Nama : Rajni Shrinishaa, NRP : 5006211082, Kelas : Business Intelligence

Tugas Business Intelligence

Data yang digunakan adalah data Fish Market. Terdapat variabel-variabel berupa

variabel dependen pada data adalah Weight(Y) dan variabel independen berupa Length, Height, dan Width (X1, X2, X3).

Pertama, import data yang akan digunakan.

#import file
fish<-read.csv("D:/BINTEL/Fish.csv")
fish
##       Species Weight Length1 Length2 Length3  Height  Width
## 1       Bream  242.0    23.2    25.4    30.0 11.5200 4.0200
## 2       Bream  290.0    24.0    26.3    31.2 12.4800 4.3056
## 3       Bream  340.0    23.9    26.5    31.1 12.3778 4.6961
## 4       Bream  363.0    26.3    29.0    33.5 12.7300 4.4555
## 5       Bream  430.0    26.5    29.0    34.0 12.4440 5.1340
## 6       Bream  450.0    26.8    29.7    34.7 13.6024 4.9274
## 7       Bream  500.0    26.8    29.7    34.5 14.1795 5.2785
## 8       Bream  390.0    27.6    30.0    35.0 12.6700 4.6900
## 9       Bream  450.0    27.6    30.0    35.1 14.0049 4.8438
## 10      Bream  500.0    28.5    30.7    36.2 14.2266 4.9594
## 11      Bream  475.0    28.4    31.0    36.2 14.2628 5.1042
## 12      Bream  500.0    28.7    31.0    36.2 14.3714 4.8146
## 13      Bream  500.0    29.1    31.5    36.4 13.7592 4.3680
## 14      Bream  340.0    29.5    32.0    37.3 13.9129 5.0728
## 15      Bream  600.0    29.4    32.0    37.2 14.9544 5.1708
## 16      Bream  600.0    29.4    32.0    37.2 15.4380 5.5800
## 17      Bream  700.0    30.4    33.0    38.3 14.8604 5.2854
## 18      Bream  700.0    30.4    33.0    38.5 14.9380 5.1975
## 19      Bream  610.0    30.9    33.5    38.6 15.6330 5.1338
## 20      Bream  650.0    31.0    33.5    38.7 14.4738 5.7276
## 21      Bream  575.0    31.3    34.0    39.5 15.1285 5.5695
## 22      Bream  685.0    31.4    34.0    39.2 15.9936 5.3704
## 23      Bream  620.0    31.5    34.5    39.7 15.5227 5.2801
## 24      Bream  680.0    31.8    35.0    40.6 15.4686 6.1306
## 25      Bream  700.0    31.9    35.0    40.5 16.2405 5.5890
## 26      Bream  725.0    31.8    35.0    40.9 16.3600 6.0532
## 27      Bream  720.0    32.0    35.0    40.6 16.3618 6.0900
## 28      Bream  714.0    32.7    36.0    41.5 16.5170 5.8515
## 29      Bream  850.0    32.8    36.0    41.6 16.8896 6.1984
## 30      Bream 1000.0    33.5    37.0    42.6 18.9570 6.6030
## 31      Bream  920.0    35.0    38.5    44.1 18.0369 6.3063
## 32      Bream  955.0    35.0    38.5    44.0 18.0840 6.2920
## 33      Bream  925.0    36.2    39.5    45.3 18.7542 6.7497
## 34      Bream  975.0    37.4    41.0    45.9 18.6354 6.7473
## 35      Bream  950.0    38.0    41.0    46.5 17.6235 6.3705
## 36      Roach   40.0    12.9    14.1    16.2  4.1472 2.2680
## 37      Roach   69.0    16.5    18.2    20.3  5.2983 2.8217
## 38      Roach   78.0    17.5    18.8    21.2  5.5756 2.9044
## 39      Roach   87.0    18.2    19.8    22.2  5.6166 3.1746
## 40      Roach  120.0    18.6    20.0    22.2  6.2160 3.5742
## 41      Roach    0.0    19.0    20.5    22.8  6.4752 3.3516
## 42      Roach  110.0    19.1    20.8    23.1  6.1677 3.3957
## 43      Roach  120.0    19.4    21.0    23.7  6.1146 3.2943
## 44      Roach  150.0    20.4    22.0    24.7  5.8045 3.7544
## 45      Roach  145.0    20.5    22.0    24.3  6.6339 3.5478
## 46      Roach  160.0    20.5    22.5    25.3  7.0334 3.8203
## 47      Roach  140.0    21.0    22.5    25.0  6.5500 3.3250
## 48      Roach  160.0    21.1    22.5    25.0  6.4000 3.8000
## 49      Roach  169.0    22.0    24.0    27.2  7.5344 3.8352
## 50      Roach  161.0    22.0    23.4    26.7  6.9153 3.6312
## 51      Roach  200.0    22.1    23.5    26.8  7.3968 4.1272
## 52      Roach  180.0    23.6    25.2    27.9  7.0866 3.9060
## 53      Roach  290.0    24.0    26.0    29.2  8.8768 4.4968
## 54      Roach  272.0    25.0    27.0    30.6  8.5680 4.7736
## 55      Roach  390.0    29.5    31.7    35.0  9.4850 5.3550
## 56  Whitefish  270.0    23.6    26.0    28.7  8.3804 4.2476
## 57  Whitefish  270.0    24.1    26.5    29.3  8.1454 4.2485
## 58  Whitefish  306.0    25.6    28.0    30.8  8.7780 4.6816
## 59  Whitefish  540.0    28.5    31.0    34.0 10.7440 6.5620
## 60  Whitefish  800.0    33.7    36.4    39.6 11.7612 6.5736
## 61  Whitefish 1000.0    37.3    40.0    43.5 12.3540 6.5250
## 62     Parkki   55.0    13.5    14.7    16.5  6.8475 2.3265
## 63     Parkki   60.0    14.3    15.5    17.4  6.5772 2.3142
## 64     Parkki   90.0    16.3    17.7    19.8  7.4052 2.6730
## 65     Parkki  120.0    17.5    19.0    21.3  8.3922 2.9181
## 66     Parkki  150.0    18.4    20.0    22.4  8.8928 3.2928
## 67     Parkki  140.0    19.0    20.7    23.2  8.5376 3.2944
## 68     Parkki  170.0    19.0    20.7    23.2  9.3960 3.4104
## 69     Parkki  145.0    19.8    21.5    24.1  9.7364 3.1571
## 70     Parkki  200.0    21.2    23.0    25.8 10.3458 3.6636
## 71     Parkki  273.0    23.0    25.0    28.0 11.0880 4.1440
## 72     Parkki  300.0    24.0    26.0    29.0 11.3680 4.2340
## 73      Perch    5.9     7.5     8.4     8.8  2.1120 1.4080
## 74      Perch   32.0    12.5    13.7    14.7  3.5280 1.9992
## 75      Perch   40.0    13.8    15.0    16.0  3.8240 2.4320
## 76      Perch   51.5    15.0    16.2    17.2  4.5924 2.6316
## 77      Perch   70.0    15.7    17.4    18.5  4.5880 2.9415
## 78      Perch  100.0    16.2    18.0    19.2  5.2224 3.3216
## 79      Perch   78.0    16.8    18.7    19.4  5.1992 3.1234
## 80      Perch   80.0    17.2    19.0    20.2  5.6358 3.0502
## 81      Perch   85.0    17.8    19.6    20.8  5.1376 3.0368
## 82      Perch   85.0    18.2    20.0    21.0  5.0820 2.7720
## 83      Perch  110.0    19.0    21.0    22.5  5.6925 3.5550
## 84      Perch  115.0    19.0    21.0    22.5  5.9175 3.3075
## 85      Perch  125.0    19.0    21.0    22.5  5.6925 3.6675
## 86      Perch  130.0    19.3    21.3    22.8  6.3840 3.5340
## 87      Perch  120.0    20.0    22.0    23.5  6.1100 3.4075
## 88      Perch  120.0    20.0    22.0    23.5  5.6400 3.5250
## 89      Perch  130.0    20.0    22.0    23.5  6.1100 3.5250
## 90      Perch  135.0    20.0    22.0    23.5  5.8750 3.5250
## 91      Perch  110.0    20.0    22.0    23.5  5.5225 3.9950
## 92      Perch  130.0    20.5    22.5    24.0  5.8560 3.6240
## 93      Perch  150.0    20.5    22.5    24.0  6.7920 3.6240
## 94      Perch  145.0    20.7    22.7    24.2  5.9532 3.6300
## 95      Perch  150.0    21.0    23.0    24.5  5.2185 3.6260
## 96      Perch  170.0    21.5    23.5    25.0  6.2750 3.7250
## 97      Perch  225.0    22.0    24.0    25.5  7.2930 3.7230
## 98      Perch  145.0    22.0    24.0    25.5  6.3750 3.8250
## 99      Perch  188.0    22.6    24.6    26.2  6.7334 4.1658
## 100     Perch  180.0    23.0    25.0    26.5  6.4395 3.6835
## 101     Perch  197.0    23.5    25.6    27.0  6.5610 4.2390
## 102     Perch  218.0    25.0    26.5    28.0  7.1680 4.1440
## 103     Perch  300.0    25.2    27.3    28.7  8.3230 5.1373
## 104     Perch  260.0    25.4    27.5    28.9  7.1672 4.3350
## 105     Perch  265.0    25.4    27.5    28.9  7.0516 4.3350
## 106     Perch  250.0    25.4    27.5    28.9  7.2828 4.5662
## 107     Perch  250.0    25.9    28.0    29.4  7.8204 4.2042
## 108     Perch  300.0    26.9    28.7    30.1  7.5852 4.6354
## 109     Perch  320.0    27.8    30.0    31.6  7.6156 4.7716
## 110     Perch  514.0    30.5    32.8    34.0 10.0300 6.0180
## 111     Perch  556.0    32.0    34.5    36.5 10.2565 6.3875
## 112     Perch  840.0    32.5    35.0    37.3 11.4884 7.7957
## 113     Perch  685.0    34.0    36.5    39.0 10.8810 6.8640
## 114     Perch  700.0    34.0    36.0    38.3 10.6091 6.7408
## 115     Perch  700.0    34.5    37.0    39.4 10.8350 6.2646
## 116     Perch  690.0    34.6    37.0    39.3 10.5717 6.3666
## 117     Perch  900.0    36.5    39.0    41.4 11.1366 7.4934
## 118     Perch  650.0    36.5    39.0    41.4 11.1366 6.0030
## 119     Perch  820.0    36.6    39.0    41.3 12.4313 7.3514
## 120     Perch  850.0    36.9    40.0    42.3 11.9286 7.1064
## 121     Perch  900.0    37.0    40.0    42.5 11.7300 7.2250
## 122     Perch 1015.0    37.0    40.0    42.4 12.3808 7.4624
## 123     Perch  820.0    37.1    40.0    42.5 11.1350 6.6300
## 124     Perch 1100.0    39.0    42.0    44.6 12.8002 6.8684
## 125     Perch 1000.0    39.8    43.0    45.2 11.9328 7.2772
## 126     Perch 1100.0    40.1    43.0    45.5 12.5125 7.4165
## 127     Perch 1000.0    40.2    43.5    46.0 12.6040 8.1420
## 128     Perch 1000.0    41.1    44.0    46.6 12.4888 7.5958
## 129      Pike  200.0    30.0    32.3    34.8  5.5680 3.3756
## 130      Pike  300.0    31.7    34.0    37.8  5.7078 4.1580
## 131      Pike  300.0    32.7    35.0    38.8  5.9364 4.3844
## 132      Pike  300.0    34.8    37.3    39.8  6.2884 4.0198
## 133      Pike  430.0    35.5    38.0    40.5  7.2900 4.5765
## 134      Pike  345.0    36.0    38.5    41.0  6.3960 3.9770
## 135      Pike  456.0    40.0    42.5    45.5  7.2800 4.3225
## 136      Pike  510.0    40.0    42.5    45.5  6.8250 4.4590
## 137      Pike  540.0    40.1    43.0    45.8  7.7860 5.1296
## 138      Pike  500.0    42.0    45.0    48.0  6.9600 4.8960
## 139      Pike  567.0    43.2    46.0    48.7  7.7920 4.8700
## 140      Pike  770.0    44.8    48.0    51.2  7.6800 5.3760
## 141      Pike  950.0    48.3    51.7    55.1  8.9262 6.1712
## 142      Pike 1250.0    52.0    56.0    59.7 10.6863 6.9849
## 143      Pike 1600.0    56.0    60.0    64.0  9.6000 6.1440
## 144      Pike 1550.0    56.0    60.0    64.0  9.6000 6.1440
## 145      Pike 1650.0    59.0    63.4    68.0 10.8120 7.4800
## 146     Smelt    6.7     9.3     9.8    10.8  1.7388 1.0476
## 147     Smelt    7.5    10.0    10.5    11.6  1.9720 1.1600
## 148     Smelt    7.0    10.1    10.6    11.6  1.7284 1.1484
## 149     Smelt    9.7    10.4    11.0    12.0  2.1960 1.3800
## 150     Smelt    9.8    10.7    11.2    12.4  2.0832 1.2772
## 151     Smelt    8.7    10.8    11.3    12.6  1.9782 1.2852
## 152     Smelt   10.0    11.3    11.8    13.1  2.2139 1.2838
## 153     Smelt    9.9    11.3    11.8    13.1  2.2139 1.1659
## 154     Smelt    9.8    11.4    12.0    13.2  2.2044 1.1484
## 155     Smelt   12.2    11.5    12.2    13.4  2.0904 1.3936
## 156     Smelt   13.4    11.7    12.4    13.5  2.4300 1.2690
## 157     Smelt   12.2    12.1    13.0    13.8  2.2770 1.2558
## 158     Smelt   19.7    13.2    14.3    15.2  2.8728 2.0672
## 159     Smelt   19.9    13.8    15.0    16.2  2.9322 1.8792

Untuk data Length dijadikan satu berupa rata-rata dari Length1, 2, dan 3. Kemudian variabel menjadi:

#rata-rata array length dijadikan satu
Length<-numeric(159)
i=1
for (i in 1:159){
  Length[i]=(fish$Length1[i]+fish$Length2[i]+fish$Length3[i])/3
}
Length
##   [1] 26.200000 27.166667 27.166667 29.600000 29.833333 30.400000 30.333333
##   [8] 30.866667 30.900000 31.800000 31.866667 31.966667 32.333333 32.933333
##  [15] 32.866667 32.866667 33.900000 33.966667 34.333333 34.400000 34.933333
##  [22] 34.866667 35.233333 35.800000 35.800000 35.900000 35.866667 36.733333
##  [29] 36.800000 37.700000 39.200000 39.166667 40.333333 41.433333 41.833333
##  [36] 14.400000 18.333333 19.166667 20.066667 20.266667 20.766667 21.000000
##  [43] 21.366667 22.366667 22.266667 22.766667 22.833333 22.866667 24.400000
##  [50] 24.033333 24.133333 25.566667 26.400000 27.533333 32.066667 26.100000
##  [57] 26.633333 28.133333 31.166667 36.566667 40.266667 14.900000 15.733333
##  [64] 17.933333 19.266667 20.266667 20.966667 20.966667 21.800000 23.333333
##  [71] 25.333333 26.333333  8.233333 13.633333 14.933333 16.133333 17.200000
##  [78] 17.800000 18.300000 18.800000 19.400000 19.733333 20.833333 20.833333
##  [85] 20.833333 21.133333 21.833333 21.833333 21.833333 21.833333 21.833333
##  [92] 22.333333 22.333333 22.533333 22.833333 23.333333 23.833333 23.833333
##  [99] 24.466667 24.833333 25.366667 26.500000 27.066667 27.266667 27.266667
## [106] 27.266667 27.766667 28.566667 29.800000 32.433333 34.333333 34.933333
## [113] 36.500000 36.100000 36.966667 36.966667 38.966667 38.966667 38.966667
## [120] 39.733333 39.833333 39.800000 39.866667 41.866667 42.666667 42.866667
## [127] 43.233333 43.900000 32.366667 34.500000 35.500000 37.300000 38.000000
## [134] 38.500000 42.666667 42.666667 42.966667 45.000000 45.966667 48.000000
## [141] 51.700000 55.900000 60.000000 60.000000 63.466667  9.966667 10.700000
## [148] 10.766667 11.133333 11.433333 11.566667 12.066667 12.066667 12.200000
## [155] 12.366667 12.533333 12.966667 14.233333 15.000000
#buat dataframe baru dengan data length yang baru
datafish<-data.frame(fish$Species, fish$Weight, Length,fish$Height, fish$Width)
colnames(datafish)<-c("Species","Y","X1","X2","X3")
datafish
##       Species      Y        X1      X2     X3
## 1       Bream  242.0 26.200000 11.5200 4.0200
## 2       Bream  290.0 27.166667 12.4800 4.3056
## 3       Bream  340.0 27.166667 12.3778 4.6961
## 4       Bream  363.0 29.600000 12.7300 4.4555
## 5       Bream  430.0 29.833333 12.4440 5.1340
## 6       Bream  450.0 30.400000 13.6024 4.9274
## 7       Bream  500.0 30.333333 14.1795 5.2785
## 8       Bream  390.0 30.866667 12.6700 4.6900
## 9       Bream  450.0 30.900000 14.0049 4.8438
## 10      Bream  500.0 31.800000 14.2266 4.9594
## 11      Bream  475.0 31.866667 14.2628 5.1042
## 12      Bream  500.0 31.966667 14.3714 4.8146
## 13      Bream  500.0 32.333333 13.7592 4.3680
## 14      Bream  340.0 32.933333 13.9129 5.0728
## 15      Bream  600.0 32.866667 14.9544 5.1708
## 16      Bream  600.0 32.866667 15.4380 5.5800
## 17      Bream  700.0 33.900000 14.8604 5.2854
## 18      Bream  700.0 33.966667 14.9380 5.1975
## 19      Bream  610.0 34.333333 15.6330 5.1338
## 20      Bream  650.0 34.400000 14.4738 5.7276
## 21      Bream  575.0 34.933333 15.1285 5.5695
## 22      Bream  685.0 34.866667 15.9936 5.3704
## 23      Bream  620.0 35.233333 15.5227 5.2801
## 24      Bream  680.0 35.800000 15.4686 6.1306
## 25      Bream  700.0 35.800000 16.2405 5.5890
## 26      Bream  725.0 35.900000 16.3600 6.0532
## 27      Bream  720.0 35.866667 16.3618 6.0900
## 28      Bream  714.0 36.733333 16.5170 5.8515
## 29      Bream  850.0 36.800000 16.8896 6.1984
## 30      Bream 1000.0 37.700000 18.9570 6.6030
## 31      Bream  920.0 39.200000 18.0369 6.3063
## 32      Bream  955.0 39.166667 18.0840 6.2920
## 33      Bream  925.0 40.333333 18.7542 6.7497
## 34      Bream  975.0 41.433333 18.6354 6.7473
## 35      Bream  950.0 41.833333 17.6235 6.3705
## 36      Roach   40.0 14.400000  4.1472 2.2680
## 37      Roach   69.0 18.333333  5.2983 2.8217
## 38      Roach   78.0 19.166667  5.5756 2.9044
## 39      Roach   87.0 20.066667  5.6166 3.1746
## 40      Roach  120.0 20.266667  6.2160 3.5742
## 41      Roach    0.0 20.766667  6.4752 3.3516
## 42      Roach  110.0 21.000000  6.1677 3.3957
## 43      Roach  120.0 21.366667  6.1146 3.2943
## 44      Roach  150.0 22.366667  5.8045 3.7544
## 45      Roach  145.0 22.266667  6.6339 3.5478
## 46      Roach  160.0 22.766667  7.0334 3.8203
## 47      Roach  140.0 22.833333  6.5500 3.3250
## 48      Roach  160.0 22.866667  6.4000 3.8000
## 49      Roach  169.0 24.400000  7.5344 3.8352
## 50      Roach  161.0 24.033333  6.9153 3.6312
## 51      Roach  200.0 24.133333  7.3968 4.1272
## 52      Roach  180.0 25.566667  7.0866 3.9060
## 53      Roach  290.0 26.400000  8.8768 4.4968
## 54      Roach  272.0 27.533333  8.5680 4.7736
## 55      Roach  390.0 32.066667  9.4850 5.3550
## 56  Whitefish  270.0 26.100000  8.3804 4.2476
## 57  Whitefish  270.0 26.633333  8.1454 4.2485
## 58  Whitefish  306.0 28.133333  8.7780 4.6816
## 59  Whitefish  540.0 31.166667 10.7440 6.5620
## 60  Whitefish  800.0 36.566667 11.7612 6.5736
## 61  Whitefish 1000.0 40.266667 12.3540 6.5250
## 62     Parkki   55.0 14.900000  6.8475 2.3265
## 63     Parkki   60.0 15.733333  6.5772 2.3142
## 64     Parkki   90.0 17.933333  7.4052 2.6730
## 65     Parkki  120.0 19.266667  8.3922 2.9181
## 66     Parkki  150.0 20.266667  8.8928 3.2928
## 67     Parkki  140.0 20.966667  8.5376 3.2944
## 68     Parkki  170.0 20.966667  9.3960 3.4104
## 69     Parkki  145.0 21.800000  9.7364 3.1571
## 70     Parkki  200.0 23.333333 10.3458 3.6636
## 71     Parkki  273.0 25.333333 11.0880 4.1440
## 72     Parkki  300.0 26.333333 11.3680 4.2340
## 73      Perch    5.9  8.233333  2.1120 1.4080
## 74      Perch   32.0 13.633333  3.5280 1.9992
## 75      Perch   40.0 14.933333  3.8240 2.4320
## 76      Perch   51.5 16.133333  4.5924 2.6316
## 77      Perch   70.0 17.200000  4.5880 2.9415
## 78      Perch  100.0 17.800000  5.2224 3.3216
## 79      Perch   78.0 18.300000  5.1992 3.1234
## 80      Perch   80.0 18.800000  5.6358 3.0502
## 81      Perch   85.0 19.400000  5.1376 3.0368
## 82      Perch   85.0 19.733333  5.0820 2.7720
## 83      Perch  110.0 20.833333  5.6925 3.5550
## 84      Perch  115.0 20.833333  5.9175 3.3075
## 85      Perch  125.0 20.833333  5.6925 3.6675
## 86      Perch  130.0 21.133333  6.3840 3.5340
## 87      Perch  120.0 21.833333  6.1100 3.4075
## 88      Perch  120.0 21.833333  5.6400 3.5250
## 89      Perch  130.0 21.833333  6.1100 3.5250
## 90      Perch  135.0 21.833333  5.8750 3.5250
## 91      Perch  110.0 21.833333  5.5225 3.9950
## 92      Perch  130.0 22.333333  5.8560 3.6240
## 93      Perch  150.0 22.333333  6.7920 3.6240
## 94      Perch  145.0 22.533333  5.9532 3.6300
## 95      Perch  150.0 22.833333  5.2185 3.6260
## 96      Perch  170.0 23.333333  6.2750 3.7250
## 97      Perch  225.0 23.833333  7.2930 3.7230
## 98      Perch  145.0 23.833333  6.3750 3.8250
## 99      Perch  188.0 24.466667  6.7334 4.1658
## 100     Perch  180.0 24.833333  6.4395 3.6835
## 101     Perch  197.0 25.366667  6.5610 4.2390
## 102     Perch  218.0 26.500000  7.1680 4.1440
## 103     Perch  300.0 27.066667  8.3230 5.1373
## 104     Perch  260.0 27.266667  7.1672 4.3350
## 105     Perch  265.0 27.266667  7.0516 4.3350
## 106     Perch  250.0 27.266667  7.2828 4.5662
## 107     Perch  250.0 27.766667  7.8204 4.2042
## 108     Perch  300.0 28.566667  7.5852 4.6354
## 109     Perch  320.0 29.800000  7.6156 4.7716
## 110     Perch  514.0 32.433333 10.0300 6.0180
## 111     Perch  556.0 34.333333 10.2565 6.3875
## 112     Perch  840.0 34.933333 11.4884 7.7957
## 113     Perch  685.0 36.500000 10.8810 6.8640
## 114     Perch  700.0 36.100000 10.6091 6.7408
## 115     Perch  700.0 36.966667 10.8350 6.2646
## 116     Perch  690.0 36.966667 10.5717 6.3666
## 117     Perch  900.0 38.966667 11.1366 7.4934
## 118     Perch  650.0 38.966667 11.1366 6.0030
## 119     Perch  820.0 38.966667 12.4313 7.3514
## 120     Perch  850.0 39.733333 11.9286 7.1064
## 121     Perch  900.0 39.833333 11.7300 7.2250
## 122     Perch 1015.0 39.800000 12.3808 7.4624
## 123     Perch  820.0 39.866667 11.1350 6.6300
## 124     Perch 1100.0 41.866667 12.8002 6.8684
## 125     Perch 1000.0 42.666667 11.9328 7.2772
## 126     Perch 1100.0 42.866667 12.5125 7.4165
## 127     Perch 1000.0 43.233333 12.6040 8.1420
## 128     Perch 1000.0 43.900000 12.4888 7.5958
## 129      Pike  200.0 32.366667  5.5680 3.3756
## 130      Pike  300.0 34.500000  5.7078 4.1580
## 131      Pike  300.0 35.500000  5.9364 4.3844
## 132      Pike  300.0 37.300000  6.2884 4.0198
## 133      Pike  430.0 38.000000  7.2900 4.5765
## 134      Pike  345.0 38.500000  6.3960 3.9770
## 135      Pike  456.0 42.666667  7.2800 4.3225
## 136      Pike  510.0 42.666667  6.8250 4.4590
## 137      Pike  540.0 42.966667  7.7860 5.1296
## 138      Pike  500.0 45.000000  6.9600 4.8960
## 139      Pike  567.0 45.966667  7.7920 4.8700
## 140      Pike  770.0 48.000000  7.6800 5.3760
## 141      Pike  950.0 51.700000  8.9262 6.1712
## 142      Pike 1250.0 55.900000 10.6863 6.9849
## 143      Pike 1600.0 60.000000  9.6000 6.1440
## 144      Pike 1550.0 60.000000  9.6000 6.1440
## 145      Pike 1650.0 63.466667 10.8120 7.4800
## 146     Smelt    6.7  9.966667  1.7388 1.0476
## 147     Smelt    7.5 10.700000  1.9720 1.1600
## 148     Smelt    7.0 10.766667  1.7284 1.1484
## 149     Smelt    9.7 11.133333  2.1960 1.3800
## 150     Smelt    9.8 11.433333  2.0832 1.2772
## 151     Smelt    8.7 11.566667  1.9782 1.2852
## 152     Smelt   10.0 12.066667  2.2139 1.2838
## 153     Smelt    9.9 12.066667  2.2139 1.1659
## 154     Smelt    9.8 12.200000  2.2044 1.1484
## 155     Smelt   12.2 12.366667  2.0904 1.3936
## 156     Smelt   13.4 12.533333  2.4300 1.2690
## 157     Smelt   12.2 12.966667  2.2770 1.2558
## 158     Smelt   19.7 14.233333  2.8728 2.0672
## 159     Smelt   19.9 15.000000  2.9322 1.8792

Statistika Deskriptif

hal ini dilakukan untuk mengetahui deskripsi sederhana data

## 'data.frame':    159 obs. of  5 variables:
##  $ Species: chr  "Bream" "Bream" "Bream" "Bream" ...
##  $ Y      : num  242 290 340 363 430 450 500 390 450 500 ...
##  $ X1     : num  26.2 27.2 27.2 29.6 29.8 ...
##  $ X2     : num  11.5 12.5 12.4 12.7 12.4 ...
##  $ X3     : num  4.02 4.31 4.7 4.46 5.13 ...
##    Species                Y                X1               X2        
##  Length:159         Min.   :   0.0   Min.   : 8.233   Min.   : 1.728  
##  Class :character   1st Qu.: 120.0   1st Qu.:20.983   1st Qu.: 5.945  
##  Mode  :character   Median : 273.0   Median :27.267   Median : 7.786  
##                     Mean   : 398.3   Mean   :28.630   Mean   : 8.971  
##                     3rd Qu.: 650.0   3rd Qu.:36.000   3rd Qu.:12.366  
##                     Max.   :1650.0   Max.   :63.467   Max.   :18.957  
##        X3       
##  Min.   :1.048  
##  1st Qu.:3.386  
##  Median :4.248  
##  Mean   :4.417  
##  3rd Qu.:5.585  
##  Max.   :8.142

Visualisasi Data

#Visualisasi variabel Independen (Length, Heigth, Width) dengan Dependen (Weight)
library(ggplot2)
#menggunakan point
ggplot(data=datafish)+geom_point(mapping=aes(x=Y, y=X1))

ggplot(data=datafish)+geom_point(mapping=aes(x=Y, y=X2))

ggplot(data=datafish)+geom_point(mapping=aes(x=Y, y=X3))

ggplot(data = datafish, aes(x = Y))+geom_histogram(col="Blue", fill="Pink")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = datafish, aes(x = X1))+geom_histogram(col="Red", fill="White")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = datafish, aes(x = X2))+geom_histogram(col="Green", fill="Yellow")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data = datafish, aes(x = X3))+geom_histogram(col="Pink", fill="Black", size=2)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

dalam visualisasi data, digunakan point dan histogram. semakin besar panjang lebar dan tinggi ikan, maka berat ikan semakin besar

Analisis Korelasi

#analisis Korelasi
cor(datafish[,-1])
##            Y        X1        X2        X3
## Y  1.0000000 0.9208174 0.7243453 0.8865066
## X1 0.9208174 1.0000000 0.6594806 0.8747570
## X2 0.7243453 0.6594806 1.0000000 0.7928810
## X3 0.8865066 0.8747570 0.7928810 1.0000000

Berdasarkan matriks korelasi yang didapat, tidak ada nilai negatif maupun 0 pada nilai data korelasi, sehingga dapat disimpulkan semua variabel independen kepada dependen memiliki korelasi positif yang kuat. Jika nilai panjang lebar dan tinggi ikan semakin naik, maka berat ikan cenderung semakin naik.

Model Regresi

karena variabel independen (X) lebih dari satu, maka model regresi yang digunakan adalah model regresi berganda

#model regresi (berganda)
library(car)
## Loading required package: carData
model <- lm(Y ~ X1 + X2 + X3, data = datafish)
vif(model)
##       X1       X2       X3 
## 4.316500 2.729347 6.568623
summary(model)
## 
## Call:
## lm(formula = Y ~ X1 + X2 + X3, data = datafish)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -249.43  -74.34  -31.97   77.72  444.42 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -517.976     28.865 -17.945  < 2e-16 ***
## X1            21.161      1.917  11.036  < 2e-16 ***
## X2             9.701      3.826   2.535  0.01223 *  
## X3            50.579     15.092   3.351  0.00101 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 124.8 on 155 degrees of freedom
## Multiple R-squared:  0.8808, Adjusted R-squared:  0.8785 
## F-statistic: 381.8 on 3 and 155 DF,  p-value: < 2.2e-16

Didapatkan p-value kecil (p-value <0.05), maka dapat disimpulkan bahwa koefisien model signifikan dan mempengaruhi variabel dependen (panjang lebar dan tinggi ikan mempengaruhi berat ikan). dan nilai VIF pada variabel < 10 sehingga asumsi terbukti.