1. En cierta universidad se estima que a lo sumo 25% de los estudiantes van en bicicleta a la escuela. ¿Parece que ésta es una estimación válida si, en una muestra aleatoria de 90 estudiantes universitarios, se encuentra que 28 van en bicicleta a la escuela? Utilice un nivel de significancia de 0.05.
n=90
alpha=0.05
x=28
pbarra=x/n  #proporción de la muestra
p=0.25  # proporcion_hipotetica

# Prueba de hipótesis de una proporción
resultado_prueba <- prop.test(x = pbarra*n, n = n, p = p, alternative = "greater")

ES <- sqrt(p*(1-p)/n)  #K) Error estándar (= desviación estándar del estadístico)
z<- (pbarra - p)/ES    #L) Valor de prueba
c=qnorm(1-alpha)
c;z
## [1] 1.644854
## [1] 1.338877
# Mostrar resultados
cat("Resultado de la prueba de hipótesis:\n")
## Resultado de la prueba de hipótesis:
print(resultado_prueba)
## 
##  1-sample proportions test with continuity correction
## 
## data:  pbarra * n out of n, null probability p
## X-squared = 1.4815, df = 1, p-value = 0.1118
## alternative hypothesis: true p is greater than 0.25
## 95 percent confidence interval:
##  0.2323325 1.0000000
## sample estimates:
##         p 
## 0.3111111

R// se acepta la hipotesis nula QUE MENCIONA QUE P <= 25% , ya que p-value es mayor a alpha