## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
## Loading required package: Formula
## Loading required package: plotmo
## Loading required package: plotrix
## Loading required package: TeachingDemos
##
## Attaching package: 'kernlab'
##
## The following object is masked from 'package:purrr':
##
## cross
##
## The following object is masked from 'package:ggplot2':
##
## alpha
Friedman (1991) introduced several benchmark data sets created by simulation. One of these simulations used the following nonlinear equation to create data:
\[y = 10 sin(\pi x_1 x_2) + 20 (x_3 -
0.5)^2 + 10 x_4 + 5 x_5 + N(0,\sigma^2)\] where the \(x\) values are random variables uniformly
distributed between \([0,1]\) (there
are also 5 other non-informative variables also created in the
simulation). The package mlbench contains a function called
mlbench.friedman1 that simulates these data:
set.seed(31415)
trainingData <- mlbench.friedman1(200, sd = 1)
## We convert the 'x' data from a matrix to a data frame
## One reason is taht this will give the column names.
trainingData$x <- data.frame(trainingData$x)
## Look at the data using
featurePlot(trainingData$x, trainingData$y)## or other methods
## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)Tune several models on these data. For example:
knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = 'knn',
preProcess = c('center', 'scale'),
tuneLength = 10)
knnModel## k-Nearest Neighbors
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 3.719008 0.4517539 2.966565
## 7 3.619962 0.4804642 2.893141
## 9 3.553036 0.5054952 2.853502
## 11 3.532333 0.5216344 2.841214
## 13 3.510321 0.5378856 2.824333
## 15 3.493860 0.5530622 2.815556
## 17 3.481650 0.5688741 2.825945
## 19 3.489310 0.5757182 2.837525
## 21 3.497301 0.5808056 2.856954
## 23 3.492655 0.5925379 2.861990
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)
## The function 'postResample can be used to get the test set
## performance values
knnResult <- data.frame(as.list(postResample(pred = knnPred, obs = testData$y))) |>
mutate(model = 'knn') |>
relocate(model, RMSE, Rsquared, MAE)
knnResult## model RMSE Rsquared MAE
## 1 knn 3.241683 0.6701753 2.600879
nnetTune <- train(trainingData$x, trainingData$y,
method = 'nnet',
tuneGrid = expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10)),
trControl = trainControl(method = 'cv', number = 10),
preProcess = c('center', 'scale'),
linout = TRUE, trace = FALSE,
MaxNWts = 10 * (ncol(trainingData$x) + 1) + 10 + 1,
maxit = 500)
nnetTune## Neural Network
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## decay size RMSE Rsquared MAE
## 0.00 1 2.691690 0.7155733 2.147649
## 0.00 2 2.960342 0.6671914 2.342040
## 0.00 3 2.602614 0.7402696 2.054916
## 0.00 4 2.429008 0.7887525 1.911864
## 0.00 5 2.942647 0.6793201 2.312460
## 0.00 6 6.049901 0.5165524 3.456843
## 0.00 7 4.082847 0.5712517 2.767596
## 0.00 8 5.767071 0.4572169 3.729774
## 0.00 9 9.810918 0.4053252 5.015810
## 0.00 10 8.474575 0.4636948 4.189643
## 0.01 1 2.661283 0.7278718 2.088473
## 0.01 2 2.852317 0.6877988 2.221027
## 0.01 3 2.523993 0.7568869 2.093470
## 0.01 4 2.418698 0.7832625 1.919667
## 0.01 5 2.698246 0.7446424 2.145357
## 0.01 6 2.933846 0.6993014 2.257254
## 0.01 7 3.137988 0.6529993 2.474540
## 0.01 8 3.618008 0.6097143 2.790248
## 0.01 9 3.425052 0.6185905 2.696058
## 0.01 10 3.946134 0.5420892 3.133259
## 0.10 1 2.656159 0.7286333 2.079465
## 0.10 2 2.779733 0.7025162 2.247186
## 0.10 3 2.579335 0.7391527 2.092155
## 0.10 4 2.268440 0.8176035 1.777193
## 0.10 5 2.482582 0.7668027 2.082117
## 0.10 6 2.726439 0.7433608 2.183655
## 0.10 7 2.705609 0.7327884 2.184070
## 0.10 8 3.254073 0.6557975 2.520924
## 0.10 9 3.303520 0.6246589 2.612321
## 0.10 10 2.980404 0.6845555 2.374350
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4 and decay = 0.1.
nnetPred <- predict(nnetTune, newdata = testData$x)
## The function 'postResample can be used to get the test set
## performance values
nnetResult <- data.frame(as.list(postResample(pred = nnetPred, obs = testData$y))) |>
mutate(model = 'nnet') |>
relocate(model, RMSE, Rsquared, MAE)
nnetResult## model RMSE Rsquared MAE
## 1 nnet 2.316673 0.7890649 1.81435
marsTune <- train(trainingData$x, trainingData$y,
method = 'earth',
tuneGrid = expand.grid(.degree = 1:2, .nprune = 2:38),
trControl = trainControl(method = 'cv'))
marsTune## Multivariate Adaptive Regression Spline
##
## 200 samples
## 10 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 4.281001 0.2773318 3.5676969
## 1 3 3.212742 0.6035509 2.6192200
## 1 4 2.677792 0.7274907 2.2467721
## 1 5 2.274281 0.8051169 1.8439150
## 1 6 2.231251 0.8163265 1.8074151
## 1 7 1.800833 0.8717639 1.3852792
## 1 8 1.734264 0.8817659 1.3491174
## 1 9 1.737660 0.8813393 1.3632600
## 1 10 1.764341 0.8770420 1.3938862
## 1 11 1.782250 0.8745491 1.3931766
## 1 12 1.762026 0.8783310 1.3801556
## 1 13 1.742254 0.8836373 1.3674091
## 1 14 1.730718 0.8861096 1.3603181
## 1 15 1.727119 0.8861983 1.3645861
## 1 16 1.724136 0.8870126 1.3614281
## 1 17 1.724136 0.8870126 1.3614281
## 1 18 1.724136 0.8870126 1.3614281
## 1 19 1.724136 0.8870126 1.3614281
## 1 20 1.724136 0.8870126 1.3614281
## 1 21 1.724136 0.8870126 1.3614281
## 1 22 1.724136 0.8870126 1.3614281
## 1 23 1.724136 0.8870126 1.3614281
## 1 24 1.724136 0.8870126 1.3614281
## 1 25 1.724136 0.8870126 1.3614281
## 1 26 1.724136 0.8870126 1.3614281
## 1 27 1.724136 0.8870126 1.3614281
## 1 28 1.724136 0.8870126 1.3614281
## 1 29 1.724136 0.8870126 1.3614281
## 1 30 1.724136 0.8870126 1.3614281
## 1 31 1.724136 0.8870126 1.3614281
## 1 32 1.724136 0.8870126 1.3614281
## 1 33 1.724136 0.8870126 1.3614281
## 1 34 1.724136 0.8870126 1.3614281
## 1 35 1.724136 0.8870126 1.3614281
## 1 36 1.724136 0.8870126 1.3614281
## 1 37 1.724136 0.8870126 1.3614281
## 1 38 1.724136 0.8870126 1.3614281
## 2 2 4.281001 0.2773318 3.5676969
## 2 3 3.212742 0.6035509 2.6192200
## 2 4 2.677792 0.7274907 2.2467721
## 2 5 2.274281 0.8051169 1.8439150
## 2 6 2.297519 0.8011481 1.8703041
## 2 7 1.837363 0.8665463 1.4149267
## 2 8 1.763882 0.8765845 1.3038700
## 2 9 1.512388 0.9105001 1.1956290
## 2 10 1.329770 0.9296692 1.0481585
## 2 11 1.304416 0.9324248 1.0315848
## 2 12 1.258418 0.9376861 1.0173354
## 2 13 1.269542 0.9369509 1.0247277
## 2 14 1.314616 0.9331632 1.0613778
## 2 15 1.263303 0.9382605 1.0125270
## 2 16 1.234765 0.9412279 0.9839301
## 2 17 1.222248 0.9426109 0.9731562
## 2 18 1.207101 0.9438281 0.9572367
## 2 19 1.211509 0.9434808 0.9567834
## 2 20 1.214652 0.9430248 0.9615431
## 2 21 1.214652 0.9430248 0.9615431
## 2 22 1.214652 0.9430248 0.9615431
## 2 23 1.214652 0.9430248 0.9615431
## 2 24 1.214652 0.9430248 0.9615431
## 2 25 1.214652 0.9430248 0.9615431
## 2 26 1.214652 0.9430248 0.9615431
## 2 27 1.214652 0.9430248 0.9615431
## 2 28 1.214652 0.9430248 0.9615431
## 2 29 1.214652 0.9430248 0.9615431
## 2 30 1.214652 0.9430248 0.9615431
## 2 31 1.214652 0.9430248 0.9615431
## 2 32 1.214652 0.9430248 0.9615431
## 2 33 1.214652 0.9430248 0.9615431
## 2 34 1.214652 0.9430248 0.9615431
## 2 35 1.214652 0.9430248 0.9615431
## 2 36 1.214652 0.9430248 0.9615431
## 2 37 1.214652 0.9430248 0.9615431
## 2 38 1.214652 0.9430248 0.9615431
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 18 and degree = 2.
marsPred <- predict(marsTune, newdata = testData$x)
marsResult <- data.frame(as.list(postResample(pred = marsPred, obs = testData$y))) |>
mutate(model = 'MARS') |>
relocate(model, RMSE, Rsquared, MAE)
marsResult## model RMSE Rsquared MAE
## 1 MARS 1.158605 0.9463841 0.9242767
svmTune <- train(trainingData$x, trainingData$y,
method = 'svmRadial',
preProcess = c('center','scale'),
tuneLength = 14,
trControl = trainControl(method = 'cv'))
svmTune## Support Vector Machines with Radial Basis Function Kernel
##
## 200 samples
## 10 predictor
##
## Pre-processing: centered (10), scaled (10)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 2.820460 0.7485044 2.278719
## 0.50 2.564032 0.7687252 2.035972
## 1.00 2.385066 0.7912188 1.868641
## 2.00 2.235240 0.8126255 1.739319
## 4.00 2.154486 0.8242148 1.693301
## 8.00 2.097949 0.8332023 1.657564
## 16.00 2.055998 0.8401903 1.634208
## 32.00 2.053345 0.8405006 1.632027
## 64.00 2.053345 0.8405006 1.632027
## 128.00 2.053345 0.8405006 1.632027
## 256.00 2.053345 0.8405006 1.632027
## 512.00 2.053345 0.8405006 1.632027
## 1024.00 2.053345 0.8405006 1.632027
## 2048.00 2.053345 0.8405006 1.632027
##
## Tuning parameter 'sigma' was held constant at a value of 0.0645588
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.0645588 and C = 32.
svmPred <- predict(svmTune, testData$x)
svmResult <- data.frame(as.list(postResample(pred = svmPred, obs = testData$y))) |>
mutate(model = 'SVM') |>
relocate(model, RMSE, Rsquared, MAE)
svmResult## model RMSE Rsquared MAE
## 1 SVM 1.923757 0.8504649 1.509494
Which models appear to give the best performance?
## model RMSE Rsquared MAE
## 1 MARS 1.158605 0.9463841 0.9242767
## 2 SVM 1.923757 0.8504649 1.5094939
## 3 nnet 2.316673 0.7890649 1.8143496
## 4 knn 3.241683 0.6701753 2.6008787
The MARS model appears to give the best performance based on the RMSE and \(R^2\) statistics.
Does MARS select the informative predictors (those named
X1-X5)?
## Overall
## X4 100.00000
## X2 71.30508
## X1 37.78989
## X5 15.48104
## X3 0.00000
The MARS model selects the informative predictors, but
X3 appears to be insignificant and has an overall
importance of 0.
Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.
data(ChemicalManufacturingProcess)
imputed <- predict(preProcess(ChemicalManufacturingProcess, method = 'bagImpute'), ChemicalManufacturingProcess)
X <- imputed |>
select(-Yield)
y <- imputed$Yield
X <- X[,-nearZeroVar(X)]
train <- createDataPartition(y, p = .8, list = FALSE)
X_train <- X[train,]
X_test <- X[-train,]
y_train <- y[train]
y_test <- y[-train]knnModel <- train(X_train, y_train,
method = 'knn',
preProcess = c('center','scale'),
tuneLength = 10)
knnModel## k-Nearest Neighbors
##
## 144 samples
## 56 predictor
##
## Pre-processing: centered (56), scaled (56)
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 144, 144, 144, 144, 144, 144, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 1.379658 0.4505493 1.090764
## 7 1.384271 0.4461378 1.110260
## 9 1.396146 0.4379598 1.121155
## 11 1.417544 0.4222474 1.141312
## 13 1.429682 0.4144088 1.149497
## 15 1.441541 0.4051353 1.160162
## 17 1.452704 0.3976862 1.171167
## 19 1.460561 0.3943526 1.178263
## 21 1.467243 0.3907426 1.185358
## 23 1.470348 0.3912654 1.183060
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 5.
knnPred <- predict(knnModel, newdata = X_test)
knnResult <- data.frame(as.list(postResample(pred = knnPred, obs = y_test))) |>
mutate(model = 'knn') |>
relocate(model, RMSE, Rsquared, MAE)
knnResult## model RMSE Rsquared MAE
## 1 knn 1.498845 0.3961932 1.179875
nnetModel <- train(X_train, y_train,
method = 'nnet',
tuneGrid = expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10)),
trControl = trainControl(method = 'cv', number = 10),
preProcess = c('center', 'scale'),
linout = TRUE, trace = FALSE,
MaxNWts = 10 * (ncol(X_train) + 1) + 10 + 1,
maxit = 500)
nnetModel## Neural Network
##
## 144 samples
## 56 predictor
##
## Pre-processing: centered (56), scaled (56)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 129, 129, 132, 130, 128, 129, ...
## Resampling results across tuning parameters:
##
## decay size RMSE Rsquared MAE
## 0.00 1 1.678361 0.23432174 1.338730
## 0.00 2 1.556209 0.29289498 1.250798
## 0.00 3 3.061613 0.23730838 2.252601
## 0.00 4 3.912098 0.10612415 3.005222
## 0.00 5 4.071541 0.07447244 3.229146
## 0.00 6 4.083318 0.16970212 3.204658
## 0.00 7 5.641098 0.15745984 4.261070
## 0.00 8 6.831032 0.11623219 5.146468
## 0.00 9 6.888511 0.06602355 5.191935
## 0.00 10 10.884295 0.18549679 8.121485
## 0.01 1 1.823209 0.30410158 1.507439
## 0.01 2 2.396530 0.26077806 1.972948
## 0.01 3 2.409577 0.26202087 1.921315
## 0.01 4 2.518533 0.28321867 1.988295
## 0.01 5 2.907159 0.16737936 2.228059
## 0.01 6 2.748951 0.17285032 2.146255
## 0.01 7 2.875025 0.15816481 2.092122
## 0.01 8 2.558987 0.18372653 1.964162
## 0.01 9 2.643811 0.27458246 2.051323
## 0.01 10 3.760922 0.20555320 2.709466
## 0.10 1 1.882574 0.36482588 1.355045
## 0.10 2 2.086595 0.28868348 1.648466
## 0.10 3 2.570318 0.20776660 1.966156
## 0.10 4 2.372222 0.30209195 1.821054
## 0.10 5 2.811116 0.27924167 2.069933
## 0.10 6 2.250491 0.24316559 1.726597
## 0.10 7 2.595976 0.17133799 1.872720
## 0.10 8 2.705299 0.21229635 2.055154
## 0.10 9 2.716765 0.16406457 2.073858
## 0.10 10 2.247612 0.25337782 1.856046
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 2 and decay = 0.
nnetPred <- predict(nnetModel, newdata = X_test)
nnetResult <- data.frame(as.list(postResample(pred = nnetPred, obs = y_test))) |>
mutate(model = 'nnet') |>
relocate(model, RMSE, Rsquared, MAE)
nnetResult## model RMSE Rsquared MAE
## 1 nnet 1.630832 0.2647858 1.388332
marsModel <- train(X_train, y_train,
method = 'earth',
tuneGrid = expand.grid(.degree = 1:2, .nprune = 2:38),
trControl = trainControl(method = 'cv'))
marsModel## Multivariate Adaptive Regression Spline
##
## 144 samples
## 56 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 130, 131, 128, 129, 130, 130, ...
## Resampling results across tuning parameters:
##
## degree nprune RMSE Rsquared MAE
## 1 2 1.433126 0.4154294 1.1216934
## 1 3 1.276615 0.5137493 1.0293659
## 1 4 1.223836 0.5580225 1.0041552
## 1 5 1.232831 0.5532128 0.9990345
## 1 6 1.216539 0.5638381 0.9751419
## 1 7 1.202638 0.5729486 0.9357264
## 1 8 1.166423 0.5908522 0.9340754
## 1 9 1.144488 0.6014037 0.9115922
## 1 10 1.174225 0.5804208 0.9336118
## 1 11 1.184131 0.5714902 0.9418250
## 1 12 1.161849 0.5937193 0.9311139
## 1 13 1.154729 0.6037815 0.9077335
## 1 14 1.128364 0.6188913 0.8886522
## 1 15 1.126799 0.6207559 0.8870071
## 1 16 1.136196 0.6182286 0.8955953
## 1 17 1.132228 0.6207677 0.8914600
## 1 18 1.135646 0.6180451 0.8971810
## 1 19 1.135646 0.6180451 0.8971810
## 1 20 1.135646 0.6180451 0.8971810
## 1 21 1.135646 0.6180451 0.8971810
## 1 22 1.135646 0.6180451 0.8971810
## 1 23 1.135646 0.6180451 0.8971810
## 1 24 1.135646 0.6180451 0.8971810
## 1 25 1.135646 0.6180451 0.8971810
## 1 26 1.135646 0.6180451 0.8971810
## 1 27 1.135646 0.6180451 0.8971810
## 1 28 1.135646 0.6180451 0.8971810
## 1 29 1.135646 0.6180451 0.8971810
## 1 30 1.135646 0.6180451 0.8971810
## 1 31 1.135646 0.6180451 0.8971810
## 1 32 1.135646 0.6180451 0.8971810
## 1 33 1.135646 0.6180451 0.8971810
## 1 34 1.135646 0.6180451 0.8971810
## 1 35 1.135646 0.6180451 0.8971810
## 1 36 1.135646 0.6180451 0.8971810
## 1 37 1.135646 0.6180451 0.8971810
## 1 38 1.135646 0.6180451 0.8971810
## 2 2 1.433126 0.4154294 1.1216934
## 2 3 1.406667 0.4303385 1.1173924
## 2 4 1.243403 0.5446763 1.0055262
## 2 5 1.277720 0.5231206 1.0168204
## 2 6 1.337607 0.5119702 1.0407807
## 2 7 1.362614 0.4895329 1.0644624
## 2 8 1.303091 0.5152020 1.0262146
## 2 9 1.325853 0.5117465 1.0355350
## 2 10 1.372537 0.5081267 1.0853983
## 2 11 1.360297 0.5046625 1.0785989
## 2 12 1.384471 0.4917035 1.0801942
## 2 13 1.382711 0.4893548 1.0805039
## 2 14 1.433577 0.4586557 1.1181035
## 2 15 1.423909 0.4867217 1.1160937
## 2 16 1.449919 0.4700785 1.1314275
## 2 17 1.447589 0.4778954 1.1246925
## 2 18 1.441212 0.4831453 1.1186850
## 2 19 1.461453 0.4704108 1.1359042
## 2 20 1.431758 0.4888435 1.1183069
## 2 21 1.388058 0.5113556 1.0878968
## 2 22 1.393505 0.5100796 1.0920114
## 2 23 1.403067 0.5134808 1.1018171
## 2 24 1.431915 0.5054626 1.1227629
## 2 25 1.433135 0.5052046 1.1194694
## 2 26 1.444916 0.5082111 1.1303573
## 2 27 1.444916 0.5082111 1.1303573
## 2 28 1.444916 0.5082111 1.1303573
## 2 29 1.444916 0.5082111 1.1303573
## 2 30 1.444916 0.5082111 1.1303573
## 2 31 1.444916 0.5082111 1.1303573
## 2 32 1.444916 0.5082111 1.1303573
## 2 33 1.444916 0.5082111 1.1303573
## 2 34 1.444916 0.5082111 1.1303573
## 2 35 1.444916 0.5082111 1.1303573
## 2 36 1.444916 0.5082111 1.1303573
## 2 37 1.444916 0.5082111 1.1303573
## 2 38 1.444916 0.5082111 1.1303573
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 15 and degree = 1.
marsPred <- predict(marsModel, newdata = X_test)
marsResult <- data.frame(as.list(postResample(pred = marsPred, obs = y_test))) |>
mutate(model = 'MARS') |>
relocate(model, RMSE, Rsquared, MAE)
marsResult## model RMSE Rsquared MAE
## 1 MARS 1.066548 0.6964923 0.796169
svmModel <- train(X_train, y_train,
method = 'svmRadial',
preProcess = c('center','scale'),
tuneLength = 14,
trControl = trainControl(method = 'cv'))
svmModel## Support Vector Machines with Radial Basis Function Kernel
##
## 144 samples
## 56 predictor
##
## Pre-processing: centered (56), scaled (56)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 130, 130, 131, 129, 130, 129, ...
## Resampling results across tuning parameters:
##
## C RMSE Rsquared MAE
## 0.25 1.412475 0.4832852 1.1352064
## 0.50 1.330770 0.5201218 1.0597256
## 1.00 1.271628 0.5616200 1.0033987
## 2.00 1.225052 0.5966922 0.9705721
## 4.00 1.199345 0.6102707 0.9591661
## 8.00 1.191542 0.6245313 0.9588123
## 16.00 1.188397 0.6264261 0.9553073
## 32.00 1.188397 0.6264261 0.9553073
## 64.00 1.188397 0.6264261 0.9553073
## 128.00 1.188397 0.6264261 0.9553073
## 256.00 1.188397 0.6264261 0.9553073
## 512.00 1.188397 0.6264261 0.9553073
## 1024.00 1.188397 0.6264261 0.9553073
## 2048.00 1.188397 0.6264261 0.9553073
##
## Tuning parameter 'sigma' was held constant at a value of 0.01439803
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01439803 and C = 16.
svmPred <- predict(svmModel, newdata = X_test)
svmResult <- data.frame(as.list(postResample(pred = svmPred, obs = y_test))) |>
mutate(model = 'SVM') |>
relocate(model, RMSE, Rsquared, MAE)
svmResult## model RMSE Rsquared MAE
## 1 SVM 1.074226 0.7380873 0.8590428
## model RMSE Rsquared MAE
## 1 SVM 1.074226 0.7380873 0.8590428
## 2 MARS 1.066548 0.6964923 0.7961690
## 3 knn 1.498845 0.3961932 1.1798750
## 4 nnet 1.630832 0.2647858 1.3883322
The SVM model produced the highest \(R^2\) value indicating it is the best model.
## Overall
## ManufacturingProcess13 100.00000
## ManufacturingProcess32 97.21774
## BiologicalMaterial06 86.44833
## ManufacturingProcess17 84.61263
## BiologicalMaterial03 82.57291
## BiologicalMaterial12 81.65567
## ManufacturingProcess36 72.50145
## ManufacturingProcess09 68.96933
## BiologicalMaterial02 65.77812
## BiologicalMaterial09 57.98958
The manufacturing process and biological material predictors are split evenly in the top 10 in the SVM model. In the previous exercise, the PLS model was the best linear model and the manufacturing processes were the most important predictors.
Manufacturing Process 32 and 09 have the strongest correlation with the Yield and Manufacturing Process 36 has the highest inverse correlation with the Yield.