Objective

File to calculate the Chi Square test, Fisher Test and Correspondence Analysis if feasible for different periods. The goal is to understand if there is a significative relation between ideology and the acceptance/rejection of concepts.

Loading required data - copy from previous file

## New names:
## • `note` -> `note...1`
## • `note` -> `note...2`

Transformation of matrices in Contingency tables

In this fragment of code we transform the matrices we had in contigency tables to make the calculations. We need to select the period (ph1,, ph2, ph3) and the concept, since a single table per concept is created.

Settings

Running the contingency tables

Fisher Test

## [1] "Carem progresses"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 3.19e-11
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.0007957
## alternative hypothesis: two.sided
## [1] "made in Argentina"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "technological leadership"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.05558
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "power reactor"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.1095
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "build the Carem"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.03959
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.02159
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.2758
## alternative hypothesis: two.sided
## [1] "military use"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "support for the nuclear plan"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.3083
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.07035
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "efficient electricity production"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.5
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.6694
## alternative hypothesis: two.sided
## [1] "safe for humans"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.4545
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "request more inclusion in decisions"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "concept no present for period 2"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "national pride"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.02597
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "develop renewables"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "organize protests"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "supported by the dictatorship"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "provide more information"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "solution to environmental issues"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "source of corruption"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.1818
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "boost to exports and economic growth"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.4167
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.3098
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.02374
## alternative hypothesis: two.sided
## [1] "supported by the Kirchners"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "generates employment"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.3631
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "maximum priority"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.5294
## alternative hypothesis: two.sided
## [1] "receives funding"
## [1] "concept no present for period 1"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.002716
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.1582
## alternative hypothesis: two.sided
## [1] "reasonable cost"
## [1] "concept no present for period 1"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.3333
## alternative hypothesis: two.sided
## [1] "is at risk"
## [1] "concept no present for period 1"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "SMR"
## [1] "concept no present for period 1"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "contributes to the country's development"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "seek private funding"
## [1] "concept no present for period 1"
## [1] "concept no present for period 2"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 0.4667
## alternative hypothesis: two.sided
## [1] "nationalize contractors"
## [1] "concept no present for period 1"
## [1] "concept no present for period 2"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided
## [1] "strategic project"
## [1] "concept no present for period 1"
## [1] "concept no present for period 2"
## 
##  Fisher's Exact Test for Count Data
## 
## data:  df
## p-value = 1
## alternative hypothesis: two.sided

Chi-Square test

## [1] "Carem progresses"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 0.66154, df = 2, p-value = 0.7184
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 46.225, df = 2, p-value = 9.168e-11
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 20.563, df = 2, p-value = 3.426e-05
## [1] "made in Argentina"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 1.0181, df = 2, p-value = 0.6011
## [1] "technological leadership"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 6.9802, df = 2, p-value = 0.0305
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 0.38941, df = 2, p-value = 0.8231
## [1] "power reactor"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 10.077, df = 2, p-value = 0.006482
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 0.76436, df = 2, p-value = 0.6824
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "build the Carem"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 6.9351, df = 2, p-value = 0.03119
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 7.5136, df = 2, p-value = 0.02336
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 2.6423, df = 2, p-value = 0.2668
## [1] "military use"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 0.75, df = 2, p-value = 0.6873
## [1] "support for the nuclear plan"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 1.8112, df = 2, p-value = 0.4043
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 6.5764, df = 2, p-value = 0.03732
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "efficient electricity production"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 1.5789, df = 2, p-value = 0.4541
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 0.72523, df = 2, p-value = 0.6959
## [1] "safe for humans"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "request more inclusion in decisions"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "concept no present for period 2"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "national pride"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 8.8, df = 2, p-value = 0.01228
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "develop renewables"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "organize protests"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "supported by the dictatorship"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "provide more information"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "solution to environmental issues"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 2, df = 2, p-value = 0.3679
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "source of corruption"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "boost to exports and economic growth"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 4.0408, df = 2, p-value = 0.1326
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 2.3087, df = 2, p-value = 0.3153
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 15.047, df = 2, p-value = 0.0005402
## [1] "supported by the Kirchners"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "generates employment"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 3.1112, df = 2, p-value = 0.2111
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "maximum priority"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 2.55, df = 2, p-value = 0.2794
## [1] "receives funding"
## [1] "concept no present for period 1"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 11.134, df = 2, p-value = 0.003823
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 4.2589, df = 2, p-value = 0.1189
## [1] "reasonable cost"
## [1] "concept no present for period 1"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "is at risk"
## [1] "concept no present for period 1"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 0.98684, df = 2, p-value = 0.6105
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "SMR"
## [1] "concept no present for period 1"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "contributes to the country's development"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "seek private funding"
## [1] "concept no present for period 1"
## [1] "concept no present for period 2"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = 1.6071, df = 2, p-value = 0.4477
## [1] "nationalize contractors"
## [1] "concept no present for period 1"
## [1] "concept no present for period 2"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## [1] "strategic project"
## [1] "concept no present for period 1"
## [1] "concept no present for period 2"
## 
##  Pearson's Chi-squared test
## 
## data:  df
## X-squared = NaN, df = 2, p-value = NA
## For item 1 : 86 observations
## For item 2 : 39 observations
## For item 3 : 16 observations
## For item 4 : 21 observations
## For item 5 : 33 observations
## For item 6 : 7 observations
## For item 7 : 26 observations
## For item 8 : 11 observations
## For item 9 : 12 observations
## For item 10 : 3 observations
## For item 11 : 12 observations
## For item 12 : 5 observations
## For item 13 : 7 observations
## For item 14 : 4 observations
## For item 15 : 7 observations
## For item 16 : 6 observations
## For item 17 : 2 observations
## For item 18 : 9 observations
## For item 19 : 7 observations
## For item 20 : 6 observations
## For item 21 : 1 observations
## For item 22 : 0 observations
## For item 23 : 0 observations
## For item 24 : 0 observations
## For item 25 : 0 observations
## For item 26 : 3 observations
## For item 27 : 0 observations
## For item 28 : 0 observations
## For item 29 : 0 observations
## For item 1 : 200 observations
## For item 2 : 69 observations
## For item 3 : 62 observations
## For item 4 : 64 observations
## For item 5 : 19 observations
## For item 6 : 1 observations
## For item 7 : 55 observations
## For item 8 : 20 observations
## For item 9 : 2 observations
## For item 10 : 0 observations
## For item 11 : 4 observations
## For item 12 : 2 observations
## For item 13 : 17 observations
## For item 14 : 3 observations
## For item 15 : 1 observations
## For item 16 : 1 observations
## For item 17 : 11 observations
## For item 18 : 25 observations
## For item 19 : 17 observations
## For item 20 : 143 observations
## For item 21 : 1 observations
## For item 22 : 41 observations
## For item 23 : 6 observations
## For item 24 : 75 observations
## For item 25 : 23 observations
## For item 26 : 5 observations
## For item 27 : 0 observations
## For item 28 : 0 observations
## For item 29 : 0 observations
## For item 1 : 234 observations
## For item 2 : 167 observations
## For item 3 : 178 observations
## For item 4 : 97 observations
## For item 5 : 38 observations
## For item 6 : 6 observations
## For item 7 : 39 observations
## For item 8 : 65 observations
## For item 9 : 9 observations
## For item 10 : 1 observations
## For item 11 : 10 observations
## For item 12 : 1 observations
## For item 13 : 1 observations
## For item 14 : 1 observations
## For item 15 : 5 observations
## For item 16 : 82 observations
## For item 17 : 2 observations
## For item 18 : 102 observations
## For item 19 : 14 observations
## For item 20 : 31 observations
## For item 21 : 17 observations
## For item 22 : 18 observations
## For item 23 : 3 observations
## For item 24 : 2 observations
## For item 25 : 162 observations
## For item 26 : 48 observations
## For item 27 : 15 observations
## For item 28 : 13 observations
## For item 29 : 26 observations

Procedure departing from Events lists - Deprecated

We won´t use this method since Event List perhaps are not updated with changes included in the last part of the analysis about ideology of certain institutions.