527047 0.08407514 0.08287981 0.08168448
#> [25,] 0.08929989 0.08836220 0.08742451 0.08648682 0.08554913 0.08461145
#> [26,] 0.09093863 0.09025859 0.08957854 0.08889850 0.08821846 0.08753841
#> [27,] 0.09257738 0.09215498 0.09173258 0.09131018 0.09088778 0.09046538
#> [28,] 0.09421613 0.09405137 0.09388661 0.09372186 0.09355710 0.09339234
#> [29,] 0.09585488 0.09594776 0.09604065 0.09613354 0.09622642 0.09631931
#> [30,] 0.09749363 0.09784416 0.09819468 0.09854521 0.09889574 0.09924627
#> [31,] 0.09913237 0.09974055 0.10034872 0.10095689 0.10156507 0.10217324
#> [32,] 0.10077112 0.10163694 0.10250276 0.10336857 0.10423439 0.10510021
#> [33,] 0.10240987 0.10353333 0.10465679 0.10578025 0.10690371 0.10802717
#> [34,] 0.10404862 0.10542972 0.10681083 0.10819193 0.10957303 0.11095414
#> [35,] 0.10568736 0.10732611 0.10896486 0.11060361 0.11224236 0.11388110
#> [36,] 0.10732611 0.10922250 0.11111890 0.11301529 0.11491168 0.11680807
#> [37,] 0.10896486 0.11111890 0.11327293 0.11542697 0.11758100 0.11973504
#> [38,] 0.11060361 0.11301529 0.11542697 0.11783864 0.12025032 0.12266200
#> [39,] 0.11224236 0.11491168 0.11758100 0.12025032 0.12291965 0.12558897
#> [40,] 0.11388110 0.11680807 0.11973504 0.12266200 0.12558897 0.12851593
#> [41,] 0.11551985 0.11870446 0.12188907 0.12507368 0.12825829 0.13144290
#> [42,] 0.11715860 0.12060085 0.12404311 0.12748536 0.13092761 0.13436987
#> [43,] 0.11879735 0.12249724 0.12619714 0.12989704 0.13359693 0.13729683
#> [44,] 0.12043610 0.12439364 0.12835118 0.13230872 0.13626626 0.14022380
#> [45,] 0.12207484 0.12629003 0.13050521 0.13472040 0.13893558 0.14315076
#> [46,] 0.12371359 0.12818642 0.13265925 0.13713207 0.14160490 0.14607773
#> [47,] 0.12535234 0.13008281 0.13481328 0.13954375 0.14427422 0.14900469
#> [48,] 0.12699109 0.13197920 0.13696732 0.14195543 0.14694355 0.15193166
#> [49,] 0.12862984 0.13387559 0.13912135 0.14436711 0.14961287 0.15485863
#> [50,] 0.13026858 0.13577198 0.14127539 0.14677879 0.15228219 0.15778559
#>             [,41]        [,42]         [,43]        [,44]         [,45]
#>  [1,] 0.007243129 0.0001219949 -0.0069991395 -0.014120274 -0.0212414085
#>  [2,] 0.010427739 0.0035642480 -0.0032992429 -0.010162734 -0.0170262246
#>  [3,] 0.013612348 0.0070065011  0.0004006538 -0.006205193 -0.0128110407
#>  [4,] 0.016796958 0.0104487542  0.0041005505 -0.002247653 -0.0085958569
#>  [5,] 0.019981567 0.0138910073  0.0078004472  0.001709887 -0.0043806730
#>  [6,] 0.023166177 0.0173332604  0.0115003439  0.005667427 -0.0001654891
#>  [7,] 0.026350786 0.0207755135  0.0152002406  0.009624968  0.0040496948
#>  [8,] 0.029535396 0.0242177665  0.0189001372  0.013582508  0.0082648787
#>  [9,] 0.032720005 0.0276600196  0.0226000339  0.017540048  0.0124800626
#> [10,] 0.035904615 0.0311022727  0.0262999306  0.021497589  0.0166952464
#> [11,] 0.039089224 0.0345445258  0.0299998273  0.025455129  0.0209104303
#> [12,] 0.042273834 0.0379867789  0.0336997240  0.029412669  0.0251256142
#> [13,] 0.045458443 0.0414290320  0.0373996207  0.033370209  0.0293407981
#> [14,] 0.048643053 0.0448712850  0.0410995174  0.037327750  0.0335559820
#> [15,] 0.051827662 0.0483135381  0.0447994140  0.041285290  0.0377711658
#> [16,] 0.055012272 0.0517557912  0.0484993107  0.045242830  0.0419863497
#> [17,] 0.058196881 0.0551980443  0.0521992074  0.049200371  0.0462015336
#> [18,] 0.061381491 0.0586402974  0.0558991041  0.053157911  0.0504167175
#> [19,] 0.064566100 0.0620825505  0.0595990008  0.057115451  0.0546319014
#> [20,] 0.067750710 0.0655248036  0.0632988975  0.061072991  0.0588470853
#> [21,] 0.070935319 0.0689670566  0.0669987941  0.065030532  0.0630622691
#> [22,] 0.074119929 0.0724093097  0.0706986908  0.068988072  0.0672774530
#> [23,] 0.077304538 0.0758515628  0.0743985875  0.072945612  0.0714926369
#> [24,] 0.080489148 0.0792938159  0.0780984842  0.076903152  0.0757078208
#> [25,] 0.083673757 0.0827360690  0.0817983809  0.080860693  0.0799230047
#> [26,] 0.086858367 0.0861783221  0.0854982776  0.084818233  0.0841381885
#> [27,] 0.090042976 0.0896205751  0.0891981742  0.088775773  0.0883533724
#> [28,] 0.093227586 0.0930628282  0.0928980709  0.092733314  0.0925685563
#> [29,] 0.096412195 0.0965050813  0.0965979676  0.096690854  0.0967837402
#> [30,] 0.099596805 0.0999473344  0.1002978643  0.100648394  0.1009989241
#> [31,] 0.102781414 0.1033895875  0.1039977610  0.104605934  0.1052141080
#> [32,] 0.105966023 0.1068318406  0.1076976577  0.108563475  0.1094292918
#> [33,] 0.109150633 0.1102740936  0.1113975543  0.112521015  0.1136444757
#> [34,] 0.112335242 0.1137163467  0.1150974510  0.116478555  0.1178596596
#> [35,] 0.115519852 0.1171585998  0.1187973477  0.120436096  0.1220748435
#> [36,] 0.118704461 0.1206008529  0.1224972444  0.124393636  0.1262900274
#> [37,] 0.121889071 0.1240431060  0.1261971411  0.128351176  0.1305052112
#> [38,] 0.125073680 0.1274853591  0.1298970378  0.132308716  0.1347203951
#> [39,] 0.128258290 0.1309276122  0.1335969344  0.136266257  0.1389355790
#> [40,] 0.131442899 0.1343698652  0.1372968311  0.140223797  0.1431507629
#> [41,] 0.134627509 0.1378121183  0.1409967278  0.144181337  0.1473659468
#> [42,] 0.137812118 0.1412543714  0.1446966245  0.148138878  0.1515811307
#> [43,] 0.140996728 0.1446966245  0.1483965212  0.152096418  0.1557963145
#> [44,] 0.144181337 0.1481388776  0.1520964179  0.156053958  0.1600114984
#> [45,] 0.147365947 0.1515811307  0.1557963145  0.160011498  0.1642266823
#> [46,] 0.150550556 0.1550233837  0.1594962112  0.163969039  0.1684418662
#> [47,] 0.153735166 0.1584656368  0.1631961079  0.167926579  0.1726570501
#> [48,] 0.156919775 0.1619078899  0.1668960046  0.171884119  0.1768722340
#> [49,] 0.160104385 0.1653501430  0.1705959013  0.175841660  0.1810874178
#> [50,] 0.163288994 0.1687923961  0.1742957980  0.179799200  0.1853026017
#>              [,46]        [,47]        [,48]        [,49]        [,50]
#>  [1,] -0.028362543 -0.035483677 -0.042604812 -0.049725946 -0.056847081
#>  [2,] -0.023889716 -0.030753206 -0.037616697 -0.044480188 -0.051343679
#>  [3,] -0.019416888 -0.026022735 -0.032628583 -0.039234430 -0.045840277
#>  [4,] -0.014944061 -0.021292264 -0.027640468 -0.033988672 -0.040336875
#>  [5,] -0.010471233 -0.016561793 -0.022652353 -0.028742913 -0.034833473
#>  [6,] -0.005998406 -0.011831322 -0.017664239 -0.023497155 -0.029330072
#>  [7,] -0.001525578 -0.007100851 -0.012676124 -0.018251397 -0.023826670
#>  [8,]  0.002947249 -0.002370380 -0.007688009 -0.013005638 -0.018323268
#>  [9,]  0.007420077  0.002360091 -0.002699895 -0.007759880 -0.012819866
#> [10,]  0.011892904  0.007090562  0.002288220 -0.002514122 -0.007316464
#> [11,]  0.016365732  0.011821033  0.007276335  0.002731636 -0.001813062
#> [12,]  0.020838559  0.016551504  0.012264450  0.007977395  0.003690340
#> [13,]  0.025311387  0.021281975  0.017252564  0.013223153  0.009193742
#> [14,]  0.029784214  0.026012447  0.022240679  0.018468911  0.014697143
#> [15,]  0.034257042  0.030742918  0.027228794  0.023714669  0.020200545
#> [16,]  0.038729869  0.035473389  0.032216908  0.028960428  0.025703947
#> [17,]  0.043202697  0.040203860  0.037205023  0.034206186  0.031207349
#> [18,]  0.047675524  0.044934331  0.042193138  0.039451944  0.036710751
#> [19,]  0.052148352  0.049664802  0.047181252  0.044697703  0.042214153
#> [20,]  0.056621179  0.054395273  0.052169367  0.049943461  0.047717555
#> [21,]  0.061094007  0.059125744  0.057157482  0.055189219  0.053220957
#> [22,]  0.065566834  0.063856215  0.062145596  0.060434977  0.058724359
#> [23,]  0.070039662  0.068586686  0.067133711  0.065680736  0.064227760
#> [24,]  0.074512489  0.073317157  0.072121826  0.070926494  0.069731162
#> [25,]  0.078985317  0.078047628  0.077109940  0.076172252  0.075234564
#> [26,]  0.083458144  0.082778100  0.082098055  0.081418011  0.080737966
#> [27,]  0.087930972  0.087508571  0.087086170  0.086663769  0.086241368
#> [28,]  0.092403799  0.092239042  0.092074284  0.091909527  0.091744770
#> [29,]  0.096876626  0.096969513  0.097062399  0.097155285  0.097248172
#> [30,]  0.101349454  0.101699984  0.102050514  0.102401044  0.102751574
#> [31,]  0.105822281  0.106430455  0.107038628  0.107646802  0.108254975
#> [32,]  0.110295109  0.111160926  0.112026743  0.112892560  0.113758377
#> [33,]  0.114767936  0.115891397  0.117014858  0.118138318  0.119261779
#> [34,]  0.119240764  0.120621868  0.122002972  0.123384077  0.124765181
#> [35,]  0.123713591  0.125352339  0.126991087  0.128629835  0.130268583
#> [36,]  0.128186419  0.130082810  0.131979202  0.133875593  0.135771985
#> [37,]  0.132659246  0.134813281  0.136967317  0.139121352  0.141275387
#> [38,]  0.137132074  0.139543753  0.141955431  0.144367110  0.146778789
#> [39,]  0.141604901  0.144274224  0.146943546  0.149612868  0.152282190
#> [40,]  0.146077729  0.149004695  0.151931661  0.154858626  0.157785592
#> [41,]  0.150550556  0.153735166  0.156919775  0.160104385  0.163288994
#> [42,]  0.155023384  0.158465637  0.161907890  0.165350143  0.168792396
#> [43,]  0.159496211  0.163196108  0.166896005  0.170595901  0.174295798
#> [44,]  0.163969039  0.167926579  0.171884119  0.175841660  0.179799200
#> [45,]  0.168441866  0.172657050  0.176872234  0.181087418  0.185302602
#> [46,]  0.172914694  0.177387521  0.181860349  0.186333176  0.190806004
#> [47,]  0.177387521  0.182117992  0.186848463  0.191578934  0.196309405
#> [48,]  0.181860349  0.186848463  0.191836578  0.196824693  0.201812807
#> [49,]  0.186333176  0.191578934  0.196824693  0.202070451  0.207316209
#> [50,]  0.190806004  0.196309405  0.201812807  0.207316209  0.212819611
#> 
#> $vcov.matrix$`40-67`
#>              [,1]         [,2]          [,3]         [,4]        [,5]
#>  [1,]  0.84637085  0.822524130  0.7986774122  0.774830694  0.75098398
#>  [2,]  0.82252413  0.799496421  0.7764687124  0.753441003  0.73041329
#>  [3,]  0.79867741  0.776468712  0.7542600126  0.732051313  0.70984261
#>  [4,]  0.77483069  0.753441003  0.7320513129  0.710661622  0.68927193
#>  [5,]  0.75098398  0.730413295  0.7098426131  0.689271932  0.66870125
#>  [6,]  0.72713726  0.707385586  0.6876339133  0.667882241  0.64813057
#>  [7,]  0.70329054  0.684357877  0.6654252136  0.646492550  0.62755989
#>  [8,]  0.67944382  0.661330168  0.6432165138  0.625102860  0.60698921
#>  [9,]  0.65559710  0.638302459  0.6210078140  0.603713169  0.58641852
#> [10,]  0.63175039  0.615274750  0.5987991143  0.582323479  0.56584784
#> [11,]  0.60790367  0.592247041  0.5765904145  0.560933788  0.54527716
#> [12,]  0.58405695  0.569219332  0.5543817147  0.539544097  0.52470648
#> [13,]  0.56021023  0.546191623  0.5321730150  0.518154407  0.50413580
#> [14,]  0.53636351  0.523163914  0.5099643152  0.496764716  0.48356512
#> [15,]  0.51251679  0.500136205  0.4877556155  0.475375026  0.46299444
#> [16,]  0.48867008  0.477108496  0.4655469157  0.453985335  0.44242375
#> [17,]  0.46482336  0.454080787  0.4433382159  0.432595645  0.42185307
#> [18,]  0.44097664  0.431053078  0.4211295162  0.411205954  0.40128239
#> [19,]  0.41712992  0.408025369  0.3989208164  0.389816263  0.38071171
#> [20,]  0.39328320  0.384997661  0.3767121166  0.368426573  0.36014103
#> [21,]  0.36943649  0.361969952  0.3545034169  0.347036882  0.33957035
#> [22,]  0.34558977  0.338942243  0.3322947171  0.325647192  0.31899967
#> [23,]  0.32174305  0.315914534  0.3100860173  0.304257501  0.29842898
#> [24,]  0.29789633  0.292886825  0.2878773176  0.282867810  0.27785830
#> [25,]  0.27404961  0.269859116  0.2656686178  0.261478120  0.25728762
#> [26,]  0.25020290  0.246831407  0.2434599180  0.240088429  0.23671694
#> [27,]  0.22635618  0.223803698  0.2212512183  0.218698739  0.21614626
#> [28,]  0.20250946  0.200775989  0.1990425185  0.197309048  0.19557558
#> [29,]  0.17866274  0.177748280  0.1768338187  0.175919357  0.17500490
#> [30,]  0.15481602  0.154720571  0.1546251190  0.154529667  0.15443421
#> [31,]  0.13096931  0.131692862  0.1324164192  0.133139976  0.13386353
#> [32,]  0.10712259  0.108665153  0.1102077195  0.111750286  0.11329285
#> [33,]  0.08327587  0.085637444  0.0879990197  0.090360595  0.09272217
#> [34,]  0.05942915  0.062609735  0.0657903199  0.068970904  0.07215149
#> [35,]  0.03558243  0.039582027  0.0435816202  0.047581214  0.05158081
#> [36,]  0.01173571  0.016554318  0.0213729204  0.026191523  0.03101013
#> [37,] -0.01211100 -0.006473391 -0.0008357794  0.004801833  0.01043944
#> [38,] -0.03595772 -0.029501100 -0.0230444791 -0.016587858 -0.01013124
#> [39,] -0.05980444 -0.052528809 -0.0452531789 -0.037977549 -0.03070192
#> [40,] -0.08365116 -0.075556518 -0.0674618787 -0.059367239 -0.05127260
#> [41,] -0.10749788 -0.098584227 -0.0896705784 -0.080756930 -0.07184328
#> [42,] -0.13134459 -0.121611936 -0.1118792782 -0.102146620 -0.09241396
#> [43,] -0.15519131 -0.144639645 -0.1340879780 -0.123536311 -0.11298464
#> [44,] -0.17903803 -0.167667354 -0.1562966777 -0.144926002 -0.13355533
#> [45,] -0.20288475 -0.190695063 -0.1785053775 -0.166315692 -0.15412601
#> [46,] -0.22673147 -0.213722772 -0.2007140773 -0.187705383 -0.17469669
#> [47,] -0.25057818 -0.236750481 -0.2229227770 -0.209095073 -0.19526737
#> [48,] -0.27442490 -0.259778190 -0.2451314768 -0.230484764 -0.21583805
#> [49,] -0.29827162 -0.282805899 -0.2673401765 -0.251874455 -0.23640873
#> [50,] -0.32211834 -0.305833607 -0.2895488763 -0.273264145 -0.25697941
#>               [,6]         [,7]         [,8]         [,9]        [,10]
#>  [1,]  0.727137258  0.703290540  0.679443822  0.655597104  0.631750385
#>  [2,]  0.707385586  0.684357877  0.661330168  0.638302459  0.615274750
#>  [3,]  0.687633913  0.665425214  0.643216514  0.621007814  0.598799114
#>  [4,]  0.667882241  0.646492550  0.625102860  0.603713169  0.582323479
#>  [5,]  0.648130569  0.627559887  0.606989206  0.586418525  0.565847843
#>  [6,]  0.628378897  0.608627224  0.588875552  0.569123880  0.549372208
#>  [7,]  0.608627224  0.589694561  0.570761898  0.551829235  0.532896572
#>  [8,]  0.588875552  0.570761898  0.552648244  0.534534590  0.516420936
#>  [9,]  0.569123880  0.551829235  0.534534590  0.517239946  0.499945301
#> [10,]  0.549372208  0.532896572  0.516420936  0.499945301  0.483469665
#> [11,]  0.529620535  0.513963909  0.498307282  0.482650656  0.466994030
#> [12,]  0.509868863  0.495031246  0.480193629  0.465356011  0.450518394
#> [13,]  0.490117191  0.476098583  0.462079975  0.448061367  0.434042758
#> [14,]  0.470365518  0.457165920  0.443966321  0.430766722  0.417567123
#> [15,]  0.450613846  0.438233256  0.425852667  0.413472077  0.401091487
#> [16,]  0.430862174  0.419300593  0.407739013  0.396177432  0.384615852
#> [17,]  0.411110502  0.400367930  0.389625359  0.378882787  0.368140216
#> [18,]  0.391358829  0.381435267  0.371511705  0.361588143  0.351664580
#> [19,]  0.371607157  0.362502604  0.353398051  0.344293498  0.335188945
#> [20,]  0.351855485  0.343569941  0.335284397  0.326998853  0.318713309
#> [21,]  0.332103813  0.324637278  0.317170743  0.309704208  0.302237674
#> [22,]  0.312352140  0.305704615  0.299057089  0.292409564  0.285762038
#> [23,]  0.292600468  0.286771952  0.280943435  0.275114919  0.269286403
#> [24,]  0.272848796  0.267839289  0.262829781  0.257820274  0.252810767
#> [25,]  0.253097124  0.248906626  0.244716128  0.240525629  0.236335131
#> [26,]  0.233345451  0.229973962  0.226602474  0.223230985  0.219859496
#> [27,]  0.213593779  0.211041299  0.208488820  0.205936340  0.203383860
#> [28,]  0.193842107  0.192108636  0.190375166  0.188641695  0.186908225
#> [29,]  0.174090435  0.173175973  0.172261512  0.171347050  0.170432589
#> [30,]  0.154338762  0.154243310  0.154147858  0.154052406  0.153956953
#> [31,]  0.134587090  0.135310647  0.136034204  0.136757761  0.137481318
#> [32,]  0.114835418  0.116377984  0.117920550  0.119463116  0.121005682
#> [33,]  0.095083746  0.097445321  0.099806896  0.102168471  0.104530047
#> [34,]  0.075332073  0.078512658  0.081693242  0.084873827  0.088054411
#> [35,]  0.055580401  0.059579995  0.063579588  0.067579182  0.071578776
#> [36,]  0.035828729  0.040647332  0.045465934  0.050284537  0.055103140
#> [37,]  0.016077057  0.021714668  0.027352280  0.032989892  0.038627504
#> [38,] -0.003674616  0.002782005  0.009238627  0.015695248  0.022151869
#> [39,] -0.023426288 -0.016150658 -0.008875027 -0.001599397  0.005676233
#> [40,] -0.043177960 -0.035083321 -0.026988681 -0.018894042 -0.010799402
#> [41,] -0.062929633 -0.054015984 -0.045102335 -0.036188687 -0.027275038
#> [42,] -0.082681305 -0.072948647 -0.063215989 -0.053483331 -0.043750674
#> [43,] -0.102432977 -0.091881310 -0.081329643 -0.070777976 -0.060226309
#> [44,] -0.122184649 -0.110813973 -0.099443297 -0.088072621 -0.076701945
#> [45,] -0.141936322 -0.129746636 -0.117556951 -0.105367266 -0.093177580
#> [46,] -0.161687994 -0.148679299 -0.135670605 -0.122661910 -0.109653216
#> [47,] -0.181439666 -0.167611962 -0.153784259 -0.139956555 -0.126128851
#> [48,] -0.201191338 -0.186544626 -0.171897913 -0.157251200 -0.142604487
#> [49,] -0.220943011 -0.205477289 -0.190011567 -0.174545845 -0.159080123
#> [50,] -0.240694683 -0.224409952 -0.208125221 -0.191840489 -0.175555758
#>              [,11]        [,12]         [,13]        [,14]        [,15]
#>  [1,]  0.607903667  0.584056949  0.5602102311  0.536363513  0.512516795
#>  [2,]  0.592247041  0.569219332  0.5461916231  0.523163914  0.500136205
#>  [3,]  0.576590415  0.554381715  0.5321730150  0.509964315  0.487755615
#>  [4,]  0.560933788  0.539544097  0.5181544069  0.496764716  0.475375026
#>  [5,]  0.545277162  0.524706480  0.5041357988  0.483565117  0.462994436
#>  [6,]  0.529620535  0.509868863  0.4901171907  0.470365518  0.450613846
#>  [7,]  0.513963909  0.495031246  0.4760985827  0.457165920  0.438233256
#>  [8,]  0.498307282  0.480193629  0.4620799746  0.443966321  0.425852667
#>  [9,]  0.482650656  0.465356011  0.4480613665  0.430766722  0.413472077
#> [10,]  0.466994030  0.450518394  0.4340427584  0.417567123  0.401091487
#> [11,]  0.451337403  0.435680777  0.4200241503  0.404367524  0.388710898
#> [12,]  0.435680777  0.420843160  0.4060055423  0.391167925  0.376330308
#> [13,]  0.420024150  0.406005542  0.3919869342  0.377968326  0.363949718
#> [14,]  0.404367524  0.391167925  0.3779683261  0.364768727  0.351569128
#> [15,]  0.388710898  0.376330308  0.3639497180  0.351569128  0.339188539
#> [16,]  0.373054271  0.361492691  0.3499311099  0.338369529  0.326807949
#> [17,]  0.357397645  0.346655073  0.3359125019  0.325169930  0.314427359
#> [18,]  0.341741018  0.331817456  0.3218938938  0.311970332  0.302046769
#> [19,]  0.326084392  0.316979839  0.3078752857  0.298770733  0.289666180
#> [20,]  0.310427765  0.302142222  0.2938566776  0.285571134  0.277285590
#> [21,]  0.294771139  0.287304604  0.2798380695  0.272371535  0.264905000
#> [22,]  0.279114513  0.272466987  0.2658194615  0.259171936  0.252524410
#> [23,]  0.263457886  0.257629370  0.2518008534  0.245972337  0.240143821
#> [24,]  0.247801260  0.242791753  0.2377822453  0.232772738  0.227763231
#> [25,]  0.232144633  0.227954135  0.2237636372  0.219573139  0.215382641
#> [26,]  0.216488007  0.213116518  0.2097450291  0.206373540  0.203002051
#> [27,]  0.200831381  0.198278901  0.1957264211  0.193173941  0.190621462
#> [28,]  0.185174754  0.183441284  0.1817078130  0.179974342  0.178240872
#> [29,]  0.169518128  0.168603666  0.1676892049  0.166774744  0.165860282
#> [30,]  0.153861501  0.153766049  0.1536705968  0.153575145  0.153479692
#> [31,]  0.138204875  0.138928432  0.1396519887  0.140375546  0.141099103
#> [32,]  0.122548248  0.124090815  0.1256333807  0.127175947  0.128718513
#> [33,]  0.106891622  0.109253197  0.1116147726  0.113976348  0.116337923
#> [34,]  0.091234996  0.094415580  0.0975961645  0.100776749  0.103957333
#> [35,]  0.075578369  0.079577963  0.0835775564  0.087577150  0.091576744
#> [36,]  0.059921743  0.064740346  0.0695589483  0.074377551  0.079196154
#> [37,]  0.044265116  0.049902728  0.0555403403  0.061177952  0.066815564
#> [38,]  0.028608490  0.035065111  0.0415217322  0.047978353  0.054434974
#> [39,]  0.012951864  0.020227494  0.0275031241  0.034778754  0.042054385
#> [40,] -0.002704763  0.005389877  0.0134845160  0.021579155  0.029673795
#> [41,] -0.018361389 -0.009447741 -0.0005340921  0.008379557  0.017293205
#> [42,] -0.034018016 -0.024285358 -0.0145527001 -0.004820042  0.004912615
#> [43,] -0.049674642 -0.039122975 -0.0285713082 -0.018019641 -0.007467974
#> [44,] -0.065331269 -0.053960592 -0.0425899163 -0.031219240 -0.019848564
#> [45,] -0.080987895 -0.068798210 -0.0566085244 -0.044418839 -0.032229154
#> [46,] -0.096644521 -0.083635827 -0.0706271324 -0.057618438 -0.044609743
#> [47,] -0.112301148 -0.098473444 -0.0846457405 -0.070818037 -0.056990333
#> [48,] -0.127957774 -0.113311061 -0.0986643486 -0.084017636 -0.069370923
#> [49,] -0.143614401 -0.128148679 -0.1126829567 -0.097217235 -0.081751513
#> [50,] -0.159271027 -0.142986296 -0.1267015648 -0.110416834 -0.094132102
#>              [,16]        [,17]        [,18]        [,19]        [,20]
#>  [1,]  0.488670077  0.464823359  0.440976641  0.417129923  0.393283204
#>  [2,]  0.477108496  0.454080787  0.431053078  0.408025369  0.384997661
#>  [3,]  0.465546916  0.443338216  0.421129516  0.398920816  0.376712117
#>  [4,]  0.453985335  0.432595645  0.411205954  0.389816263  0.368426573
#>  [5,]  0.442423755  0.421853073  0.401282392  0.380711710  0.360141029
#>  [6,]  0.430862174  0.411110502  0.391358829  0.371607157  0.351855485
#>  [7,]  0.419300593  0.400367930  0.381435267  0.362502604  0.343569941
#>  [8,]  0.407739013  0.389625359  0.371511705  0.353398051  0.335284397
#>  [9,]  0.396177432  0.378882787  0.361588143  0.344293498  0.326998853
#> [10,]  0.384615852  0.368140216  0.351664580  0.335188945  0.318713309
#> [11,]  0.373054271  0.357397645  0.341741018  0.326084392  0.310427765
#> [12,]  0.361492691  0.346655073  0.331817456  0.316979839  0.302142222
#> [13,]  0.349931110  0.335912502  0.321893894  0.307875286  0.293856678
#> [14,]  0.338369529  0.325169930  0.311970332  0.298770733  0.285571134
#> [15,]  0.326807949  0.314427359  0.302046769  0.289666180  0.277285590
#> [16,]  0.315246368  0.303684788  0.292123207  0.280561626  0.269000046
#> [17,]  0.303684788  0.292942216  0.282199645  0.271457073  0.260714502
#> [18,]  0.292123207  0.282199645  0.272276083  0.262352520  0.252428958
#> [19,]  0.280561626  0.271457073  0.262352520  0.253247967  0.244143414
#> [20,]  0.269000046  0.260714502  0.252428958  0.244143414  0.235857870
#> [21,]  0.257438465  0.249971931  0.242505396  0.235038861  0.227572326
#> [22,]  0.245876885  0.239229359  0.232581834  0.225934308  0.219286783
#> [23,]  0.234315304  0.228486788  0.222658271  0.216829755  0.211001239
#> [24,]  0.222753724  0.217744216  0.212734709  0.207725202  0.202715695
#> [25,]  0.211192143  0.207001645  0.202811147  0.198620649  0.194430151
#> [26,]  0.199630562  0.196259074  0.192887585  0.189516096  0.186144607
#> [27,]  0.188068982  0.185516502  0.182964022  0.180411543  0.177859063
#> [28,]  0.176507401  0.174773931  0.173040460  0.171306990  0.169573519
#> [29,]  0.164945821  0.164031359  0.163116898  0.162202437  0.161287975
#> [30,]  0.153384240  0.153288788  0.153193336  0.153097884  0.153002431
#> [31,]  0.141822660  0.142546217  0.143269774  0.143993330  0.144716887
#> [32,]  0.130261079  0.131803645  0.133346211  0.134888777  0.136431344
#> [33,]  0.118699498  0.121061074  0.123422649  0.125784224  0.128145800
#> [34,]  0.107137918  0.110318502  0.113499087  0.116679671  0.119860256
#> [35,]  0.095576337  0.099575931  0.103575525  0.107575118  0.111574712
#> [36,]  0.084014757  0.088833360  0.093651962  0.098470565  0.103289168
#> [37,]  0.072453176  0.078090788  0.083728400  0.089366012  0.095003624
#> [38,]  0.060891596  0.067348217  0.073804838  0.080261459  0.086718080
#> [39,]  0.049330015  0.056605645  0.063881276  0.071156906  0.078432536
#> [40,]  0.037768434  0.045863074  0.053957713  0.062052353  0.070146992
#> [41,]  0.026206854  0.035120503  0.044034151  0.052947800  0.061861448
#> [42,]  0.014645273  0.024377931  0.034110589  0.043843247  0.053575905
#> [43,]  0.003083693  0.013635360  0.024187027  0.034738694  0.045290361
#> [44,] -0.008477888  0.002892788  0.014263464  0.025634141  0.037004817
#> [45,] -0.020039468 -0.007849783  0.004339902  0.016529588  0.028719273
#> [46,] -0.031601049 -0.018592355 -0.005583660  0.007425034  0.020433729
#> [47,] -0.043162630 -0.029334926 -0.015507222 -0.001679519  0.012148185
#> [48,] -0.054724210 -0.040077497 -0.025430785 -0.010784072  0.003862641
#> [49,] -0.066285791 -0.050820069 -0.035354347 -0.019888625 -0.004422903
#> [50,] -0.077847371 -0.061562640 -0.045277909 -0.028993178 -0.012708447
#>             [,21]      [,22]      [,23]      [,24]      [,25]      [,26]
#>  [1,] 0.369436486 0.34558977 0.32174305 0.29789633 0.27404961 0.25020290
#>  [2,] 0.361969952 0.33894224 0.31591453 0.29288682 0.26985912 0.24683141
#>  [3,] 0.354503417 0.33229472 0.31008602 0.28787732 0.26566862 0.24345992
#>  [4,] 0.347036882 0.32564719 0.30425750 0.28286781 0.26147812 0.24008843
#>  [5,] 0.339570347 0.31899967 0.29842898 0.27785830 0.25728762 0.23671694
#>  [6,] 0.332103813 0.31235214 0.29260047 0.27284880 0.25309712 0.23334545
#>  [7,] 0.324637278 0.30570461 0.28677195 0.26783929 0.24890663 0.22997396
#>  [8,] 0.317170743 0.29905709 0.28094344 0.26282978 0.24471613 0.22660247
#>  [9,] 0.309704208 0.29240956 0.27511492 0.25782027 0.24052563 0.22323098
#> [10,] 0.302237674 0.28576204 0.26928640 0.25281077 0.23633513 0.21985950
#> [11,] 0.294771139 0.27911451 0.26345789 0.24780126 0.23214463 0.21648801
#> [12,] 0.287304604 0.27246699 0.25762937 0.24279175 0.22795414 0.21311652
#> [13,] 0.279838070 0.26581946 0.25180085 0.23778225 0.22376364 0.20974503
#> [14,] 0.272371535 0.25917194 0.24597234 0.23277274 0.21957314 0.20637354
#> [15,] 0.264905000 0.25252441 0.24014382 0.22776323 0.21538264 0.20300205
#> [16,] 0.257438465 0.24587688 0.23431530 0.22275372 0.21119214 0.19963056
#> [17,] 0.249971931 0.23922936 0.22848679 0.21774422 0.20700164 0.19625907
#> [18,] 0.242505396 0.23258183 0.22265827 0.21273471 0.20281115 0.19288758
#> [19,] 0.235038861 0.22593431 0.21682976 0.20772520 0.19862065 0.18951610
#> [20,] 0.227572326 0.21928678 0.21100124 0.20271569 0.19443015 0.18614461
#> [21,] 0.220105792 0.21263926 0.20517272 0.19770619 0.19023965 0.18277312
#> [22,] 0.212639257 0.20599173 0.19934421 0.19269668 0.18604915 0.17940163
#> [23,] 0.205172722 0.19934421 0.19351569 0.18768717 0.18185866 0.17603014
#> [24,] 0.197706187 0.19269668 0.18768717 0.18267767 0.17766816 0.17265865
#> [25,] 0.190239653 0.18604915 0.18185866 0.17766816 0.17347766 0.16928716
#> [26,] 0.182773118 0.17940163 0.17603014 0.17265865 0.16928716 0.16591567
#> [27,] 0.175306583 0.17275410 0.17020162 0.16764914 0.16509666 0.16254418
#> [28,] 0.167840049 0.16610658 0.16437311 0.16263964 0.16090617 0.15917270
#> [29,] 0.160373514 0.15945905 0.15854459 0.15763013 0.15671567 0.15580121
#> [30,] 0.152906979 0.15281153 0.15271607 0.15262062 0.15252517 0.15242972
#> [31,] 0.145440444 0.14616400 0.14688756 0.14761112 0.14833467 0.14905823
#> [32,] 0.137973910 0.13951648 0.14105904 0.14260161 0.14414417 0.14568674
#> [33,] 0.130507375 0.13286895 0.13523053 0.13759210 0.13995368 0.14231525
#> [34,] 0.123040840 0.12622142 0.12940201 0.13258259 0.13576318 0.13894376
#> [35,] 0.115574305 0.11957390 0.12357349 0.12757309 0.13157268 0.13557227
#> [36,] 0.108107771 0.11292637 0.11774498 0.12256358 0.12738218 0.13220078
#> [37,] 0.100641236 0.10627885 0.11191646 0.11755407 0.12319168 0.12882930
#> [38,] 0.093174701 0.09963132 0.10608794 0.11254456 0.11900119 0.12545781
#> [39,] 0.085708167 0.09298380 0.10025943 0.10753506 0.11481069 0.12208632
#> [40,] 0.078241632 0.08633627 0.09443091 0.10252555 0.11062019 0.11871483
#> [41,] 0.070775097 0.07968875 0.08860239 0.09751604 0.10642969 0.11534334
#> [42,] 0.063308562 0.07304122 0.08277388 0.09250654 0.10223919 0.11197185
#> [43,] 0.055842028 0.06639369 0.07694536 0.08749703 0.09804870 0.10860036
#> [44,] 0.048375493 0.05974617 0.07111685 0.08248752 0.09385820 0.10522887
#> [45,] 0.040908958 0.05309864 0.06528833 0.07747801 0.08966770 0.10185738
#> [46,] 0.033442423 0.04645112 0.05945981 0.07246851 0.08547720 0.09848590
#> [47,] 0.025975889 0.03980359 0.05363130 0.06745900 0.08128670 0.09511441
#> [48,] 0.018509354 0.03315607 0.04780278 0.06244949 0.07709621 0.09174292
#> [49,] 0.011042819 0.02650854 0.04197426 0.05743999 0.07290571 0.08837143
#> [50,] 0.003576284 0.01986102 0.03614575 0.05243048 0.06871521 0.08499994
#>           [,27]     [,28]     [,29]     [,30]     [,31]     [,32]      [,33]
#>  [1,] 0.2263562 0.2025095 0.1786627 0.1548160 0.1309693 0.1071226 0.08327587
#>  [2,] 0.2238037 0.2007760 0.1777483 0.1547206 0.1316929 0.1086652 0.08563744
#>  [3,] 0.2212512 0.1990425 0.1768338 0.1546251 0.1324164 0.1102077 0.08799902
#>  [4,] 0.2186987 0.1973090 0.1759194 0.1545297 0.1331400 0.1117503 0.09036059
#>  [5,] 0.2161463 0.1955756 0.1750049 0.1544342 0.1338635 0.1132929 0.09272217
#>  [6,] 0.2135938 0.1938421 0.1740904 0.1543388 0.1345871 0.1148354 0.09508375
#>  [7,] 0.2110413 0.1921086 0.1731760 0.1542433 0.1353106 0.1163780 0.09744532
#>  [8,] 0.2084888 0.1903752 0.1722615 0.1541479 0.1360342 0.1179206 0.09980690
#>  [9,] 0.2059363 0.1886417 0.1713471 0.1540524 0.1367578 0.1194631 0.10216847
#> [10,] 0.2033839 0.1869082 0.1704326 0.1539570 0.1374813 0.1210057 0.10453005
#> [11,] 0.2008314 0.1851748 0.1695181 0.1538615 0.1382049 0.1225482 0.10689162
#> [12,] 0.1982789 0.1834413 0.1686037 0.1537660 0.1389284 0.1240908 0.10925320
#> [13,] 0.1957264 0.1817078 0.1676892 0.1536706 0.1396520 0.1256334 0.11161477
#> [14,] 0.1931739 0.1799743 0.1667747 0.1535751 0.1403755 0.1271759 0.11397635
#> [15,] 0.1906215 0.1782409 0.1658603 0.1534797 0.1410991 0.1287185 0.11633792
#> [16,] 0.1880690 0.1765074 0.1649458 0.1533842 0.1418227 0.1302611 0.11869950
#> [17,] 0.1855165 0.1747739 0.1640314 0.1532888 0.1425462 0.1318036 0.12106107
#> [18,] 0.1829640 0.1730405 0.1631169 0.1531933 0.1432698 0.1333462 0.12342265
#> [19,] 0.1804115 0.1713070 0.1622024 0.1530979 0.1439933 0.1348888 0.12578422
#> [20,] 0.1778591 0.1695735 0.1612880 0.1530024 0.1447169 0.1364313 0.12814580
#> [21,] 0.1753066 0.1678400 0.1603735 0.1529070 0.1454404 0.1379739 0.13050737
#> [22,] 0.1727541 0.1661066 0.1594591 0.1528115 0.1461640 0.1395165 0.13286895
#> [23,] 0.1702016 0.1643731 0.1585446 0.1527161 0.1468876 0.1410590 0.13523053
#> [24,] 0.1676491 0.1626396 0.1576301 0.1526206 0.1476111 0.1426016 0.13759210
#> [25,] 0.1650967 0.1609062 0.1567157 0.1525252 0.1483347 0.1441442 0.13995368
#> [26,] 0.1625442 0.1591727 0.1558012 0.1524297 0.1490582 0.1456867 0.14231525
#> [27,] 0.1599917 0.1574392 0.1548867 0.1523343 0.1497818 0.1472293 0.14467683
#> [28,] 0.1574392 0.1557058 0.1539723 0.1522388 0.1505053 0.1487719 0.14703840
#> [29,] 0.1548867 0.1539723 0.1530578 0.1521434 0.1512289 0.1503144 0.14939998
#> [30,] 0.1523343 0.1522388 0.1521434 0.1520479 0.1519525 0.1518570 0.15176155
#> [31,] 0.1497818 0.1505053 0.1512289 0.1519525 0.1526760 0.1533996 0.15412313
#> [32,] 0.1472293 0.1487719 0.1503144 0.1518570 0.1533996 0.1549421 0.15648470
#> [33,] 0.1446768 0.1470384 0.1494000 0.1517616 0.1541231 0.1564847 0.15884628
#> [34,] 0.1421243 0.1453049 0.1484855 0.1516661 0.1548467 0.1580273 0.16120785
#> [35,] 0.1395719 0.1435715 0.1475711 0.1515706 0.1555702 0.1595698 0.16356943
#> [36,] 0.1370194 0.1418380 0.1466566 0.1514752 0.1562938 0.1611124 0.16593100
#> [37,] 0.1344669 0.1401045 0.1457421 0.1513797 0.1570174 0.1626550 0.16829258
#> [38,] 0.1319144 0.1383710 0.1448277 0.1512843 0.1577409 0.1641975 0.17065415
#> [39,] 0.1293619 0.1366376 0.1439132 0.1511888 0.1584645 0.1657401 0.17301573
#> [40,] 0.1268095 0.1349041 0.1429987 0.1510934 0.1591880 0.1672827 0.17537731
#> [41,] 0.1242570 0.1331706 0.1420843 0.1509979 0.1599116 0.1688252 0.17773888
#> [42,] 0.1217045 0.1314372 0.1411698 0.1509025 0.1606351 0.1703678 0.18010046
#> [43,] 0.1191520 0.1297037 0.1402554 0.1508070 0.1613587 0.1719104 0.18246203
#> [44,] 0.1165995 0.1279702 0.1393409 0.1507116 0.1620823 0.1734529 0.18482361
#> [45,] 0.1140471 0.1262368 0.1384264 0.1506161 0.1628058 0.1749955 0.18718518
#> [46,] 0.1114946 0.1245033 0.1375120 0.1505207 0.1635294 0.1765381 0.18954676
#> [47,] 0.1089421 0.1227698 0.1365975 0.1504252 0.1642529 0.1780806 0.19190833
#> [48,] 0.1063896 0.1210363 0.1356831 0.1503298 0.1649765 0.1796232 0.19426991
#> [49,] 0.1038372 0.1193029 0.1347686 0.1502343 0.1657000 0.1811658 0.19663148
#> [50,] 0.1012847 0.1175694 0.1338541 0.1501389 0.1664236 0.1827083 0.19899306
#>            [,34]      [,35]      [,36]         [,37]        [,38]        [,39]
#>  [1,] 0.05942915 0.03558243 0.01173571 -0.0121110033 -0.035957721 -0.059804440
#>  [2,] 0.06260974 0.03958203 0.01655432 -0.0064733913 -0.029501100 -0.052528809
#>  [3,] 0.06579032 0.04358162 0.02137292 -0.0008357794 -0.023044479 -0.045253179
#>  [4,] 0.06897090 0.04758121 0.02619152  0.0048018326 -0.016587858 -0.037977549
#>  [5,] 0.07215149 0.05158081 0.03101013  0.0104394446 -0.010131237 -0.030701918
#>  [6,] 0.07533207 0.05558040 0.03582873  0.0160770565 -0.003674616 -0.023426288
#>  [7,] 0.07851266 0.05957999 0.04064733  0.0217146685  0.002782005 -0.016150658
#>  [8,] 0.08169324 0.06357959 0.04546593  0.0273522804  0.009238627 -0.008875027
#>  [9,] 0.08487383 0.06757918 0.05028454  0.0329898924  0.015695248 -0.001599397
#> [10,] 0.08805441 0.07157878 0.05510314  0.0386275044  0.022151869  0.005676233
#> [11,] 0.09123500 0.07557837 0.05992174  0.0442651163  0.028608490  0.012951864
#> [12,] 0.09441558 0.07957796 0.06474035  0.0499027283  0.035065111  0.020227494
#> [13,] 0.09759616 0.08357756 0.06955895  0.0555403403  0.041521732  0.027503124
#> [14,] 0.10077675 0.08757715 0.07437755  0.0611779522  0.047978353  0.034778754
#> [15,] 0.10395733 0.09157674 0.07919615  0.0668155642  0.054434974  0.042054385
#> [16,] 0.10713792 0.09557634 0.08401476  0.0724531762  0.060891596  0.049330015
#> [17,] 0.11031850 0.09957593 0.08883336  0.0780907881  0.067348217  0.056605645
#> [18,] 0.11349909 0.10357552 0.09365196  0.0837284001  0.073804838  0.063881276
#> [19,] 0.11667967 0.10757512 0.09847057  0.0893660121  0.080261459  0.071156906
#> [20,] 0.11986026 0.11157471 0.10328917  0.0950036240  0.086718080  0.078432536
#> [21,] 0.12304084 0.11557431 0.10810777  0.1006412360  0.093174701  0.085708167
#> [22,] 0.12622142 0.11957390 0.11292637  0.1062788479  0.099631322  0.092983797
#> [23,] 0.12940201 0.12357349 0.11774498  0.1119164599  0.106087944  0.100259427
#> [24,] 0.13258259 0.12757309 0.12256358  0.1175540719  0.112544565  0.107535057
#> [25,] 0.13576318 0.13157268 0.12738218  0.1231916838  0.119001186  0.114810688
#> [26,] 0.13894376 0.13557227 0.13220078  0.1288292958  0.125457807  0.122086318
#> [27,] 0.14212435 0.13957187 0.13701939  0.1344669078  0.131914428  0.129361948
#> [28,] 0.14530493 0.14357146 0.14183799  0.1401045197  0.138371049  0.136637579
#> [29,] 0.14848552 0.14757105 0.14665659  0.1457421317  0.144827670  0.143913209
#> [30,] 0.15166610 0.15157065 0.15147520  0.1513797437  0.151284291  0.151188839
#> [31,] 0.15484668 0.15557024 0.15629380  0.1570173556  0.157740913  0.158464470
#> [32,] 0.15802727 0.15956984 0.16111240  0.1626549676  0.164197534  0.165740100
#> [33,] 0.16120785 0.16356943 0.16593100  0.1682925795  0.170654155  0.173015730
#> [34,] 0.16438844 0.16756902 0.17074961  0.1739301915  0.177110776  0.180291360
#> [35,] 0.16756902 0.17156862 0.17556821  0.1795678035  0.183567397  0.187566991
#> [36,] 0.17074961 0.17556821 0.18038681  0.1852054154  0.190024018  0.194842621
#> [37,] 0.17393019 0.17956780 0.18520542  0.1908430274  0.196480639  0.202118251
#> [38,] 0.17711078 0.18356740 0.19002402  0.1964806394  0.202937260  0.209393882
#> [39,] 0.18029136 0.18756699 0.19484262  0.2021182513  0.209393882  0.216669512
#> [40,] 0.18347194 0.19156658 0.19966122  0.2077558633  0.215850503  0.223945142
#> [41,] 0.18665253 0.19556618 0.20447983  0.2133934753  0.222307124  0.231220773
#> [42,] 0.18983311 0.19956577 0.20929843  0.2190310872  0.228763745  0.238496403
#> [43,] 0.19301370 0.20356537 0.21411703  0.2246686992  0.235220366  0.245772033
#> [44,] 0.19619428 0.20756496 0.21893564  0.2303063111  0.241676987  0.253047663
#> [45,] 0.19937487 0.21156455 0.22375424  0.2359439231  0.248133608  0.260323294
#> [46,] 0.20255545 0.21556415 0.22857284  0.2415815351  0.254590230  0.267598924
#> [47,] 0.20573604 0.21956374 0.23339144  0.2472191470  0.261046851  0.274874554
#> [48,] 0.20891662 0.22356333 0.23821005  0.2528567590  0.267503472  0.282150185
#> [49,] 0.21209721 0.22756293 0.24302865  0.2584943710  0.273960093  0.289425815
#> [50,] 0.21527779 0.23156252 0.24784725  0.2641319829  0.280416714  0.296701445
#>              [,40]         [,41]        [,42]        [,43]        [,44]
#>  [1,] -0.083651158 -0.1074978757 -0.131344594 -0.155191312 -0.179038030
#>  [2,] -0.075556518 -0.0985842271 -0.121611936 -0.144639645 -0.167667354
#>  [3,] -0.067461879 -0.0896705784 -0.111879278 -0.134087978 -0.156296678
#>  [4,] -0.059367239 -0.0807569298 -0.102146620 -0.123536311 -0.144926002
#>  [5,] -0.051272600 -0.0718432812 -0.092413963 -0.112984644 -0.133555325
#>  [6,] -0.043177960 -0.0629296325 -0.082681305 -0.102432977 -0.122184649
#>  [7,] -0.035083321 -0.0540159839 -0.072948647 -0.091881310 -0.110813973
#>  [8,] -0.026988681 -0.0451023352 -0.063215989 -0.081329643 -0.099443297
#>  [9,] -0.018894042 -0.0361886866 -0.053483331 -0.070777976 -0.088072621
#> [10,] -0.010799402 -0.0272750380 -0.043750674 -0.060226309 -0.076701945
#> [11,] -0.002704763 -0.0183613893 -0.034018016 -0.049674642 -0.065331269
#> [12,]  0.005389877 -0.0094477407 -0.024285358 -0.039122975 -0.053960592
#> [13,]  0.013484516 -0.0005340921 -0.014552700 -0.028571308 -0.042589916
#> [14,]  0.021579155  0.0083795566 -0.004820042 -0.018019641 -0.031219240
#> [15,]  0.029673795  0.0172932052  0.004912615 -0.007467974 -0.019848564
#> [16,]  0.037768434  0.0262068539  0.014645273  0.003083693 -0.008477888
#> [17,]  0.045863074  0.0351205025  0.024377931  0.013635360  0.002892788
#> [18,]  0.053957713  0.0440341511  0.034110589  0.024187027  0.014263464
#> [19,]  0.062052353  0.0529477998  0.043843247  0.034738694  0.025634141
#> [20,]  0.070146992  0.0618614484  0.053575905  0.045290361  0.037004817
#> [21,]  0.078241632  0.0707750971  0.063308562  0.055842028  0.048375493
#> [22,]  0.086336271  0.0796887457  0.073041220  0.066393695  0.059746169
#> [23,]  0.094430911  0.0886023943  0.082773878  0.076945362  0.071116845
#> [24,]  0.102525550  0.0975160430  0.092506536  0.087497029  0.082487521
#> [25,]  0.110620190  0.1064296916  0.102239194  0.098048695  0.093858197
#> [26,]  0.118714829  0.1153433402  0.111971851  0.108600362  0.105228874
#> [27,]  0.126809469  0.1242569889  0.121704509  0.119152029  0.116599550
#> [28,]  0.134904108  0.1331706375  0.131437167  0.129703696  0.127970226
#> [29,]  0.142998748  0.1420842862  0.141169825  0.140255363  0.139340902
#> [30,]  0.151093387  0.1509979348  0.150902483  0.150807030  0.150711578
#> [31,]  0.159188026  0.1599115834  0.160635140  0.161358697  0.162082254
#> [32,]  0.167282666  0.1688252321  0.170367798  0.171910364  0.173452930
#> [33,]  0.175377305  0.1777388807  0.180100456  0.182462031  0.184823607
#> [34,]  0.183471945  0.1866525293  0.189833114  0.193013698  0.196194283
#> [35,]  0.191566584  0.1955661780  0.199565772  0.203565365  0.207564959
#> [36,]  0.199661224  0.2044798266  0.209298429  0.214117032  0.218935635
#> [37,]  0.207755863  0.2133934753  0.219031087  0.224668699  0.230306311
#> [38,]  0.215850503  0.2223071239  0.228763745  0.235220366  0.241676987
#> [39,]  0.223945142  0.2312207725  0.238496403  0.245772033  0.253047663
#> [40,]  0.232039782  0.2401344212  0.248229061  0.256323700  0.264418340
#> [41,]  0.240134421  0.2490480698  0.257961718  0.266875367  0.275789016
#> [42,]  0.248229061  0.2579617184  0.267694376  0.277427034  0.287159692
#> [43,]  0.256323700  0.2668753671  0.277427034  0.287978701  0.298530368
#> [44,]  0.264418340  0.2757890157  0.287159692  0.298530368  0.309901044
#> [45,]  0.272512979  0.2847026644  0.296892350  0.309082035  0.321271720
#> [46,]  0.280607619  0.2936163130  0.306625007  0.319633702  0.332642396
#> [47,]  0.288702258  0.3025299616  0.316357665  0.330185369  0.344013073
#> [48,]  0.296796897  0.3114436103  0.326090323  0.340737036  0.355383749
#> [49,]  0.304891537  0.3203572589  0.335822981  0.351288703  0.366754425
#> [50,]  0.312986176  0.3292709076  0.345555639  0.361840370  0.378125101
#>              [,45]        [,46]        [,47]        [,48]        [,49]
#>  [1,] -0.202884748 -0.226731466 -0.250578184 -0.274424902 -0.298271621
#>  [2,] -0.190695063 -0.213722772 -0.236750481 -0.259778190 -0.282805899
#>  [3,] -0.178505377 -0.200714077 -0.222922777 -0.245131477 -0.267340177
#>  [4,] -0.166315692 -0.187705383 -0.209095073 -0.230484764 -0.251874455
#>  [5,] -0.154126007 -0.174696688 -0.195267370 -0.215838051 -0.236408733
#>  [6,] -0.141936322 -0.161687994 -0.181439666 -0.201191338 -0.220943011
#>  [7,] -0.129746636 -0.148679299 -0.167611962 -0.186544626 -0.205477289
#>  [8,] -0.117556951 -0.135670605 -0.153784259 -0.171897913 -0.190011567
#>  [9,] -0.105367266 -0.122661910 -0.139956555 -0.157251200 -0.174545845
#> [10,] -0.093177580 -0.109653216 -0.126128851 -0.142604487 -0.159080123
#> [11,] -0.080987895 -0.096644521 -0.112301148 -0.127957774 -0.143614401
#> [12,] -0.068798210 -0.083635827 -0.098473444 -0.113311061 -0.128148679
#> [13,] -0.056608524 -0.070627132 -0.084645741 -0.098664349 -0.112682957
#> [14,] -0.044418839 -0.057618438 -0.070818037 -0.084017636 -0.097217235
#> [15,] -0.032229154 -0.044609743 -0.056990333 -0.069370923 -0.081751513
#> [16,] -0.020039468 -0.031601049 -0.043162630 -0.054724210 -0.066285791
#> [17,] -0.007849783 -0.018592355 -0.029334926 -0.040077497 -0.050820069
#> [18,]  0.004339902 -0.005583660 -0.015507222 -0.025430785 -0.035354347
#> [19,]  0.016529588  0.007425034 -0.001679519 -0.010784072 -0.019888625
#> [20,]  0.028719273  0.020433729  0.012148185  0.003862641 -0.004422903
#> [21,]  0.040908958  0.033442423  0.025975889  0.018509354  0.011042819
#> [22,]  0.053098643  0.046451118  0.039803592  0.033156067  0.026508541
#> [23,]  0.065288329  0.059459812  0.053631296  0.047802780  0.041974263
#> [24,]  0.077478014  0.072468507  0.067459000  0.062449492  0.057439985
#> [25,]  0.089667699  0.085477201  0.081286703  0.077096205  0.072905707
#> [26,]  0.101857385  0.098485896  0.095114407  0.091742918  0.088371429
#> [27,]  0.114047070  0.111494590  0.108942111  0.106389631  0.103837151
#> [28,]  0.126236755  0.124503285  0.122769814  0.121036344  0.119302873
#> [29,]  0.138426441  0.137511979  0.136597518  0.135683056  0.134768595
#> [30,]  0.150616126  0.150520674  0.150425221  0.150329769  0.150234317
#> [31,]  0.162805811  0.163529368  0.164252925  0.164976482  0.165700039
#> [32,]  0.174995497  0.176538063  0.178080629  0.179623195  0.181165761
#> [33,]  0.187185182  0.189546757  0.191908332  0.194269908  0.196631483
#> [34,]  0.199374867  0.202555452  0.205736036  0.208916621  0.212097205
#> [35,]  0.211564552  0.215564146  0.219563740  0.223563333  0.227562927
#> [36,]  0.223754238  0.228572841  0.233391443  0.238210046  0.243028649
#> [37,]  0.235943923  0.241581535  0.247219147  0.252856759  0.258494371
#> [38,]  0.248133608  0.254590230  0.261046851  0.267503472  0.273960093
#> [39,]  0.260323294  0.267598924  0.274874554  0.282150185  0.289425815
#> [40,]  0.272512979  0.280607619  0.288702258  0.296796897  0.304891537
#> [41,]  0.284702664  0.293616313  0.302529962  0.311443610  0.320357259
#> [42,]  0.296892350  0.306625007  0.316357665  0.326090323  0.335822981
#> [43,]  0.309082035  0.319633702  0.330185369  0.340737036  0.351288703
#> [44,]  0.321271720  0.332642396  0.344013073  0.355383749  0.366754425
#> [45,]  0.333461406  0.345651091  0.357840776  0.370030462  0.382220147
#> [46,]  0.345651091  0.358659785  0.371668480  0.384677174  0.397685869
#> [47,]  0.357840776  0.371668480  0.385496184  0.399323887  0.413151591
#> [48,]  0.370030462  0.384677174  0.399323887  0.413970600  0.428617313
#> [49,]  0.382220147  0.397685869  0.413151591  0.428617313  0.444083035
#> [50,]  0.394409832  0.410694563  0.426979294  0.443264026  0.459548757
#>              [,50]
#>  [1,] -0.322118339
#>  [2,] -0.305833607
#>  [3,] -0.289548876
#>  [4,] -0.273264145
#>  [5,] -0.256979414
#>  [6,] -0.240694683
#>  [7,] -0.224409952
#>  [8,] -0.208125221
#>  [9,] -0.191840489
#> [10,] -0.175555758
#> [11,] -0.159271027
#> [12,] -0.142986296
#> [13,] -0.126701565
#> [14,] -0.110416834
#> [15,] -0.094132102
#> [16,] -0.077847371
#> [17,] -0.061562640
#> [18,] -0.045277909
#> [19,] -0.028993178
#> [20,] -0.012708447
#> [21,]  0.003576284
#> [22,]  0.019861016
#> [23,]  0.036145747
#> [24,]  0.052430478
#> [25,]  0.068715209
#> [26,]  0.084999940
#> [27,]  0.101284671
#> [28,]  0.117569403
#> [29,]  0.133854134
#> [30,]  0.150138865
#> [31,]  0.166423596
#> [32,]  0.182708327
#> [33,]  0.198993058
#> [34,]  0.215277789
#> [35,]  0.231562521
#> [36,]  0.247847252
#> [37,]  0.264131983
#> [38,]  0.280416714
#> [39,]  0.296701445
#> [40,]  0.312986176
#> [41,]  0.329270908
#> [42,]  0.345555639
#> [43,]  0.361840370
#> [44,]  0.378125101
#> [45,]  0.394409832
#> [46,]  0.410694563
#> [47,]  0.426979294
#> [48,]  0.443264026
#> [49,]  0.459548757
#> [50,]  0.475833488
#> 
#> 
#> $Avg.estimate
#> $Avg.estimate$`30-40`
#>                             ATE    sd z-value p-value lower CI(95%)
#> Average Treatment Effect -0.048 0.309  -0.154   0.877        -0.664
#>                          upper CI(95%)
#> Average Treatment Effect         0.569
#> 
#> $Avg.estimate$`40-67`
#>                             ATE    sd z-value p-value lower CI(95%)
#> Average Treatment Effect -1.003 0.390  -2.572   0.010        -1.781
#>                          upper CI(95%)
#> Average Treatment Effect        -0.226
#> 
#> 
#> $Xlabel
#> [1] "Belonging"
#> 
#> $Dlabel
#> [1] "Generation"
#> 
#> $Ylabel
#> [1] "Tax Moral"
#> 
#> $de
#> 
#> Call:
#>  density.default(x = data[, X])
#> 
#> Data: data[, X] (88 obs.);   Bandwidth 'bw' = 0.5486
#> 
#>        x                 y            
#>  Min.   :-0.6459   Min.   :0.0007379  
#>  1st Qu.: 1.4271   1st Qu.:0.0508774  
#>  Median : 3.5000   Median :0.1329117  
#>  Mean   : 3.5000   Mean   :0.1203226  
#>  3rd Qu.: 5.5729   3rd Qu.:0.1744728  
#>  Max.   : 7.6459   Max.   :0.2478022  
#> 
#> $de.tr
#> $de.tr$`20-30`
#> 
#> Call:
#>  density.default(x = data[data[, D] == char, X])
#> 
#> Data: data[data[, D] == char, X] (20 obs.);  Bandwidth 'bw' = 0.4611
#> 
#>        x                 y            
#>  Min.   :-0.3834   Min.   :0.0009631  
#>  1st Qu.: 1.5583   1st Qu.:0.0693888  
#>  Median : 3.5000   Median :0.1016576  
#>  Mean   : 3.5000   Mean   :0.1284589  
#>  3rd Qu.: 5.4417   3rd Qu.:0.1384904  
#>  Max.   : 7.3834   Max.   :0.4448267  
#> 
#> $de.tr$`30-40`
#> 
#> Call:
#>  density.default(x = data[data[, D] == char, X])
#> 
#> Data: data[data[, D] == char, X] (45 obs.);  Bandwidth 'bw' = 0.7054
#> 
#>        x                y            
#>  Min.   :-1.116   Min.   :0.0005647  
#>  1st Qu.: 1.192   1st Qu.:0.0347552  
#>  Median : 3.500   Median :0.1310716  
#>  Mean   : 3.500   Mean   :0.1080534  
#>  3rd Qu.: 5.808   3rd Qu.:0.1771081  
#>  Max.   : 8.116   Max.   :0.1908699  
#> 
#> $de.tr$`40-67`
#> 
#> Call:
#>  density.default(x = data[data[, D] == char, X])
#> 
#> Data: data[data[, D] == char, X] (23 obs.);  Bandwidth 'bw' = 0.6798
#> 
#>        x               y            
#>  Min.   :-1.04   Min.   :0.0002878  
#>  1st Qu.: 1.23   1st Qu.:0.0194554  
#>  Median : 3.50   Median :0.1028165  
#>  Mean   : 3.50   Mean   :0.1099031  
#>  3rd Qu.: 5.77   3rd Qu.:0.1903006  
#>  Max.   : 8.04   Max.   :0.2541633  
#> 
#> 
#> $hist.out
#> $breaks
#>   [1] 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
#>  [16] 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45
#>  [31] 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20
#>  [46] 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95
#>  [61] 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70
#>  [76] 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45
#>  [91] 5.50 5.55 5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00
#> 
#> $counts
#>   [1]  8  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 12  0  0  0  0  0
#>  [26]  0  0  0  0  0  0  0  0  0  0  0  0  0  0 12  0  0  0  0  0  0  0  0  0  0
#>  [51]  0  0  0  0  0  0  0  0  0 25  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
#>  [76]  0  0  0  0 14  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 17
#> 
#> $density
#>   [1] 1.818182 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>   [9] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>  [17] 0.000000 0.000000 0.000000 2.727273 0.000000 0.000000 0.000000 0.000000
#>  [25] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>  [33] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.727273
#>  [41] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>  [49] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>  [57] 0.000000 0.000000 0.000000 5.681818 0.000000 0.000000 0.000000 0.000000
#>  [65] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>  [73] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.181818
#>  [81] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>  [89] 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#>  [97] 0.000000 0.000000 0.000000 3.863636
#> 
#> $mids
#>   [1] 1.025 1.075 1.125 1.175 1.225 1.275 1.325 1.375 1.425 1.475 1.525 1.575
#>  [13] 1.625 1.675 1.725 1.775 1.825 1.875 1.925 1.975 2.025 2.075 2.125 2.175
#>  [25] 2.225 2.275 2.325 2.375 2.425 2.475 2.525 2.575 2.625 2.675 2.725 2.775
#>  [37] 2.825 2.875 2.925 2.975 3.025 3.075 3.125 3.175 3.225 3.275 3.325 3.375
#>  [49] 3.425 3.475 3.525 3.575 3.625 3.675 3.725 3.775 3.825 3.875 3.925 3.975
#>  [61] 4.025 4.075 4.125 4.175 4.225 4.275 4.325 4.375 4.425 4.475 4.525 4.575
#>  [73] 4.625 4.675 4.725 4.775 4.825 4.875 4.925 4.975 5.025 5.075 5.125 5.175
#>  [85] 5.225 5.275 5.325 5.375 5.425 5.475 5.525 5.575 5.625 5.675 5.725 5.775
#>  [97] 5.825 5.875 5.925 5.975
#> 
#> $xname
#> [1] "data[, X]"
#> 
#> $equidist
#> [1] TRUE
#> 
#> attr(,"class")
#> [1] "histogram"
#> 
#> $count.tr
#> $count.tr$`20-30`
#>   [1]  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0  0
#>  [26]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  0
#>  [51]  0  0  0  0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0  0  0  0  0
#>  [76]  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2
#> 
#> $count.tr$`30-40`
#>   [1]  4  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  7  0  0  0  0
#>  [26]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0
#>  [51]  0  0  0  0  0  0  0  0  0  0 10  0  0  0  0  0  0  0  0  0  0  0  0  0  0
#>  [76]  0  0  0  0  0  6  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 12
#> 
#> $count.tr$`40-67`
#>   [1] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [38] 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
#>  [75] 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
#> 
#> 
#> $tests
#> $tests$treat.type
#> [1] "discrete"
#> 
#> $tests$X.Lkurtosis
#> [1] "0.044"
#> 
#> 
#> $estimator
#> [1] "linear"
#> 
#> $model.linear
#> 
#> Call:  glm(formula = formula, data = data, weights = WEIGHTS)
#> 
#> Coefficients:
#>       (Intercept)          belonging          D.Group.2         DX.Group.2  
#>           0.65588            0.54469           -0.23110            0.04636  
#>         D.Group.3         DX.Group.3          modernity            egality  
#>           1.18174           -0.54620           -0.01999            0.15379  
#>             shame     income_current  Dummy.Covariate.1  Dummy.Covariate.2  
#>           0.13078            0.04156            0.57169            0.26068  
#> Dummy.Covariate.3  Dummy.Covariate.4  Dummy.Covariate.5  Dummy.Covariate.6  
#>           0.53110           -0.02034            0.30066            0.25942  
#> 
#> Degrees of Freedom: 87 Total (i.e. Null);  72 Residual
#> Null Deviance:       213.5 
#> Residual Deviance: 103   AIC: 297.6
#> 
#> $use.fe
#> [1] 0
#> 
#> $figure

#> 
#> attr(,"class")
#> [1] "interflex"

6.3.2 Generation (7 levels)

df <- data[, c("Tax Moral" = "tax_moral_N", cov_gen7)]

interflex(estimator = "raw",
          Y = "tax_moral_N", D = "gen7", X = "belonging", Z = cov_a[1:8], data = df,
          base="20-25", treat.type="discrete",
          weights = NULL, Ylabel = "Tax Moral",
          Dlabel = "Generation", Xlabel="Belonging",
          main = "Generation * Belonging Plot", cex.main = 1.2, pool=TRUE, 
          file = "out/interflex_raw_gen7.png")
#> Baseline group: treat = 20-25

End of Analysis

LS0tDQp0aXRsZTogIlRheCBNb3JhbCBpbiB0aGUgSGFyZWRpIENvbW11bml0eSAtIFYyIg0KYXV0aG9yOiAiUmFjaGVsaSBCcmVjaGVyIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB0cnVlICMgdGFibGUgb2YgY29udGVudCB0cnVlDQogICAgdG9jX2RlcHRoOiAzICAjIHVwdG8gdGhyZWUgZGVwdGhzIG9mIGhlYWRpbmdzIChzcGVjaWZpZWQgYnkgIywgIyMgYW5kICMjIykNCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUgICMjIGlmIHlvdSB3YW50IG51bWJlciBzZWN0aW9ucyBhdCBlYWNoIHRhYmxlIGhlYWRlcg0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KA0KICBmaWcud2lkdGggPSAxMCwNCiAgZmlnLmhlaWdodCA9NywNCiAgZWNobyA9IFRSVUUsIA0KICB3YXJuaW5nID0gRkFMU0UsDQogIG1lc3NhZ2UgPSBGQUxTRSwNCiAgY29sbGFwc2UgPSBUUlVFLA0KICBjb21tZW50ID0gIiM+Ig0KKSANCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCmxpYnJhcnkoQUVSKQ0KbGlicmFyeShicm9vbSkNCmxpYnJhcnkoa25pdHIpDQpsaWJyYXJ5KHN0YXJnYXplcikNCmxpYnJhcnkoc2pQbG90KQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShnZ3B1YnIpDQpsaWJyYXJ5KGd0KQ0KbGlicmFyeShvbHNycikNCmxpYnJhcnkoYXJtKQ0KbGlicmFyeShjb2VmcGxvdCkNCmxpYnJhcnkoZWZmZWN0cykNCmxpYnJhcnkodnRhYmxlKQ0KbGlicmFyeShmbGV4dGFibGUpDQpsaWJyYXJ5KERUKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KHJlc2hhcGUyKQ0KbGlicmFyeShjb3JycGxvdCkNCmxpYnJhcnkoaW50ZXJmbGV4KQ0KDQpzb3VyY2UoIndsX2dyYXBoLlIiKQ0Kc291cmNlKCJ3bF91dGlscy5SIikNCnNvdXJjZSgid2xfcmVnX3JlcG9ydC5SIikNCmBgYA0KDQpUaGlzIGRvY3VtZW50IHN1bW1hcml6ZXMgdGhlIHF1YW50aXRhdGl2ZSBhbmFseXNpcyBmb3IgQnJlY2hlciByZXNlYXJjaCAnVGF4IE1vcmFsIGluIHRoZSBIYXJlZGkgQ29tbXVuaXR5Jy4gVGhlIHJlc2VhcmNoIGlzIHVzZXMgZGF0YSBjb2xsZWN0ZWQgZnJvbSBhIHF1YXN0aW9uYWlyZSBkaXN0cmlidXRlZCBpbiBIYXJlZGkgcG9wdWxhdGlvbiAtIHNlZTogaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vZm9ybXMvZC8xS2RWaWQtRXhUODZ3anMtbnVDcmFrQmVjY3dOZ2FEQ1N1M25oUGpJSFlxWS9lZGl0P3RzPTY0OGIxMmI1IC4gDQoNClRoZSBhbmFseXNpcyB3YXMgZGV2ZWxvcGVkIHVzaW5nIFIgdmVyc2lvbiA0LjEuMyAoMjAyMi0wMy0xMCkgYW5kIFJTdHVkaW8gMjAyMi4wNy4yKzU3NiByZWxlYXNlIGZvciBXaW5kb3dzLg0KDQpUbyB2aWV3IHRoZSBjb2RlIC0gY2xpY2sgb24gdGhlICdDb2RlJyBidXR0b25zIG9uIHRoZSByaWdodCBzaWRlIG9mIHRoZSBwYWdlLiANCg0KIyBSZXNlYXJjaCBkYXRhDQoNCk5vdGU6DQpBbGwgb3JkZXJlZCBjYXRlZ29yaWNhbCB2YXJpYWJsZXMgd2l0aCA1IGxldmVscyBvciBtb3JlIGFyZSB0cmVhdGVkIGFzIGFzIG51bWVyaWMgZHVlIHRvIHRoZSAnc21hbGwgbnVtYmVyIG9mIHNhbXBsZXMnIGxpbWl0YXRpb24uDQoNCmBgYHtyfQ0KICByYXdfZGF0YT1yZWFkLmNzdigidGF4X2RhdGFfMTUwMjIzLmNzdiIsc2VwPSI7IikNCiAgICANCiAgbmFtZXMocmF3X2RhdGEpWzFdIDwtICJpZCIgI2ZpeCBuYW1lIG9mIGlkIGNvbHVtbiAtIG1vdmUgYmV0d2VlbiBwYyBhbmQgbWFjDQogIA0KICAgIyBEZXBlbmRlbnQgVmFyaWFibGVzDQogIHJhd19kYXRhJHRheF9tb3JhbF9hIDwtIGZhY3RvcihyYXdfZGF0YSR0YXhfbW9yYWxlX2EsIG9yZGVyZWQgPSBUUlVFKQ0KICByYXdfZGF0YSR0YXhfbW9yYWxfYiA8LSBmYWN0b3IocmF3X2RhdGEkdGF4X21vcmFsZV9iLCBvcmRlcmVkID0gVFJVRSkNCiAgcmF3X2RhdGEkdGF4X21vcmFsX04gPC0gcmF3X2RhdGEkdGF4X21vcmFsZQ0KICByYXdfZGF0YSR0YXhfbW9yYWwgPC0gZmFjdG9yKHJhd19kYXRhJHRheF9tb3JhbGUsIG9yZGVyZWQgPSBUUlVFKQ0KICANCiAgIyBOb21pbmFsIENvdmFyaWF0ZXMNCiAgcmF3X2RhdGEkdGF4X3JldHVybnMgPC0gZmFjdG9yKHJhd19kYXRhJHRheF9yZXR1cm5zKQ0KICBsZXZlbHMocmF3X2RhdGEkdGF4X3JldHVybnMpIDwtIGMoIk5vIiwgIkxvdyIsICJZZXMiLCAiSGlnaCIpDQogIHJhd19kYXRhJGNoYXJpdHkgPC0gZmFjdG9yKHJhd19kYXRhJGNoYXJpdHkpDQogIGxldmVscyhyYXdfZGF0YSRjaGFyaXR5KSA8LSBjKCJCZWxvdyAxMCUiLCAiQXJvdW5kIDEwJSIsICJBYm92ZSAxMCUiKQ0KICByYXdfZGF0YSR0YXhfc29jaWFsIDwtIGZhY3RvcihyYXdfZGF0YSR0YXhfc29jaWFsKQ0KICBsZXZlbHMocmF3X2RhdGEkdGF4X3NvY2lhbCkgPC0gYygiTm8iLCAiTG93IiwgIlllcyIpDQogIHJhd19kYXRhJGdlbmRlciA8LSBmYWN0b3IocmF3X2RhdGEkaXNNYWxlKQ0KICBsZXZlbHMocmF3X2RhdGEkZ2VuZGVyKSA8LSBjKCJGZW1hbGUiLCAiTWFsZSIpDQogIA0KICAjIENyZWF0ZSBHZW5lcmF0aW9uIGZhY3RvciBmaWVsZCAoMyBsZXZlbHMgYW5kIDUgbGV2ZWxzKQ0KDQogIHJhd19kYXRhJGdlbjNfTiA8LSBhcy5udW1lcmljKGN1dChyYXdfZGF0YSRhZ2UsIGJyZWFrcyA9IGMoMjAsIDMwLCA0MCwgNjcpKSkNCiAgcmF3X2RhdGEkZ2VuMyA8LSBmYWN0b3IoY3V0KHJhd19kYXRhJGFnZSwgYnJlYWtzID0gYygyMCwgMzAsIDQwLCA2NykpLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCIyMC0zMCIsICIzMC00MCIsICI0MC02NyIpKQ0KICByYXdfZGF0YSRnZW43IDwtIGZhY3RvcihjdXQocmF3X2RhdGEkYWdlLCBicmVha3MgPSBjKDIwLCAyNSwgMzAsIDM1LCA0MCwgNDUsIDUwLCA2NykpLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCIyMC0yNSIsICIyNS0zMCIsICIzMC0zNSIsICIzNS00MCIsICI0MC00NSIsICI0NS01MCIsICI1MC02NyIpKQ0KICAgIA0KDQogIA0KICBkZXBlbmRlbnRzIDwtIGMoIlRheCBNb3JhbCIgPSAidGF4X21vcmFsIiwgICAgICAgICAgICAgICAgICAgICNPcmRpbmFsICgxLTYpDQogICAgICAgICAgICAgICAgICAiVGF4IE1vcmFsIChOdW1lcmljKSIgPSAidGF4X21vcmFsX04iLCAgICAgICAgI051bWVyaWMgKDEtNikNCiAgICAgICAgICAgICAgICAgICJUYXggTW9yYWwgQSAoMTo0OjEpIiA9ICJ0YXhfbW9yYWxfYSIsICAgICAgICAjT3JkaW5hbCAoMS0zKQ0KICAgICAgICAgICAgICAgICAgIlRheCBNb3JhbCBCICgyOjI6MikiID0gInRheF9tb3JhbF9iIikgICAgICAgICNPcmRpbmFsICgxLTMpDQogIA0KICBjb3ZfZnVsbCA8LSBjKCJTdHJpY3RuZXNzIiA9ICJzdHJpY3RuZXNzIiwgICAgICAgICAgICAgICAgICAgICNOdW1lcmljICgxLTcpDQogICAgICAgICAgICAgICAgIk1vZGVybml0eSIgPSAibW9kZXJuaXR5IiwgICAgICAgICAgICAgICAgICAgICAgI051bWVyaWMgKDEtNykNCiAgICAgICAgICAgICAgICAiQmVsb25naW5nIiA9ICJiZWxvbmdpbmciLCAgICAgICAgICAgICAgICAgICAgICAjTnVtZXJpYyAoMS02KQ0KICAgICAgICAgICAgICAgICJFZ2FsaXR5IiA9ICJlZ2FsaXR5IiwgICAgICAgICAgICAgICAgICAgICAgICAgICNOdW1lcmljICgxLTYpDQogICAgICAgICAgICAgICAgIlNoYW1lIiA9ICJzaGFtZSIsICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI051bWVyaWMgKDEtNikNCiAgICAgICAgICAgICAgICAiVGF4IFJldHVybnMiID0gInRheF9yZXR1cm5zIiwgICAgICAgICAgICAgICAgICAjTm9taW5hbCAoMS00KQ0KICAgICAgICAgICAgICAgICJTb2NpYWwgU2FmZXR5IiA9ICJ0YXhfc29jaWFsIiwgICAgICAgICAgICAgICAgICMqTm9taW5hbCAoMS00KQ0KICAgICAgICAgICAgICAgICJJbmNvbWUgTGV2ZWwiID0gImluY29tZV9jdXJyZW50IiwgICAgICAgICAgICAgICNOdW1lcmljICgxLTUpDQogICAgICAgICAgICAgICAgIkdlbmRlciIgPSAiZ2VuZGVyIiwgICAgICAgICAgICAgICAgICAgICAgICAgICAgI0JpbmFyeSAgKDAvMSkNCiAgICAgICAgICAgICAgICAiQWdlIiA9ICJhZ2UiLCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjTnVtZXJpYyAoMC0xMjApDQogICAgICAgICAgICAgICAgIkdlbmVyYXRpb24oMykiID0gImdlbjMiLCAgICAgICAgICAgICAgICAgICAgICAgI09yZGluYWwgKDEtMykNCiAgICAgICAgICAgICAgICAiR2VuZXJhdGlvbigzKU4iID0gImdlbjNfTiIsICAgICAgICAgICAgICAgICAgICAjTnVtZXJpYyAoMS0zKQ0KICAgICAgICAgICAgICAgICJHZW5lcmF0aW9uKDcpIiA9ICJnZW43IiAgICAgICAgICAgICAgICAgICAgICAgICNPcmRpbmFsICgxLTcpDQogICkNCiAgDQogIGNvdl9mdWxsXzEgPC0gd2xfc2V0ZGlmZihjb3ZfZnVsbCwgYygiZ2VuMyIsICJnZW4zX04iLCAiZ2VuNyIpKQ0KICANCiAgIyByZW1vdmUgZmFjdG9ycyBmcm9tIFZJRiBjYWxjdWxhdGlvbg0KICBjb3ZfdmlmIDwtIHdsX3NldGRpZmYoY292X2Z1bGxfMSwgYygidGF4X3JldHVybnMiLCAiY2hhcml0eSIsICJ0YXhfc29jaWFsIikpDQogIA0KICAjIEhhbmRsZSBjb2xpbmVhcml0eSBiZXR3ZWVuIFN0cmljdG5lc3MgYW5kIE1vZGVybml0eQ0KICBjb3ZfYSA8LSB3bF9zZXRkaWZmKGNvdl9mdWxsXzEsIGMoInN0cmljdG5lc3MiKSkNCiAgY292X2IgPC0gd2xfc2V0ZGlmZihjb3ZfZnVsbF8xLCBjKCJtb2Rlcm5pdHkiKSkNCiAgDQogIGRhdGEgPC0gcmF3X2RhdGFbLCBjKGRlcGVuZGVudHMsIGNvdl9mdWxsKV0gIA0KICBkYXRhIDwtIGRhdGFbY29tcGxldGUuY2FzZXMoZGF0YSksIF0NCmBgYA0KICANCiMjIERlc2NyaXB0aXZlIHRhYmxlcw0KICANCmBgYHtyfQ0KICBkIDwtIHdsX2Rlc2NyaXB0aXZlKGRhdGEsIHZhcnM9YyhkZXBlbmRlbnRzLCBjb3ZfZnVsbF8xKSwNCiAgICAgICAgICAgICAgICAgICAgICBsYWJzPWMobmFtZXMoZGVwZW5kZW50cyksIG5hbWVzKGNvdl9mdWxsXzEpKSwgZGlzcGxheT1GQUxTRSkNCiAgc2F2ZV9hc19odG1sKGQsIHBhdGggPSAib3V0L2Rlc2NyaXB0aXZlLmh0bWwiKQ0KICBkDQpgYGANCg0KIyMgQ29ycmVsYXRpb24gTWF0cml4DQoNCmBgYHtyfQ0KICBuZGF0YSA8LSBkYXRhWywgYyhkZXBlbmRlbnRzLCBjb3ZfZnVsbF8xKV0gDQogIG5kYXRhIDwtIG5kYXRhWywgc2FwcGx5KG5kYXRhLCBpcy5udW1lcmljKV0gI2dldCBvbmx5IHRoZSBudW1lcmljIGRhdGENCiAgY2RhdGEgPC0gY29yKG5kYXRhKQ0KICByb3duYW1lcyhjZGF0YSkgPC0gY29sbmFtZXMoY2RhdGEpIDwtIGMobmFtZXMoZGVwZW5kZW50c1syXSksIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmFtZXMoY292X2Z1bGxbMTo1XSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lcyhjb3ZfZnVsbFs4XSksIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmFtZXMoY292X2Z1bGxbMTBdKSkNCiAgcG5nKCJvdXQvY29ycnBsb3QucG5nIiwgd2lkdGggPSAxNjAwLCBoZWlnaHQgPSAxNjAwLCByZXMgPSAzMDApDQogIGNvcnJwbG90Ojpjb3JycGxvdChjZGF0YSwgdHlwZT0idXBwZXIiLCBhZGRDb2VmLmNvbCA9ICdibGFjaycsIHRsLnBvcz0ibHQiLCB0bC5jZXggPSAwLjgsIGRpYWc9RkFMU0UpDQogIGRldi5vZmYoKQ0KICAgIA0KICBjb3JycGxvdDo6Y29ycnBsb3QoY2RhdGEsIHR5cGU9InVwcGVyIiwgYWRkQ29lZi5jb2wgPSAnYmxhY2snLCB0bC5wb3M9Imx0IiwgZGlhZz1GQUxTRSkNCiAgDQogICMgQ3JlYXRlIGEgZ3JheXNjYWxlIGNvbG9yIHBhbGV0dGUNCiAgZ3JheXNjYWxlX3BhbGV0dGUgPC0gDQogICAgY29sb3JSYW1wUGFsZXR0ZShjKCIjRkZGRkZGIiwgIiNGQUZBRkEiLCAiI0Y1RjVGNSIsICIjRUVFRUVFIiwgIiNFMEUwRTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgIiNEOUQ5RDkiLCAiI0NGQ0ZDRiIsICIjQkZCRkJGIiwgIiM5RTlFOUUiLCAiIzc1NzU3NSIpKSgxMCkNCiAgDQogIHBuZygib3V0L2NvcnJwbG90X2J3LnBuZyIsIHdpZHRoID0gMTYwMCwgaGVpZ2h0ID0gMTYwMCwgcmVzID0gMzAwKQ0KICBjb3JycGxvdDo6Y29ycnBsb3QoY2RhdGEsIHR5cGU9InVwcGVyIiwgYWRkQ29lZi5jb2wgPSAnYmxhY2snLCB0bC5wb3M9Imx0IiwgZGlhZz1GQUxTRSwgDQogICAgICAgICAgICAgICAgICAgICBjb2wgPSBncmF5c2NhbGVfcGFsZXR0ZSwgdGwuY29sID0gImJsYWNrIikNCiAgZGV2Lm9mZigpDQogIA0KICBjb3JycGxvdDo6Y29ycnBsb3QoY2RhdGEsIHR5cGU9InVwcGVyIiwgYWRkQ29lZi5jb2wgPSAnYmxhY2snLCB0bC5wb3M9Imx0IiwgZGlhZz1GQUxTRSwgDQogICAgICAgICAgICAgICAgICAgICBjb2wgPSBncmF5c2NhbGVfcGFsZXR0ZSwgdGwuY29sID0gImJsYWNrIikNCmBgYA0KDQojIyBEZXNjcmlwdGl2ZSBQbG90cw0KDQojIyMgVGF4IE1vcmFsICYgU3RyaWN0bmVzcw0KDQpgYGB7ciwgZmlnLmhlaWdodD0zfQ0Kd2xfcGxvdF94eSAoZGF0YSwgY292X2Z1bGxbMV0sIGRlcGVuZGVudHNbMl0pDQpnZ3NhdmUoIm91dC90YXhfbW9yYWxfYW5kX3N0cmljdG5lc3MucG5nIiwgaGVpZ2h0PTMpDQpgYGANCg0KIyMjIFRheCBNb3JhbCAmIE1vZGVybml0eQ0KDQpgYGAge3IsIGZpZy5oZWlnaHQ9M30NCndsX3Bsb3RfeHkgKGRhdGEsIGNvdl9mdWxsWzJdLCBkZXBlbmRlbnRzWzJdKQ0KZ2dzYXZlKCJvdXQvdGF4X21vcmFsX2FuZF9tb2Rlcm5pdHkucG5nIiwgaGVpZ2h0PTMpDQpgYGANCg0KIyMjIFRheCBNb3JhbCAmIEJlbG9uZ2luZw0KDQpgYGAge3IsIGZpZy5oZWlnaHQ9M30gICAgICANCndsX3Bsb3RfeHkgKGRhdGEsIGNvdl9mdWxsWzNdLCBkZXBlbmRlbnRzWzJdKQ0KZ2dzYXZlKCJvdXQvdGF4X21vcmFsX2FuZF9iZWxvbmdpbmdzLnBuZyIsIGhlaWdodD0zKQ0KYGBgDQoNCiMjIyBUYXggTW9yYWwgJiBFZ2FsaXR5DQogICAgIA0KYGBgIHtyLCBmaWcuaGVpZ2h0PTN9DQp3bF9wbG90X3h5IChkYXRhLCBjb3ZfZnVsbFs0XSwgZGVwZW5kZW50c1syXSkNCmdnc2F2ZSgib3V0L3RheF9tb3JhbF9hbmRfZWdhbGl0eS5wbmciLCBoZWlnaHQ9MykNCmBgYA0KDQojIyMgVGF4IE1vcmFsICYgU2hhbWUNCiAgICAgDQpgYGAge3IsIGZpZy5oZWlnaHQ9M30NCndsX3Bsb3RfeHkgKGRhdGEsIGNvdl9mdWxsWzVdLCBkZXBlbmRlbnRzWzJdKQ0KZ2dzYXZlKCJvdXQvdGF4X21vcmFsX2FuZF9zaGFtZS5wbmciLCBoZWlnaHQ9MykNCmBgYA0KDQojIyBWSUYgKE11bHRpLUNvbGxpbmVhcml0eSkgVGVzdA0KDQpUaGUgYmVsb3cgVklGIHRlc3QgdGFibGUgaW5kaWNhdGVzIG11bHRpLWNvbGluZWFyaXR5IGJldHdlZW4gc3RyaWN0bmVzcyBhbmQgbW9kZXJuaXR5LiANCiAgDQpgYGB7cn0gIA0KICBtdmlmIDwtIG9sc19yZWdyZXNzaW9uKGRhdGEsICJ0YXhfbW9yYWxfTiIsIGNvdl92aWYpDQogIHZpZl90YWJsZSAobXZpZiwgbGFicz1uYW1lcyhjb3ZfdmlmKSkNCmBgYA0KDQpUaGUgKipjb3IqKiBmdW5jdGlvbiBjYWxjdWxhdGVzIHRoZSBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIFRoZSBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCBtZWFzdXJlcyB0aGUgc3RyZW5ndGggYW5kIGRpcmVjdGlvbiBvZiB0aGUgbGluZWFyIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIEEgdmFsdWUgb2YgMSBpbmRpY2F0ZXMgYSBwZXJmZWN0IHBvc2l0aXZlIGxpbmVhciByZWxhdGlvbnNoaXAsIC0xIGluZGljYXRlcyBhIHBlcmZlY3QgbmVnYXRpdmUgbGluZWFyIHJlbGF0aW9uc2hpcCwgYW5kIDAgaW5kaWNhdGVzIG5vIGxpbmVhciByZWxhdGlvbnNoaXAuIEFzIGNhbiBiZSBzZWVuIGZyb20gdGhlIGJld2xvdyByZXN1bHRzIHdlIGhhdmUgfjcwJSBjb3JyZWxhdGlvbiBpbiB0aGUgc2FtZSBkaXJlY3Rpb24gYmV0d2VlbiB0aGUgdHdvIHZhcmlhYmxlcy4gDQoNCmBgYHtyfQ0KICAjU3RyaWN0bmVzcyBhbmQgTW9kZXJuaXR5IGNvcnJlbGF0aW9uDQogIGNvcihkYXRhJHN0cmljdG5lc3MsIGRhdGEkbW9kZXJuaXR5KQ0KYGBgDQoNCiMgUmVncmVzc2lvbiBtb2RlbHMNCg0KVGhlIGRlcGVuZGVudCB2YXJpYWJsZSwgVGF4IE1vcmFsLCBpcyBhbiBvcmRlcmVkIGNhdGVnb3JpY2FsIHZhcmlhYmxlIHdpdGggNiBsZXZlbHMuIFRvIGFuYWx5emUgdGhlIGVmZmVjdHMgb2YgdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlcyBhbmQgY29udHJvbCBmb3IgYWRkaXRpb25hbCBjb3ZhcmlhdGVzIHdlIHVzZSBQcm9wb3J0aW9uYWwgb2RkcyBsb2dpc3RpYyByZWdyZXNzaW9uIChQT0xSKS4gV2UgYWxzbyB1c2UgYXMgYSByZWZlcmVuY2UgT3JkaW5hcnkgTGVhc3QgU3F1YXJlcyAoT0xTKSByZWdyZXNzaW9uLiANCkluIGJvdGggdHlwZXMgb2YgcmVncmVzc2lvbnMgd2UgY2FsY3VsYXRlIHR3byBtb2RlbHM6IG9uZSB3aXRoIHRoZSBpbmRlcGVuZGVudCB2YXJpYWJsZSBTdHJpY3RuZXNzIGFuZCB0aGUgb3RoZXIgd2l0aCBNb2Rlcm5pdHkgKHdlIGNhbiBub3QgdXNlIGJvdGggZHVlIHRvIG11bHRpLWNvbGxpbmVhcml0eSkuICANCg0KYGBge3J9DQogICMgTWFpbiBSZWdyZXNzaW9uIE1vZGVscw0KICBtMSA8LSBwb2xyX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbCIsIGNvdl9hKQ0KICBtMiA8LSBwb2xyX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbCIsIGNvdl9iKQ0KICANCiAgbTMgPC0gb2xzX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbF9OIiwgY292X2EpDQogIG00IDwtIG9sc19yZWdyZXNzaW9uKGRhdGEsICJ0YXhfbW9yYWxfTiIsIGNvdl9iKQ0KICANCiAgbWFpbl9tb2RlbHMgPC0gbGlzdChtMSxtMixtMyxtNCkNCiAgDQogICMgUmVncmVzc2lvbiBUYWJsZQ0KICBjb3ZfbGFiZWxzX2FiIDwtIGMobmFtZXMoY292X2FbMV0pLA0KICAgICAgICAgICAgICAgICAgbmFtZXMoY292X2JbMV0pLA0KICAgICAgICAgICAgICAgICAgbmFtZXMoY292X2FbMl0pLA0KICAgICAgICAgICAgICAgICAgbmFtZXMoY292X2FbM10pLCANCiAgICAgICAgICAgICAgICAgIG5hbWVzKGNvdl9hWzRdKSwNCiAgICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfYVs1XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9hWzVdXSlbMl0sIl0iKSwNCiAgICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfYVs1XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9hWzVdXSlbM10sIl0iKSwNCiAgICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfYVs1XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9hWzVdXSlbNF0sIl0iKSwNCiAgICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfYVs2XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9hWzddXSlbMl0sIl0iKSwNCiAgICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfYVs2XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9hWzddXSlbM10sIl0iKSwNCiAgICAgICAgICAgICAgICAgIG5hbWVzKGNvdl9hWzddKSwNCiAgICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfYVs4XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9hWzldXSlbMl0sIl0iKSwNCiAgICAgICAgICAgICAgICAgIG5hbWVzKGNvdl9hWzldKQ0KICAgICAgICAgICAgICAgICAgKQ0KICB3bF9zdGFyZ2F6ZXIgKG1haW5fbW9kZWxzLCAidGF4X21vcmFsX3JlZyIsIGNvdl9sYWJlbHMgPSBjb3ZfbGFiZWxzX2FiLCBjb2VmX2V4cCA9IFRSVUUpIA0KYGBgDQpgYGB7ciBlY2hvID0gRkFMU0V9DQogIHdsX3N0YXJnYXplciAobWFpbl9tb2RlbHMsICJ0YXhfbW9yYWxfcmVnIiwgY292X2xhYmVscyA9IGNvdl9sYWJlbHNfYWIsIGNvZWZfZXhwID0gVFJVRSkgDQpgYGANCg0KIyMgSW50ZXJwcmV0YXRpb25zDQoNCiMjIyBNb2RlbCAxIEludGVycHJldGF0aW9uDQoNCmBgYHtyIGVjaG89RkFMU0V9DQogIHdsX3JlZ19pbnRlcnByZXQobTEsIGRmPWRhdGEsIHlfbmFtZT1kZXBlbmRlbnRzWzFdLCB4X2xpc3Q9Y292X2EsIHJlZ190eXBlPSJQT0xSIikNCmBgYA0KDQojIyMgTW9kZWwgMiBJbnRlcnByZXRhdGlvbg0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0KICB3bF9yZWdfaW50ZXJwcmV0KG0yLCBkZj1kYXRhLCB5X25hbWU9ZGVwZW5kZW50c1sxXSwgeF9saXN0PWNvdl9iLCByZWdfdHlwZT0iUE9MUiIpDQpgYGANCg0KIyMjIE1vZGVsIDMgSW50ZXJwcmV0YXRpb24NCg0KYGBge3IgZWNobz1GQUxTRX0NCiAgd2xfcmVnX2ludGVycHJldChtMywgZGY9ZGF0YSwgeV9uYW1lPWRlcGVuZGVudHNbMl0sIHhfbGlzdD1jb3ZfYSwgcmVnX3R5cGU9Ik9MUyIpDQpgYGANCg0KIyMjIE1vZGVsIDQgSU50ZXJwcmV0YXRpb24NCg0KYGBge3IgZWNobz1GQUxTRX0NCiAgd2xfcmVnX2ludGVycHJldChtNCwgZGY9ZGF0YSwgeV9uYW1lPWRlcGVuZGVudHNbMl0sIHhfbGlzdD1jb3ZfYiwgcmVnX3R5cGU9Ik9MUyIpDQpgYGANCg0KIyMgQ29lZmZpY2lhbnQgcGxvdHMNCg0KVGhlIHN0YW5kYXJkaXplZCBjb2VmZmljaWVudCBwbG90cyBlbmFibGUgdG8gY29tcGFyZSB0aGUgbWFnbml0dWRlIG9mIHRoZSBlZmZlY3RzLiBCZWxvbmdpbmcgaGFzIHRoZSBoaWdoZXN0IHBvc2l0aXZlIHN0YXRpc3RpY2FsbHkgc2lnbmlmaWNhbnQgbWFnbml0dWRlIGFuZCBhZ2UgaGFzIHRoZSBoaWdoZXN0IG5lZ2F0aXZlIHN0YXRpc3RpY2FsbHkgc2lnbmlmaWNhbnQgbWFnbml0dWRlLiANCg0KTm90ZTogVGhlIGludGVyY2VwdHMgYXQgdGhlIHRvcCBvZiB0aGUgdGFibGVzIHJlcHJlc2VudCB0aGUgcHJvYmFiaWxpdHkgYm91bmRhcmllcyBiZXR3ZWVuIFRheCBNb3JhbCBsZXZlbHMuIA0KDQojIyMgTW9kZWwgMSAtIFBPTFIsIFN0cmljdG5lc3MNCg0KYGBge3J9DQogIGNvdl9sYWJlbHNfYSA8LSBjb3ZfbGFiZWxzX2FiW2MoMSwzOmxlbmd0aChjb3ZfbGFiZWxzX2FiKSldDQogIGNvdl9sYWJlbHNfYiA8LSBjb3ZfbGFiZWxzX2FiWzI6bGVuZ3RoKGNvdl9sYWJlbHNfYWIpXQ0KICBjb3ZfbGFiZWxzX2kgPSBjKCJJbnRlcmNlcHQgNXw2IiwiSW50ZXJjZXB0IDR8NSIsIkludGVyY2VwdCAzfDQiLCJJbnRlcmNlcHQgMnwzIiwiSW50ZXJjZXB0IDF8MiIpDQogIA0KICBwbmcoIm91dC9tb2RlbDEucG5nIiwgd2lkdGggPSAxMjAwLCBoZWlnaHQgPSA4MDApDQogIGFybTo6Y29lZnBsb3QobTEsIG1haW49IiIsDQogICAgICAgICAgICAgICAgdmFybmFtZXMgPSBjKGNvdl9sYWJlbHNfYSwgcmV2KGNvdl9sYWJlbHNfaSkpLCANCiAgICAgICAgICAgICAgICBtYXIgPSBjKDUsIDEyLCA0LCAyKSArIDAuMSwNCiAgICAgICAgICAgICAgICBjZXgucHRzID0gMS4yLCBwY2gucHRzID0gMTUsIGNleC52YXIgPSAxLikNCiAgZGV2Lm9mZigpDQogIGFybTo6Y29lZnBsb3QobTEsIG1haW49IiIsDQogICAgICAgICAgICAgICAgdmFybmFtZXMgPSBjKGNvdl9sYWJlbHNfYSwgcmV2KGNvdl9sYWJlbHNfaSkpLCANCiAgICAgICAgICAgICAgICBtYXIgPSBjKDUsIDEyLCA0LCAyKSArIDAuMSwNCiAgICAgICAgICAgICAgICBjZXgucHRzID0gMS4yLCBwY2gucHRzID0gMTUsIGNleC52YXIgPSAxLikNCmBgYA0KDQojIyMgTW9kZWwgMiAtIFBPTFIsIE1vZGVybml0eQ0KDQpgYGB7cn0NCiAgcG5nKCJvdXQvbW9kZWwyLnBuZyIsIHdpZHRoID0gMTIwMCwgaGVpZ2h0ID0gODAwKQ0KICBhcm06OmNvZWZwbG90KG0yLCBtYWluPSIiLA0KICAgICAgICAgICAgICAgIHZhcm5hbWVzID0gYyhjb3ZfbGFiZWxzX2EsIHJldihjb3ZfbGFiZWxzX2kpKSwgDQogICAgICAgICAgICAgICAgbWFyID0gYyg1LCAxMiwgNCwgMikgKyAwLjEsDQogICAgICAgICAgICAgICAgY2V4LnB0cyA9IDEuMiwgcGNoLnB0cyA9IDE1LCBjZXgudmFyID0gMS4pDQogIGRldi5vZmYoKQ0KICBhcm06OmNvZWZwbG90KG0yLCBtYWluPSIiLA0KICAgICAgICAgICAgICAgIHZhcm5hbWVzID0gYyhjb3ZfbGFiZWxzX2EsIHJldihjb3ZfbGFiZWxzX2kpKSwgDQogICAgICAgICAgICAgICAgbWFyID0gYyg1LCAxMiwgNCwgMikgKyAwLjEsDQogICAgICAgICAgICAgICAgY2V4LnB0cyA9IDEuMiwgcGNoLnB0cyA9IDE1LCBjZXgudmFyID0gMS4pDQpgYGANCg0KIyBFZmZlY3QgQW5hbHlzaXMNCg0KTWFrZSBzdXJlIHRvIGluY2x1ZGUgdGhlIGRhdGEgaW4gdGhlIG1vZGVsIHNvIEVmZmVjdCB3aWxsIHdvcmsNCg0KYGBge3J9DQptMSRjYWxsJGRhdGEgPC0gZGF0YQ0KYGBgDQoNCiMjIEJlbG9uZ2luZyBlZmZlY3Qgb24gVGF4IE1vcmFsIHByb2JhYmlsaXRpZXMNCg0KYGBge3J9DQogIHBuZygib3V0L2FnZV9lZmZlY3QucG5nIiwgd2lkdGggPSAxMjAwLCBoZWlnaHQgPSAxMjAwKQ0KICBwbG90KEVmZmVjdChmb2NhbC5wcmVkaWN0b3JzID0gYygiYmVsb25naW5nIiksIG0xKSwgcnVnID0gRkFMU0UsIGNleD0zLjApDQogIGRldi5vZmYoKQ0KICBwbG90KEVmZmVjdChmb2NhbC5wcmVkaWN0b3JzID0gYygiYmVsb25naW5nIiksIG0xKSwgcnVnID0gRkFMU0UsIGNleD0zLjApDQpgYGANCg0KIyMgQWdlIGVmZmVjdCBvbiBUYXggTW9yYWwgcHJvYmFiaWxpdGllcw0KDQpgYGB7cn0NCiAgcG5nKCJvdXQvYWdlX2VmZmVjdC5wbmciLCB3aWR0aCA9IDEyMDAsIGhlaWdodCA9IDEyMDApDQogIHBsb3QoRWZmZWN0KGZvY2FsLnByZWRpY3RvcnMgPSBjKCJhZ2UiKSwgbTEpLCBydWcgPSBGQUxTRSwgY2V4PTMuMCkNCiAgZGV2Lm9mZigpDQogIHBsb3QoRWZmZWN0KGZvY2FsLnByZWRpY3RvcnMgPSBjKCJhZ2UiKSwgbTEpLCBydWcgPSBGQUxTRSwgY2V4PTMuMCkNCmBgYA0KDQojIyBFZ2FsaXR5IGVmZmVjdCBvbiBUYXggTW9yYWwgcHJvYmFiaWxpdGllcw0KDQpgYGB7cn0NCiAgcG5nKCJvdXQvZWdhbGl0eV9lZmZlY3QucG5nIiwgd2lkdGggPSAxMjAwLCBoZWlnaHQgPSAxMjAwKQ0KICBwbG90KEVmZmVjdChmb2NhbC5wcmVkaWN0b3JzID0gYygiZWdhbGl0eSIpLCBtMSksIHJ1ZyA9IEZBTFNFLCBjZXg9My4wKQ0KICBkZXYub2ZmKCkNCiAgcGxvdChFZmZlY3QoZm9jYWwucHJlZGljdG9ycyA9IGMoImVnYWxpdHkiKSwgbTEpLCBydWcgPSBGQUxTRSwgY2V4PTMuMCkNCmBgYA0KDQojIyBHZW5kZXIgZWZmZWN0IG9uIFRheCBNb3JhbCBwcm9iYWJpbGl0aWVzDQoNCmBgYHtyfQ0KICBwbmcoIm91dC9nZW5kZXJfZWZmZWN0LnBuZyIsIHdpZHRoID0gMTIwMCwgaGVpZ2h0ID0gMTIwMCkNCiAgcGxvdChFZmZlY3QoZm9jYWwucHJlZGljdG9ycyA9IGMoImdlbmRlciIpLCBtMSksIHJ1ZyA9IEZBTFNFLCBjZXg9My4wKQ0KICBkZXYub2ZmKCkNCiAgcGxvdChFZmZlY3QoZm9jYWwucHJlZGljdG9ycyA9IGMoImdlbmRlciIpLCBtMSksIHJ1ZyA9IEZBTFNFLCBjZXg9My4wKQ0KYGBgDQoNCiMjIEluY29tZSBlZmZlY3Qgb20gb24gVGF4IE1vcmFsIHByb2JhYmlsaXRpZXMNCg0KYGBge3J9ICANCiAgcG5nKCJvdXQvaW5jb21lX2VmZmVjdC5wbmciLCB3aWR0aCA9IDEyMDAsIGhlaWdodCA9IDEyMDApDQogIHBsb3QoRWZmZWN0KGZvY2FsLnByZWRpY3RvcnMgPSBjKCJpbmNvbWVfY3VycmVudCIpLCBtMSksIHJ1ZyA9IEZBTFNFLCBjZXg9My4wKQ0KICBkZXYub2ZmKCkNCiAgcGxvdChFZmZlY3QoZm9jYWwucHJlZGljdG9ycyA9IGMoImluY29tZV9jdXJyZW50IiksIG0xKSwgcnVnID0gRkFMU0UsIGNleD0zLjApDQpgYGANCg0KIyBJbnRlcmFjdGlvbnMNCg0KQXMgYmVsb25naW5nIHNlZW1zIHRvIGJlIHRoZSBoaWdoZXN0IG1hZ25pdHVkZSBlZmZlY3QsIHdlIHRlc3QgaXQncyBpbnRlcmFjdGlvbnMgd2l0aCBBZ2UsIEdlbmRlciBhbmQgSW5jb21lLg0KDQpgYGB7cn0NCiAgY292X2ludF9hIDwtIGMoY292X2EsICJiZWxvbmdpbmcqYWdlIikNCiAgbWlfYWdlIDwtIHBvbHJfcmVncmVzc2lvbihkYXRhLCAidGF4X21vcmFsIiwgY292X2ludF9hKQ0KICBjb3ZfaW50X2EgPC0gYyhjb3ZfYSwgImJlbG9uZ2luZyplZ2FsaXR5IikNCiAgbWlfZWdhbGl0eTwtIHBvbHJfcmVncmVzc2lvbihkYXRhLCAidGF4X21vcmFsIiwgY292X2ludF9hKQ0KICBjb3ZfaW50X2EgPC0gYyhjb3ZfYSwgImVnYWxpdHkqYWdlIikNCiAgbWlfYWdlX2VnYWxpdHk8LSBwb2xyX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbCIsIGNvdl9pbnRfYSkNCiAgY292X2ludF9hIDwtIGMoY292X2EsICJiZWxvbmdpbmcqZ2VuZGVyIikNCiAgbWlfZ2VuZGVyIDwtIHBvbHJfcmVncmVzc2lvbihkYXRhLCAidGF4X21vcmFsIiwgY292X2ludF9hKQ0KICBjb3ZfaW50X2EgPC0gYyhjb3ZfYSwgImJlbG9uZ2luZyppbmNvbWVfY3VycmVudCIpDQogIG1pX2luY29tZSA8LSBwb2xyX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbCIsIGNvdl9pbnRfYSkNCiAgDQogIGludF9tb2RlbHMgPC0gbGlzdChtaV9hZ2UsIG1pX2VnYWxpdHksIG1pX2FnZV9lZ2FsaXR5KQ0KICBuYW1lcyhpbnRfbW9kZWxzKSA8LSBjKCJCZWxvbmdpbmcqQWdlIiwgIkJlbG9uZ2luZypFZ2FsaXR5IiwgIkVnYWxpdHkqQWdlIikNCiAgDQogIGNvdl9sYWJlbHNfaWEgPC0gYyhjb3ZfbGFiZWxzX2EsIG5hbWVzKGludF9tb2RlbHMpKQ0KICANCiAgd2xfc3RhcmdhemVyIChpbnRfbW9kZWxzLCAiaW50ZXJhY3Rpb25fcmVnIiwgY292X2xhYmVscz1jb3ZfbGFiZWxzX2lhLCBjb2VmX2V4cD1UUlVFKQ0KYGBgDQpgYGB7ciBlY2hvID0gRkFMU0V9DQogIHdsX3N0YXJnYXplciAoaW50X21vZGVscywgImludGVyYWN0aW9uX3JlZyIsIGNvdl9sYWJlbHM9Y292X2xhYmVsc19pYSwgY29lZl9leHA9VFJVRSkNCmBgYA0KDQojIyBJbnRlcmFjdGlvbiBQbG90cw0KDQojIyMgQWdlICYgQmVsb25naW5nIEludGVyYWN0aW9uIFBsb3QNCg0KYGBge3J9IA0KICBzalBsb3Q6OnBsb3RfbW9kZWwobWlfYWdlLCB0eXBlID0gImludCIpDQogIGdnc2F2ZSgib3V0L2FnZV9pbnRlcmFjdGlvbi5wbmciKQ0KYGBgDQoNCiMjIyBlZ2FsaXR5ICYgQmVsb25naW5nIEludGVyYWN0aW9uIFBsb3QNCg0KYGBge3J9IA0KICBzalBsb3Q6OnBsb3RfbW9kZWwobWlfZWdhbGl0eSwgdHlwZSA9ICJpbnQiKQ0KICBnZ3NhdmUoIm91dC9lZ2FsaXR5X2ludGVyYWN0aW9uLnBuZyIpDQpgYGANCg0KIyMjIGVnYWxpdHkgJiBhZ2UgSW50ZXJhY3Rpb24gUGxvdA0KDQpgYGB7cn0gDQogIHNqUGxvdDo6cGxvdF9tb2RlbChtaV9hZ2VfZWdhbGl0eSwgdHlwZSA9ICJpbnQiKQ0KICBnZ3NhdmUoIm91dC9lZ2FsaXR5X2ludGVyYWN0aW9uLnBuZyIpDQpgYGANCg0KIyMjIEdlbmRlciAmIEJlbG9uZ2luZyBJbnRlcmFjdGlvbiBQbG90DQoNCmBgYHtyfSANCiAgc2pQbG90OjpwbG90X21vZGVsKG1pX2dlbmRlciwgdHlwZSA9ICJpbnQiKQ0KICBnZ3NhdmUoIm91dC9nZW5kZXJfaW50ZXJhY3Rpb24ucG5nIikNCmBgYA0KDQojIyMgSW5jb21lICYgQmVsb25naW5nIEludGVyYWN0aW9uIFBsb3QNCg0KYGBge3J9IA0KICBzalBsb3Q6OnBsb3RfbW9kZWwobWlfaW5jb21lLCB0eXBlID0gImludCIpDQogIGdnc2F2ZSgib3V0L2luY29tZV9pbnRlcmFjdGlvbi5wbmciKQ0KYGBgDQoNCiMgUm9idXN0bmVzcw0KDQpXZSB1c2UgdHdvIGRpZmZlcmVudCBjb2Rpbmcgc2NoZW1lcyB0byB0ZXN0IHRoZSByb2J1c3RuZXNzIG9mIG91ciByZXN1bHRzLiBUaGUgZmlyc3Qgc2NoZW1lICgxOjQ6MSkgZW1waGFzaXplIHRoZSBlZGdlcyBvZiBUYXggTW9yYWwgc2NhbGUsIHJlLWNvZGluZyBsZXZlbCAxIGFzIDEsIGxldmVscyAyLTUgYXMgMiwgYW5kIGxldmVsIDYgYXMgMy4gVGhlIHNlY29uZCBzY2hlbWUgKDI6MjoyKSByZWR1Y2VzIHRoZSBncmFudWxhcml0eSBvZiBUYXggTW9yYWwgbGV2ZWxzLCByZS1jb2RpbmcgbGV2ZWxzIDEtMiBhcyAxLCBsZXZlbHMgMy00IGFzIDIsIGFuZCBsZXZlbHMgNS02IGFzIDMuIA0KDQpgYGB7cn0NCiAjIFJvYnVzdG5lc3MgTW9kZWxzIHdpdGggZGlmZmVyZW50IHRheF9tb3JhbCBjb2RpbmcNCiAgbTFfcmEgPC0gcG9scl9yZWdyZXNzaW9uKGRhdGEsICJ0YXhfbW9yYWxfYSIsIGNvdl9hKQ0KICBtMl9yYSA8LSBwb2xyX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbF9hIiwgY292X2IpDQogIA0KICBtM19yYiA8LSBwb2xyX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbF9iIiwgY292X2EpDQogIG00X3JiIDwtIHBvbHJfcmVncmVzc2lvbihkYXRhLCAidGF4X21vcmFsX2IiLCBjb3ZfYikNCiAgDQogIGNvZGluZ19tb2RlbHMgPC0gbGlzdChtMV9yYSwgbTJfcmEsIG0zX3JiLCBtNF9yYikNCiAgbmFtZXMoY29kaW5nX21vZGVscykgPC0gYygiMTo0OjEgQ29kaW5nIiwgIjE6NDoxIENvZGluZyIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiMjoyOjIgQ29kaW5nIiwgIjI6MjoyIENvZGluZyIpDQogIHdsX3N0YXJnYXplciAoY29kaW5nX21vZGVscywgImNvZGluZyIsIGNvdl9sYWJlbHMgPSBjb3ZfbGFiZWxzX2FiLCBjb2VmX2V4cCA9IFRSVUUpDQpgYGANCmBgYHtyIGVjaG8gPSBGQUxTRX0gIA0KICB3bF9zdGFyZ2F6ZXIgKGNvZGluZ19tb2RlbHMsICJjb2RpbmciLCBjb3ZfbGFiZWxzID0gY292X2xhYmVsc19hYiwgY29lZl9leHAgPSBUUlVFKSANCmBgYA0KDQojIyBJbnRlcnByZXRhdGlvbiAgDQoNCiMjIyAnMTo0OjEgQ29kaW5nJyAtIG1vZGVsIDENCg0KYGBge3IgZWNobz1GQUxTRX0NCiBjYXQod2xfcmVnX2ludGVycHJldChtMV9yYSwgZGY9ZGF0YSwgeV9uYW1lPWRlcGVuZGVudHNbM10sIHhfbGlzdD1jb3ZfYSwgcmVnX3R5cGU9IlBPTFIiKSkNCmBgYA0KDQoNCiMjIyAnMTo0OjEgQ29kaW5nJyAtIG1vZGVsIDINCg0KYGBge3IgZWNobz1GQUxTRX0NCiBjYXQod2xfcmVnX2ludGVycHJldChtMl9yYSwgZGY9ZGF0YSwgeV9uYW1lPWRlcGVuZGVudHNbM10sIHhfbGlzdD1jb3ZfYiwgcmVnX3R5cGU9IlBPTFIiKSkNCmBgYA0KDQojIyMgJzI6MjoyIENvZGluZycgLSBtb2RlbCAzDQoNCmBgYHtyIGVjaG89RkFMU0V9DQogY2F0KHdsX3JlZ19pbnRlcnByZXQobTNfcmIsIGRmPWRhdGEsIHlfbmFtZT1kZXBlbmRlbnRzWzRdLCB4X2xpc3Q9Y292X2EsIHJlZ190eXBlPSJQT0xSIikpDQpgYGANCg0KDQojIyMgJzI6MjoyIENvZGluZycgLSBtb2RlbCA0DQoNCmBgYHtyIGVjaG89RkFMU0V9DQogY2F0KHdsX3JlZ19pbnRlcnByZXQobTRfcmIsIGRmPWRhdGEsIHlfbmFtZT1kZXBlbmRlbnRzWzRdLCB4X2xpc3Q9Y292X2IsIHJlZ190eXBlPSJQT0xSIikpDQpgYGANCg0KIyBCZWxvbmdpbmcgYW5kIEdlbmVyYXRpb24gQW5hbHlzaXMNCg0KIyMgRGVzY3JpcHRpdmUNCg0KIyMjIEdlbmVyYXRpb24gKDMgTGV2ZWxzKQ0KDQpgYGB7ciwgZmlnLmhlaWdodD02fQ0KIyBDYWxjdWxhdGUgbWVhbiBhbmQgc3RhbmRhcmQgZXJyb3INCmdyb3VwZWRfZGF0YSA8LSBkYXRhICU+JQ0KICBncm91cF9ieShnZW4zKSAlPiUNCiAgc3VtbWFyaXNlKA0KICAgIG1lYW5fdGF4X21vcmFsID0gbWVhbih0YXhfbW9yYWxfTiksDQogICAgY291bnQgPSBuKCksDQogICAgc2UgPSBzZCh0YXhfbW9yYWxfTikgLyBzcXJ0KG4oKSkgICMgU3RhbmRhcmQgZXJyb3INCiAgKQ0KDQojIFNvcnQgdGhlIGdyb3VwZWQgZGF0YSBieSBnZW4zDQpncm91cGVkX2RhdGEgPC0gZ3JvdXBlZF9kYXRhICU+JQ0KICBhcnJhbmdlKGdlbjMpDQoNCiMgQ3JlYXRlIHRoZSBiYXIgY2hhcnQgd2l0aCBlcnJvciBiYXJzIGFuZCBkaXNwbGF5IHRoZSBTRSB2YWx1ZQ0KZ2dwbG90KGdyb3VwZWRfZGF0YSwgYWVzKHggPSBnZW4zLCB5ID0gbWVhbl90YXhfbW9yYWwpKSArDQogIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCBmaWxsID0gImxpZ2h0Ymx1ZSIpICsNCiAgZ2VvbV9lcnJvcmJhcihhZXMoeW1pbiA9IG1lYW5fdGF4X21vcmFsIC0gc2UsIHltYXggPSBtZWFuX3RheF9tb3JhbCArIHNlKSwgDQogICAgICAgICAgICAgICAgd2lkdGggPSAwLjIpICsgICMgQWRkIGVycm9yIGJhcnMNCiAgbGFicyh0aXRsZSA9ICJBdmVyYWdlIFRheCBNb3JhbCBieSBHZW4zIiwNCiAgICAgICB4ID0gIkdlbjMiLA0KICAgICAgIHkgPSAiTWVhbiBUYXggTW9yYWwiKSArDQogIGdlb21fdGV4dChhZXMobGFiZWwgPSBwYXN0ZTAoIm49IiwgY291bnQsICIsIFNFPSIsIHJvdW5kKHNlLCAyKSkpLA0KICAgICAgICAgICAgdmp1c3QgPSAtMC41LA0KICAgICAgICAgICAgaGp1c3QgPSAwLjUpDQoNCmdnc2F2ZSgib3V0L2dlbjNfYmFyY2hhcnQucG5nIikNCmBgYA0KDQojIyMgR2VuZXJhdGlvbiAoNyBsZXZlbHMpDQoNCmBgYHtyLCBmaWcuaGVpZ2h0PTZ9DQpncm91cGVkX2RhdGEgPC0gZGF0YSAlPiUNCiAgZ3JvdXBfYnkoZ2VuNykgJT4lDQogIHN1bW1hcmlzZShtZWFuX3RheF9tb3JhbCA9IG1lYW4odGF4X21vcmFsX04pLCBjb3VudCA9IG4oKSkNCg0KIyBTb3J0IHRoZSBncm91cGVkIGRhdGEgYnkgZ2VuNw0KZ3JvdXBlZF9kYXRhIDwtIGdyb3VwZWRfZGF0YSAlPiUNCiAgYXJyYW5nZShnZW43KQ0KDQpnZ3Bsb3QoZ3JvdXBlZF9kYXRhLCBhZXMoeCA9IGdlbjcsIHkgPSBtZWFuX3RheF9tb3JhbCkpICsNCiAgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIpICsNCiAgbGFicyh0aXRsZSA9ICJBdmVyYWdlIFRheCBNb3JhbCBieSBHZW43IiwNCiAgICAgICB4ID0gIkdlbjciLA0KICAgICAgIHkgPSAiTWVhbiBUYXggTW9yYWwiKSArDQogIGdlb21fdGV4dChhZXMobGFiZWwgPSBwYXN0ZTAoIm49IiwgY291bnQpKSwNCiAgICAgICAgICAgIHZqdXN0ID0gLTAuNSwNCiAgICAgICAgICAgIGhqdXN0ID0gMC41KQ0KYGBgDQoNCiMjIEludGVyYWN0aW9uIChSZWdyZXNzaW9uKQ0KDQojIyMgSW50ZXJhY3Rpb24gKFJlZ3Jlc3Npb24pDQoNCmBgYHtyfQ0KY292X2dlbjMgPC0gYyhjb3ZfYVsxOjhdLCJHZW5lcmF0aW9uKDMpIiA9ICJnZW4zIikNCmNvdl9nZW4zX04gPC0gYyhjb3ZfYVsxOjhdLCJHZW5lcmF0aW9uKDMpTiIgPSAiZ2VuM19OIikNCmNvdl9nZW43IDwtIGMoY292X2FbMTo4XSwiR2VuZXJhdGlvbig3KSIgPSAiZ2VuNyIpIA0KDQpjb3ZfaW50X2dlbjMgPC0gYyhjb3ZfYSwgImJlbG9uZ2luZypnZW4zIikNCm1pX2dlbjMgPC0gb2xzX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbF9OIiwgY292X2ludF9nZW4zKQ0KDQptaV9nZW4zX0YgPC0gb2xzX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbF9OIiwgY292X2dlbjMpDQptaV9nZW4zX04gPC0gb2xzX3JlZ3Jlc3Npb24oZGF0YSwgInRheF9tb3JhbF9OIiwgY292X2dlbjNfTikNCg0KDQppbnRfbW9kZWxzIDwtIGxpc3QobWlfZ2VuM19GLCBtaV9nZW4zX04sIG1pX2dlbjMpDQpuYW1lcyhpbnRfbW9kZWxzKSA8LSBjKCJHZW4zIChGYWN0b3IpIiwgIkdlbjMgKE51bWVyaWMpIiwgIkJlbG9uZ2luZypHZW4zIikNCg0KY292X2xhYmVscyA8LSBjKG5hbWVzKGNvdl9mdWxsWzJdKSwNCiAgICAgICAgICAgICAgICBuYW1lcyhjb3ZfZnVsbFszXSksDQogICAgICAgICAgICAgICAgbmFtZXMoY292X2Z1bGxbNF0pLCANCiAgICAgICAgICAgICAgICBuYW1lcyhjb3ZfZnVsbFs1XSksDQogICAgICAgICAgICAgICAgcGFzdGUwKG5hbWVzKGNvdl9mdWxsWzZdKSwiIFsiLCBsZXZlbHMoZGF0YVssY292X2Z1bGxbNl1dKVsyXSwiXSIpLA0KICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfZnVsbFs2XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9mdWxsWzZdXSlbM10sIl0iKSwNCiAgICAgICAgICAgICAgICBwYXN0ZTAobmFtZXMoY292X2Z1bGxbNl0pLCIgWyIsIGxldmVscyhkYXRhWyxjb3ZfZnVsbFs2XV0pWzRdLCJdIiksDQogICAgICAgICAgICAgICAgcGFzdGUwKG5hbWVzKGNvdl9mdWxsWzddKSwiIFsiLCBsZXZlbHMoZGF0YVssY292X2Z1bGxbN11dKVsyXSwiXSIpLA0KICAgICAgICAgICAgICAgIHBhc3RlMChuYW1lcyhjb3ZfZnVsbFs3XSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9mdWxsWzddXSlbM10sIl0iKSwNCiAgICAgICAgICAgICAgICBuYW1lcyhjb3ZfZnVsbFs4XSksDQogICAgICAgICAgICAgICAgcGFzdGUwKG5hbWVzKGNvdl9mdWxsWzldKSwiIFsiLCBsZXZlbHMoZGF0YVssY292X2Z1bGxbOV1dKVsyXSwiXSIpLA0KICAgICAgICAgICAgICAgIG5hbWVzKGNvdl9mdWxsWzEwXSksDQogICAgICAgICAgICAgICAgcGFzdGUwKG5hbWVzKGNvdl9mdWxsWzExXSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9mdWxsWzExXV0pWzJdLCJdIiksDQogICAgICAgICAgICAgICAgcGFzdGUwKG5hbWVzKGNvdl9mdWxsWzExXSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9mdWxsWzExXV0pWzNdLCJdIiksDQogICAgICAgICAgICAgICAgbmFtZXMoY292X2Z1bGxbMTJdKSwNCiAgICAgICAgICAgICAgICBwYXN0ZTAobmFtZXMoaW50X21vZGVsc1szXSksIiBbIiwgbGV2ZWxzKGRhdGFbLGNvdl9mdWxsWzExXV0pWzJdLCJdIiksDQogICAgICAgICAgICAgICAgcGFzdGUwKG5hbWVzKGludF9tb2RlbHNbM10pLCIgWyIsIGxldmVscyhkYXRhWyxjb3ZfZnVsbFsxMV1dKVszXSwiXSIpDQogICAgICAgICAgICAgICAgKQ0KIHdsX3N0YXJnYXplciAoaW50X21vZGVscywgImludGVyYWN0aW9uX3JlZ19nZW4iLCBjb3ZfbGFiZWxzPWNvdl9sYWJlbHMsIGNvZWZfZXhwPUZBTFNFKQ0KYGBgDQpgYGAge3IgZWNobyA9IEZBTFNFfQ0Kd2xfc3RhcmdhemVyIChpbnRfbW9kZWxzLCAiaW50ZXJhY3Rpb25fcmVnX2dlbiIsIGNvdl9sYWJlbHM9Y292X2xhYmVscywgY29lZl9leHA9RkFMU0UpDQpgYGANCg0KIyMjIEdlbmVyYXRpb24gKDMgbGV2ZWxzKQ0KDQpgYGB7ciwgZmlnLmhlaWdodD02fQ0KIyBDb2xvcmVkDQpzalBsb3Q6OnBsb3RfbW9kZWwobWlfZ2VuMywgdHlwZSA9ICJpbnQiKSANCmdnc2F2ZSgib3V0L2dlbjNfaW50ZXJhY3Rpb25fb2xzLnBuZyIpDQoNCiMgQmxhY2sgJiBXaGl0ZQ0Kc2pQbG90OjpwbG90X21vZGVsKG1pX2dlbjMsIHR5cGUgPSAiaW50IiwgY29sb3JzPSJidyIpDQpnZ3NhdmUoIm91dC9nZW4zX2ludGVyYWN0aW9uX29sc19idy5wbmciKQ0KYGBgDQoNCiMjIFJvYnVzdG5lc3MgKEludGVyZmxleCkNCg0KIyMjIEdlbmVyYXRpb24gKDMgTGV2ZWxzKQ0KDQpgYGB7ciBmaWcuaGVpZ2h0PTYsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpkZiA8LSBkYXRhWywgYygiVGF4IE1vcmFsIiA9ICJ0YXhfbW9yYWxfTiIsIGNvdl9nZW4zKV0NCg0KaW50ZXJmbGV4KGVzdGltYXRvciA9ICJyYXciLA0KICAgICAgICAgIFkgPSAidGF4X21vcmFsX04iLCBEID0gImdlbjMiLCBYID0gImJlbG9uZ2luZyIsIFogPSBjb3ZfYVsxOjhdLCBkYXRhID0gZGYsDQogICAgICAgICAgYmFzZT0iMjAtMzAiLCB0cmVhdC50eXBlPSJkaXNjcmV0ZSIsDQogICAgICAgICAgd2VpZ2h0cyA9IE5VTEwsIFlsYWJlbCA9ICJUYXggTW9yYWwiLA0KICAgICAgICAgIERsYWJlbCA9ICJHZW5lcmF0aW9uIiwgWGxhYmVsPSJCZWxvbmdpbmciLA0KICAgICAgICAgIG1haW4gPSAiR2VuZXJhdGlvbiAqIEJlbG9uZ2luZyBQbG90IiwgY2V4Lm1haW4gPSAxLjIsIHBvb2w9VFJVRSwgDQogICAgICAgICAgZmlsZSA9ICJvdXQvaW50ZXJmbGV4X3Jhd19nZW4zLnBuZyIpDQoNCmludGVyZmxleChlc3RpbWF0b3IgPSAibGluZWFyIiwNCiAgICAgICAgICBZID0gInRheF9tb3JhbF9OIiwgRCA9ICJnZW4zIiwgWCA9ICJiZWxvbmdpbmciLCBaID0gY292X2FbMTo4XSwgZGF0YSA9IGRmLA0KICAgICAgICAgIGJhc2U9IjIwLTMwIiwgdHJlYXQudHlwZT0iZGlzY3JldGUiLA0KICAgICAgICAgIHdlaWdodHMgPSBOVUxMLCBZbGFiZWwgPSAiVGF4IE1vcmFsIiwNCiAgICAgICAgICBEbGFiZWwgPSAiR2VuZXJhdGlvbiIsIFhsYWJlbD0iQmVsb25naW5nIiwNCiAgICAgICAgICBtYWluID0gIkdlbmVyYXRpb24gKiBCZWxvbmdpbmcgUGxvdCIsIGNleC5tYWluID0gMS4yLCBwb29sPVRSVUUsIA0KICAgICAgICAgIGZpbGUgPSAib3V0L2ludGVyZmxleF9saW5lYXJfZ2VuMy5wbmciKQ0KYGBgDQoNCiMjIyBHZW5lcmF0aW9uICg3IGxldmVscykNCg0KYGBge3IsIGZpZy5oZWlnaHQ9Nn0NCmRmIDwtIGRhdGFbLCBjKCJUYXggTW9yYWwiID0gInRheF9tb3JhbF9OIiwgY292X2dlbjcpXQ0KDQppbnRlcmZsZXgoZXN0aW1hdG9yID0gInJhdyIsDQogICAgICAgICAgWSA9ICJ0YXhfbW9yYWxfTiIsIEQgPSAiZ2VuNyIsIFggPSAiYmVsb25naW5nIiwgWiA9IGNvdl9hWzE6OF0sIGRhdGEgPSBkZiwNCiAgICAgICAgICBiYXNlPSIyMC0yNSIsIHRyZWF0LnR5cGU9ImRpc2NyZXRlIiwNCiAgICAgICAgICB3ZWlnaHRzID0gTlVMTCwgWWxhYmVsID0gIlRheCBNb3JhbCIsDQogICAgICAgICAgRGxhYmVsID0gIkdlbmVyYXRpb24iLCBYbGFiZWw9IkJlbG9uZ2luZyIsDQogICAgICAgICAgbWFpbiA9ICJHZW5lcmF0aW9uICogQmVsb25naW5nIFBsb3QiLCBjZXgubWFpbiA9IDEuMiwgcG9vbD1UUlVFLCANCiAgICAgICAgICBmaWxlID0gIm91dC9pbnRlcmZsZXhfcmF3X2dlbjcucG5nIikNCmBgYA0KDQpFbmQgb2YgQW5hbHlzaXMNCg0KDQo=