library(foreign)
library(ggplot2)
library(MASS)
library(dplyr)
library(openxlsx)
library(readxl)
Compra<-read.xlsx("car_purchase_data.xlsx")
head(Compra)
## User.ID Gender Age AnnualSalary Offspring Purchased
## 1 385 Male 35 20000 1 0
## 2 681 Male 40 43500 0 0
## 3 353 Male 49 74000 1 0
## 4 895 Male 40 107500 0 1
## 5 661 Male 25 79000 1 0
## 6 846 Female 47 33500 1 1
Variables:
Compra <- Compra %>% mutate(Gender = recode(Gender, "Male" = 0, "Female" = 1))
Compra$Purchased<-factor(Compra$Purchased, levels = c(0,1), labels = c("Didn't Purchased","Purchased"))
head(Compra)
## User.ID Gender Age AnnualSalary Offspring Purchased
## 1 385 0 35 20000 1 Didn't Purchased
## 2 681 0 40 43500 0 Didn't Purchased
## 3 353 0 49 74000 1 Didn't Purchased
## 4 895 0 40 107500 0 Purchased
## 5 661 0 25 79000 1 Didn't Purchased
## 6 846 1 47 33500 1 Purchased
dis=lda(Purchased~Gender+Age+log(AnnualSalary)+Offspring, data=Compra,prior=c(0.5,0.5))
dis
## Call:
## lda(Purchased ~ Gender + Age + log(AnnualSalary) + Offspring,
## data = Compra, prior = c(0.5, 0.5))
##
## Prior probabilities of groups:
## Didn't Purchased Purchased
## 0.5 0.5
##
## Group means:
## Gender Age log(AnnualSalary) Offspring
## Didn't Purchased 0.4966555 34.70067 10.94977 0.5083612
## Purchased 0.5447761 48.14677 11.23676 0.5273632
##
## Coefficients of linear discriminants:
## LD1
## Gender -0.04752817
## Age 0.11226338
## log(AnnualSalary) 0.66566148
## Offspring -0.04652487
#Nueva observación Supongamos que entra un nuevo cliente. Y que: Gender = 0 Age = 30 AnnualSalary = 77000 Offspring = 0
Creamos el perfil del cliente:
nuevo.cliente=rbind(c(0,30,77000,0))
colnames(nuevo.cliente)=colnames(Compra[,2:5])
nuevo.cliente=data.frame(nuevo.cliente)
predict(dis,newdata =nuevo.cliente)
## $class
## [1] Didn't Purchased
## Levels: Didn't Purchased Purchased
##
## $posterior
## Didn't Purchased Purchased
## 1 0.8715874 0.1284126
##
## $x
## LD1
## 1 -1.128253
De acuerdo con la predicción, lo más probable para nuestro nuevo cliente en base a sus datos, es que no compre un auto nuevo.