# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
# Choose stocks
symbols <- c("AAPL", "DIS", "NKE", "GE", "SBUX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "DIS" "GE" "NKE" "SBUX"
# weight
weights <- c(0.25,
0.25,
0.20,
0.20,
0.10)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 DIS 0.25
## 3 GE 0.2
## 4 NKE 0.2
## 5 SBUX 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00658
## 2 2013-02-28 0.00714
## 3 2013-03-28 0.0296
## 4 2013-04-30 0.0396
## 5 2013-05-31 0.0141
## 6 2013-06-28 -0.0206
## 7 2013-07-31 0.0549
## 8 2013-08-30 -0.00593
## 9 2013-09-30 0.0549
## 10 2013-10-31 0.0700
## # ℹ 50 more rows
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.06
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3] ) +
labs(y = "portfolio returns",
x = "market returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient.
I have a medium to strong portfolio as a lot of my dots are close to the regression line.
Does the plot confirm the beta coefficient you calculated?
My chart shows a 1 to 1 relationship, which confirms the beta coefficient.