library(dplyr) # general wrangling
library(tidyr) # pivot_wider
library(Hmisc) # correlation matrix
library(psych) # fisher's z transformation
library(lme4) # linear mixed model
library(lmerTest) # linear mixed model significance test
library(lavaan) # RI-CLPM
library(semPlot) # semPaths
library(kableExtra) # for styling and scroll_box
# source the helper file
source("00_helpers.R")
This preregistration document is published on Rpubs.
Simulated Data
For the preregistration, we are simulating purely random data with 3
waves of 60 couples X 2 = 120 participants to mimic the shorter design
of study one. We will simulate a few variables:
satis: Dyadic satisfaction with is a relationship
outcome variable
open, consci, extra,
agree neuro: Big Five personality traits
care_self and care_partner: Caregiving
sensitivity answered about one’s self and one’s partner.
Important: Our dyads are distinguishable because
both studies have only heterosexual couples for which one member is male
and the other is female. Data for female participants are under columns
with the suffix _1 and data for male participants are
_2
# set seed
set.seed(202309)
# simulate long dataset
long_dat <- data.frame(
couple = rep(1:60, each = 2*3),
partner = rep(c(1,1,1,2,2,2)),
time = rep(1:3),
satis = rnorm(n = 120*3, mean = 43, sd = 4),
open = rnorm(n = 120*3, mean = 3.4, sd = 0.6),
consci = rnorm(n = 120*3, mean = 3.8, sd = 0.6),
extra = rnorm(n = 120*3, mean = 3.3, sd = 0.9),
agree = rnorm(n = 120*3, mean = 3.8, sd = 0.6),
neuro = rnorm(n = 120*3, mean = 2.5, sd = 0.7),
care_self = rnorm(n = 120*3, mean = 5.2, sd = 1),
care_partner = rnorm(n = 120*3, mean = 5.2, sd = 1)
)
# add random missingness ~ 10%
n_rows <- nrow(long_dat)
n_cols <- which(!names(long_dat) %in% c("couple", "partner", "time"))
row_missing <- matrix(
sample(1:n_rows,
# 10% missingness across all rows and specified columns
round(10/100 *n_rows*length(n_cols),0)),
ncol = length(n_cols))
for(col in 1:length(n_cols)) {
long_dat[row_missing[,col], n_cols[col]] <- NA
}
head(long_dat) %>%
knitr::kable(
caption = "Long data structure: nrow = # participants x # time points"
) %>%
kableExtra::kable_styling()
Long data structure: nrow = # participants x # time points
|
couple
|
partner
|
time
|
satis
|
open
|
consci
|
extra
|
agree
|
neuro
|
care_self
|
care_partner
|
|
1
|
1
|
1
|
40.15540
|
4.107169
|
3.542920
|
3.238459
|
4.169353
|
3.259467
|
6.337092
|
4.918679
|
|
1
|
1
|
2
|
42.27489
|
NA
|
4.727791
|
2.769023
|
4.238659
|
1.335166
|
4.631444
|
5.680176
|
|
1
|
1
|
3
|
44.67430
|
3.380948
|
3.720921
|
1.960166
|
4.722801
|
NA
|
3.108694
|
5.081888
|
|
1
|
2
|
1
|
47.42104
|
3.039429
|
4.134580
|
4.250399
|
3.715369
|
2.359845
|
5.945472
|
4.196117
|
|
1
|
2
|
2
|
40.53377
|
4.228449
|
3.729844
|
2.771892
|
4.401235
|
2.981669
|
4.632316
|
2.444354
|
|
1
|
2
|
3
|
41.12975
|
2.882006
|
3.269303
|
3.233976
|
NA
|
1.574657
|
5.504476
|
3.648827
|
# simulate wide dataset with side-by-side partners
dat <- long_dat %>%
pivot_wider(names_from = partner,
values_from = satis:care_partner)
head(dat) %>%
knitr::kable(
caption = "Wide-ish data structure: nrow = # couples x # time points"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Wide-ish data structure: nrow = # couples x # time points
|
couple
|
time
|
satis_1
|
satis_2
|
open_1
|
open_2
|
consci_1
|
consci_2
|
extra_1
|
extra_2
|
agree_1
|
agree_2
|
neuro_1
|
neuro_2
|
care_self_1
|
care_self_2
|
care_partner_1
|
care_partner_2
|
|
1
|
1
|
40.15540
|
47.42104
|
4.107169
|
3.039429
|
3.542920
|
4.134580
|
3.238459
|
4.250399
|
4.169353
|
3.715369
|
3.259467
|
2.359845
|
6.337092
|
5.945472
|
4.918679
|
4.196117
|
|
1
|
2
|
42.27489
|
40.53377
|
NA
|
4.228449
|
4.727791
|
3.729844
|
2.769023
|
2.771892
|
4.238659
|
4.401235
|
1.335166
|
2.981669
|
4.631444
|
4.632316
|
5.680176
|
2.444354
|
|
1
|
3
|
44.67430
|
41.12975
|
3.380948
|
2.882006
|
3.720921
|
3.269303
|
1.960166
|
3.233976
|
4.722801
|
NA
|
NA
|
1.574657
|
3.108694
|
5.504476
|
5.081888
|
3.648827
|
|
2
|
1
|
44.93158
|
37.70957
|
3.770625
|
2.809172
|
NA
|
3.509657
|
2.887636
|
2.146323
|
4.984539
|
NA
|
2.944746
|
2.270775
|
4.752304
|
5.358629
|
7.537746
|
5.981766
|
|
2
|
2
|
45.80569
|
46.13427
|
2.708207
|
3.187857
|
4.343996
|
NA
|
2.903377
|
3.158886
|
3.693986
|
4.248502
|
1.770387
|
1.444403
|
5.891629
|
4.842329
|
4.552920
|
6.479968
|
|
2
|
3
|
35.79426
|
46.77148
|
2.575654
|
NA
|
4.220857
|
4.390367
|
4.509154
|
2.604352
|
3.972045
|
3.738318
|
NA
|
4.680392
|
7.491243
|
6.292535
|
7.104869
|
4.718923
|
Research Question 1. Evidence of Assortative Mating
H2. Difference in correlations
At baseline, romantic partners are more similar in their
characteristic adaptations than in their personality traits.
I will conduct a \(z\)-difference
test using Fisher’s \(z\)-transformed
bivariate correlations calculated in H1 to test the significance of the
difference between each trait correlation and each CA correlation. A
significant difference is when the two confidence intervals do not
overlap. The hypothesis is fully confirmed if all CA correlations are
significantly larger than all trait correlations; it is partially
confirmed if all CA correlations are significantly larger or
statistically equivalent to all trait correlations; it is rejected if at
least one CA correlation is significantly smaller than at least one
trait correlation. There is no hypothesized difference in similarity
among the CAs.
\[
z_{\text{difference}} = \frac{z_1 - z_2}{\sqrt{\frac{1}{n_1-3} +
\frac{1}{n_2-3}}}
\]
# run function on simulated data
h2_function(cor_tab = h1_results$bivariate) %>%
knitr::kable(caption = "Comparisons of bivariate correlations of personality traits vs CAs") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Comparisons of bivariate correlations of personality traits vs CAs
|
V1
|
V2
|
V1_cor
|
V2_cor
|
z_stat
|
sig
|
|
open
|
consci
|
0.019 [-0.266 - 0.302]
|
-0.264 [-0.513 - 0.025]
|
1.365
|
FALSE
|
|
open
|
extra
|
0.019 [-0.266 - 0.302]
|
-0.082 [-0.345 - 0.193]
|
0.492
|
FALSE
|
|
open
|
agree
|
0.019 [-0.266 - 0.302]
|
0.065 [-0.223 - 0.343]
|
-0.219
|
FALSE
|
|
open
|
neuro
|
0.019 [-0.266 - 0.302]
|
0.062 [-0.226 - 0.34]
|
-0.204
|
FALSE
|
|
open
|
care_self
|
0.019 [-0.266 - 0.302]
|
-0.057 [-0.328 - 0.222]
|
0.367
|
FALSE
|
|
open
|
care_partner
|
0.019 [-0.266 - 0.302]
|
0.232 [-0.047 - 0.477]
|
-1.047
|
FALSE
|
|
consci
|
extra
|
-0.264 [-0.513 - 0.025]
|
-0.082 [-0.345 - 0.193]
|
-0.911
|
FALSE
|
|
consci
|
agree
|
-0.264 [-0.513 - 0.025]
|
0.065 [-0.223 - 0.343]
|
-1.582
|
FALSE
|
|
consci
|
neuro
|
-0.264 [-0.513 - 0.025]
|
0.062 [-0.226 - 0.34]
|
-1.568
|
FALSE
|
|
consci
|
care_self
|
-0.264 [-0.513 - 0.025]
|
-0.057 [-0.328 - 0.222]
|
-1.022
|
FALSE
|
|
consci
|
care_partner
|
-0.264 [-0.513 - 0.025]
|
0.232 [-0.047 - 0.477]
|
-2.428
|
FALSE
|
|
extra
|
agree
|
-0.082 [-0.345 - 0.193]
|
0.065 [-0.223 - 0.343]
|
-0.717
|
FALSE
|
|
extra
|
neuro
|
-0.082 [-0.345 - 0.193]
|
0.062 [-0.226 - 0.34]
|
-0.702
|
FALSE
|
|
extra
|
care_self
|
-0.082 [-0.345 - 0.193]
|
-0.057 [-0.328 - 0.222]
|
-0.124
|
FALSE
|
|
extra
|
care_partner
|
-0.082 [-0.345 - 0.193]
|
0.232 [-0.047 - 0.477]
|
-1.576
|
FALSE
|
|
agree
|
neuro
|
0.065 [-0.223 - 0.343]
|
0.062 [-0.226 - 0.34]
|
0.014
|
FALSE
|
|
agree
|
care_self
|
0.065 [-0.223 - 0.343]
|
-0.057 [-0.328 - 0.222]
|
0.589
|
FALSE
|
|
agree
|
care_partner
|
0.065 [-0.223 - 0.343]
|
0.232 [-0.047 - 0.477]
|
-0.825
|
FALSE
|
|
neuro
|
care_self
|
0.062 [-0.226 - 0.34]
|
-0.057 [-0.328 - 0.222]
|
0.574
|
FALSE
|
|
neuro
|
care_partner
|
0.062 [-0.226 - 0.34]
|
0.232 [-0.047 - 0.477]
|
-0.840
|
FALSE
|
|
care_self
|
care_partner
|
-0.057 [-0.328 - 0.222]
|
0.232 [-0.047 - 0.477]
|
-1.437
|
FALSE
|
H3. Longitudinal similarity
Longitudinally, romantic partners show a similar change trajectory
in self-reported personality across the first two years of parenthood
such that their slopes are significantly and positively correlated.
I will fit a linear mixed model for each measured personality
variable with random intercepts and random slopes at the individual
level, with a separate model for each gender. I will extract the fitted
slope for each individual and examine the bivariate Pearson’s \(r\) correlations between dyadic member’s
slopes for each personality variable.
var_list <- c("open", "consci", "extra", "agree", "neuro",
"care_self", "care_partner")
# run function
h3_results <- h3_function(var_list = var_list, df = dat)
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -9.9e-01
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -6.4e-02
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
# view longitudinal trends
h3_results$slopes_tab %>%
knitr::kable(caption = "Longitudinal trends in personality variables") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Longitudinal trends in personality variables
|
gender
|
variable
|
slope
|
SE
|
df
|
t_value
|
p_value
|
|
female
|
open
|
0.013
|
0.06
|
135.028
|
0.209
|
0.835
|
|
male
|
open
|
0.081
|
0.059
|
66.631
|
1.385
|
0.171
|
|
female
|
consci
|
0.009
|
0.065
|
59.268
|
0.141
|
0.888
|
|
male
|
consci
|
0.087
|
0.065
|
61.168
|
1.328
|
0.189
|
|
female
|
extra
|
0.133
|
0.088
|
52.562
|
1.502
|
0.139
|
|
male
|
extra
|
-0.056
|
0.081
|
100.004
|
-0.697
|
0.487
|
|
female
|
agree
|
0.029
|
0.058
|
63.067
|
0.504
|
0.616
|
|
male
|
agree
|
0.028
|
0.06
|
55.369
|
0.47
|
0.64
|
|
female
|
neuro
|
0.086
|
0.073
|
124.765
|
1.171
|
0.244
|
|
male
|
neuro
|
0.017
|
0.067
|
111.242
|
0.248
|
0.805
|
|
female
|
care_self
|
-0.007
|
0.104
|
60.23
|
-0.068
|
0.946
|
|
male
|
care_self
|
-0.006
|
0.09
|
99.114
|
-0.072
|
0.943
|
|
female
|
care_partner
|
-0.037
|
0.094
|
107.201
|
-0.391
|
0.696
|
|
male
|
care_partner
|
-0.055
|
0.09
|
55.886
|
-0.608
|
0.545
|
# view longitudinal similarity
h3_results$cor_tab %>%
knitr::kable(caption = "Bivariate between-partner slope correlations") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Bivariate between-partner slope correlations
|
variable
|
correlation
|
p_value
|
LL
|
UL
|
|
open
|
-0.020
|
0.877
|
-0.273
|
0.235
|
|
consci
|
-0.128
|
0.329
|
-0.370
|
0.130
|
|
extra
|
0.011
|
0.932
|
-0.243
|
0.264
|
|
agree
|
0.077
|
0.559
|
-0.181
|
0.325
|
|
neuro
|
0.109
|
0.405
|
-0.149
|
0.354
|
|
care_self
|
0.050
|
0.706
|
-0.207
|
0.300
|
|
care_partner
|
-0.181
|
0.166
|
-0.416
|
0.076
|
# store slopes for later analyses in main dataframe
dat <- merge(dat, h3_results$slope_df, all.x = TRUE)
Research Question 2. Benefit of Assortative Mating
H4. Baseline benefit
At baseline, partner similarity in self-reported personality is
associated with enhanced relationship quality.
I will fit a multiple regression model in which both dyad members’
scores along with an interaction term are used to predict relationship
quality. Four separate sets of models will be fit: two sets with female
partners’ dyadic satisfaction and cohesion and two sets with male
partners’ dyadic satisfaction and cohesion as the dependent variable.
Within each set, separate models are run for each measured personality
variable. The hypothesis is confirmed if the interaction term is
significantly positive for a partial attenuation, in which the main
effects may still remain significantly positive after the interaction
term is added.
Alternatively, I will run a simple linear regression model in which
the absolute value of the difference between the female and male
partner’s scores on a particular variable is used to predict
relationship quality. In addition, for the BFAS in study one and the
BFI, CQ, and CPS scales in study two, I will run a simple linear
regression model in which the Fisher’s \(z\)-transformed score of the profile
correlations calculated in H1 is used to predict relationship quality.
For each scale, three sets of models will be run with profile
correlations calculated by raw, gender-mean-centered, and standardized
scores. Compared to the interaction test, these regression models are a
much simpler and more powered approach to the same conceptual question;
however, they present different operationalization of similarity. We
consider these alternative approaches to be conceptual robustness
checks; the hypothesis is fully confirmed if both approaches meet the
significant criteria, partially confirmed if only one approach meets the
criteria, and rejected if neither meets the criteria.
var_list <- c("open", "consci", "extra", "agree", "neuro",
"care_self", "care_partner")
prof_list <- c("bigfive")
quality_list <- c("satis")
# run function
h4_results <- h4_function(var_list = var_list,
quality_list = quality_list,
prof_list = prof_list,
df = dat)
h4_results$interaction_tab %>%
knitr::kable(
caption = "Multiple regression results with interaction terms predicting relationship quality"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Multiple regression results with interaction terms predicting
relationship quality
|
quality
|
personality
|
gender
|
actor_est
|
actor_tval
|
actor_pval
|
partner_est
|
partner_tval
|
partner_pval
|
int_est
|
int_tval
|
int_pval
|
|
satis
|
open
|
female
|
1.109
|
0.171
|
0.865
|
2.666
|
0.406
|
0.687
|
-0.348
|
-0.177
|
0.861
|
|
satis
|
open
|
male
|
7.299
|
1.435
|
0.159
|
5.935
|
1.156
|
0.254
|
-2.258
|
-1.435
|
0.159
|
|
satis
|
consci
|
female
|
-1.19
|
-0.156
|
0.877
|
-3.264
|
-0.439
|
0.663
|
0.693
|
0.348
|
0.73
|
|
satis
|
consci
|
male
|
-6.748
|
-0.911
|
0.367
|
-6.348
|
-0.839
|
0.407
|
1.613
|
0.826
|
0.414
|
|
satis
|
extra
|
female
|
-0.83
|
-0.32
|
0.75
|
-2.028
|
-0.847
|
0.402
|
0.371
|
0.483
|
0.632
|
|
satis
|
extra
|
male
|
-1.14
|
-0.533
|
0.596
|
0.002
|
0.001
|
0.999
|
0.248
|
0.36
|
0.72
|
|
satis
|
agree
|
female
|
-2.427
|
-0.275
|
0.785
|
-2.543
|
-0.291
|
0.773
|
0.592
|
0.255
|
0.8
|
|
satis
|
agree
|
male
|
4.791
|
0.637
|
0.528
|
4.16
|
0.549
|
0.586
|
-1.515
|
-0.764
|
0.449
|
|
satis
|
neuro
|
female
|
-3.845
|
-1.254
|
0.218
|
-1.439
|
-0.451
|
0.655
|
0.95
|
0.805
|
0.426
|
|
satis
|
neuro
|
male
|
3.393
|
1.735
|
0.09
|
2.13
|
0.907
|
0.37
|
-1.006
|
-1.217
|
0.23
|
|
satis
|
care_self
|
female
|
0.999
|
0.364
|
0.718
|
-0.342
|
-0.115
|
0.909
|
-0.123
|
-0.24
|
0.812
|
|
satis
|
care_self
|
male
|
3.019
|
1.153
|
0.255
|
3.396
|
1.383
|
0.173
|
-0.378
|
-0.832
|
0.41
|
|
satis
|
care_partner
|
female
|
-0.959
|
-0.264
|
0.793
|
-0.925
|
-0.262
|
0.795
|
0.2
|
0.3
|
0.766
|
|
satis
|
care_partner
|
male
|
2.587
|
0.875
|
0.386
|
2.015
|
0.626
|
0.535
|
-0.527
|
-0.915
|
0.365
|
h4_results$difference_tab %>%
knitr::kable(
caption = "Simple regression results with difference scores predicting relationship quality"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Simple regression results with difference scores predicting relationship
quality
|
quality
|
personality
|
gender
|
diff_est
|
diff_tval
|
diff_pval
|
|
satis
|
open
|
female
|
-0.329
|
-0.328
|
0.745
|
|
satis
|
open
|
male
|
-0.332
|
-0.351
|
0.727
|
|
satis
|
consci
|
female
|
-0.333
|
-0.295
|
0.77
|
|
satis
|
consci
|
male
|
-0.886
|
-0.789
|
0.434
|
|
satis
|
extra
|
female
|
-0.463
|
-0.63
|
0.532
|
|
satis
|
extra
|
male
|
-0.324
|
-0.471
|
0.64
|
|
satis
|
agree
|
female
|
-0.438
|
-0.317
|
0.753
|
|
satis
|
agree
|
male
|
-0.906
|
-0.72
|
0.475
|
|
satis
|
neuro
|
female
|
-0.552
|
-0.432
|
0.668
|
|
satis
|
neuro
|
male
|
2.135
|
2.58
|
0.013
|
|
satis
|
care_self
|
female
|
0.637
|
1.172
|
0.248
|
|
satis
|
care_self
|
male
|
0.172
|
0.323
|
0.748
|
|
satis
|
care_partner
|
female
|
0.18
|
0.185
|
0.854
|
|
satis
|
care_partner
|
male
|
-0.176
|
-0.228
|
0.821
|
h4_results$profile_tab %>%
knitr::kable(
caption = "Simple regression results with profile correlations predicting relationship quality"
) %>%
kableExtra::kable_styling()
Simple regression results with profile correlations predicting
relationship quality
|
quality
|
profile
|
gender
|
raw_est
|
raw_tval
|
raw_pval
|
cen_est
|
cen_tval
|
cen_pval
|
std_est
|
std_tval
|
std_pval
|
|
satis
|
bigfive
|
female
|
1.018
|
2.032
|
0.048
|
0.553
|
1.504
|
0.139
|
0.911
|
2.022
|
0.049
|
|
satis
|
bigfive
|
male
|
-0.676
|
-1.432
|
0.158
|
-0.406
|
-1.168
|
0.248
|
-0.247
|
-0.57
|
0.571
|
H5. Baseline benefit with longitudinal predictors
Longitudinally, partner similarity in change trajectories of
self-reported personality is associated with enhanced relationship
quality at baseline.
I will fit a multiple regression model in which both dyad members’
slopes (extracted in H3) along with an interaction term are used to
predict relationship quality. Similar to H4, four sets of models will be
fit to predict female and male satisfaction and cohesion, and separate
models are run for each measured personality variable. The hypothesis is
confirmed if the interaction term is significantly positive for a
partial attenuation. Because the fitted slopes were extracted using two
different methods in H3, models will be run using these two sets of
slopes for robustness checks.
Alternatively, I will run a simple linear regression model in which
the absolute value of the difference between the female and male
partner’s scores on a particular slope is used to predict relationship
quality. The hypothesis is fully confirmed if both approaches meet the
significant criteria, partially confirmed if only one approach meets the
criteria, and rejected if neither meets the criteria.
var_list <- c("open", "consci", "extra", "agree", "neuro",
"care_self", "care_partner")
quality_list <- c("satis")
# run function
h5_results <- h5_function(var_list = var_list,
quality_list = quality_list,
df = dat)
h5_results$interaction_tab %>%
knitr::kable(
caption = "Longitudinal predictors: Multiple regression results with interaction terms of predicting relationship quality"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Longitudinal predictors: Multiple regression results with interaction
terms of predicting relationship quality
|
quality
|
personality_slope
|
gender
|
actor_est
|
actor_tval
|
actor_pval
|
partner_est
|
partner_tval
|
partner_pval
|
int_est
|
int_tval
|
int_pval
|
|
satis
|
open
|
female
|
216.919
|
0.992
|
0.326
|
22.493
|
0.636
|
0.528
|
-2025.841
|
-0.784
|
0.437
|
|
satis
|
open
|
male
|
-5.094
|
-0.162
|
0.872
|
50.81
|
0.255
|
0.8
|
496.903
|
0.225
|
0.822
|
|
satis
|
consci
|
female
|
-2.061
|
-0.59
|
0.558
|
0.739
|
0.191
|
0.849
|
13.879
|
0.644
|
0.523
|
|
satis
|
consci
|
male
|
0.361
|
0.099
|
0.921
|
1.344
|
0.41
|
0.683
|
11.118
|
0.546
|
0.587
|
|
satis
|
extra
|
female
|
-9.734
|
-0.68
|
0.5
|
20.275
|
0.718
|
0.476
|
-29.315
|
-0.152
|
0.88
|
|
satis
|
extra
|
male
|
29.073
|
1.181
|
0.243
|
-19.109
|
-1.526
|
0.133
|
-192.306
|
-1.238
|
0.221
|
|
satis
|
agree
|
female
|
-2.993
|
-0.601
|
0.551
|
14.594
|
1.311
|
0.196
|
16.836
|
0.199
|
0.843
|
|
satis
|
agree
|
male
|
10.365
|
1.012
|
0.316
|
5.937
|
1.265
|
0.211
|
-103.293
|
-1.281
|
0.206
|
|
satis
|
neuro
|
female
|
-65.548
|
-1.106
|
0.274
|
-248.385
|
-1.459
|
0.151
|
3002.275
|
1.545
|
0.129
|
|
satis
|
neuro
|
male
|
219.887
|
1.441
|
0.155
|
46.296
|
0.925
|
0.359
|
-2439.224
|
-1.408
|
0.165
|
|
satis
|
care_self
|
female
|
-3.174
|
-1.13
|
0.264
|
0.747
|
0.106
|
0.916
|
-12.282
|
-0.243
|
0.809
|
|
satis
|
care_self
|
male
|
-3.526
|
-0.573
|
0.569
|
-6.742
|
-2.831
|
0.007
|
-34.479
|
-0.866
|
0.39
|
|
satis
|
care_partner
|
female
|
74.691
|
1.557
|
0.126
|
49.731
|
1.609
|
0.114
|
1478.419
|
2.014
|
0.05
|
|
satis
|
care_partner
|
male
|
20.293
|
0.721
|
0.474
|
3.701
|
0.085
|
0.933
|
558.121
|
0.946
|
0.348
|
h5_results$difference_tab %>%
knitr::kable(
caption = "Longitudinal predictors: Simple regression results with difference-slope scores predicting relationship quality"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Longitudinal predictors: Simple regression results with difference-slope
scores predicting relationship quality
|
quality
|
personality_slope
|
gender
|
diff_est
|
diff_tval
|
diff_pval
|
|
satis
|
open
|
female
|
-3.416
|
-0.329
|
0.744
|
|
satis
|
open
|
male
|
3.848
|
0.431
|
0.668
|
|
satis
|
consci
|
female
|
-1.714
|
-0.479
|
0.634
|
|
satis
|
consci
|
male
|
-1.318
|
-0.406
|
0.686
|
|
satis
|
extra
|
female
|
-9.58
|
-1.471
|
0.148
|
|
satis
|
extra
|
male
|
-4.821
|
-0.898
|
0.373
|
|
satis
|
agree
|
female
|
-3.854
|
-0.54
|
0.592
|
|
satis
|
agree
|
male
|
9.766
|
1.484
|
0.144
|
|
satis
|
neuro
|
female
|
-3.528
|
-0.147
|
0.884
|
|
satis
|
neuro
|
male
|
-7.911
|
-0.366
|
0.716
|
|
satis
|
care_self
|
female
|
-3.338
|
-0.783
|
0.437
|
|
satis
|
care_self
|
male
|
3.789
|
0.98
|
0.331
|
|
satis
|
care_partner
|
female
|
-26.08
|
-1.589
|
0.118
|
|
satis
|
care_partner
|
male
|
-30.505
|
-1.94
|
0.057
|
H6. Longitudinal benefit
Longitudinally, partner similarity in change trajectories of
self-reported personality is associated with an increase in relationship
quality
Analyses are similar to H5 with the same predictors, but linear mixed
models will be fit for female/male dyadic satisfaction and cohesion, and
their individual extracted slopes will be used as the dependent variable
instead of relationship quality at baseline. Similar to H5, the
hypothesis is fully confirmed if the interaction term is significantly
positive for a partial attenuation and if the alternative simple linear
regression model with the absolute value of the difference in
personality slope as predictors of longitudinal benefits is significant.
The hypothesis is partially confirmed if only one approach meets the
criteria and rejected if neither meets the criteria.
var_list <- c("open", "consci", "extra", "agree", "neuro",
"care_self", "care_partner")
quality_list <- c("satis")
# run function
h6_results <- h6_function(var_list = var_list,
quality_list = quality_list,
df = dat)
h6_results$interaction_tab %>%
knitr::kable(
caption = "Longitudinal predictors: Multiple regression results with interaction terms predicting longitudinal relationship quality"
) %>% kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Longitudinal predictors: Multiple regression results with interaction
terms predicting longitudinal relationship quality
|
quality_slope
|
personality_slope
|
gender
|
actor_est
|
actor_tval
|
actor_pval
|
partner_est
|
partner_tval
|
partner_pval
|
int_est
|
int_tval
|
int_pval
|
|
satis
|
open
|
female
|
-28.003
|
-0.797
|
0.429
|
-3.379
|
-0.612
|
0.543
|
197.518
|
0.509
|
0.613
|
|
satis
|
open
|
male
|
2.611
|
0.714
|
0.478
|
11.807
|
0.508
|
0.614
|
-221.822
|
-0.863
|
0.392
|
|
satis
|
consci
|
female
|
-0.268
|
-0.508
|
0.613
|
-0.717
|
-1.134
|
0.261
|
2.386
|
0.692
|
0.492
|
|
satis
|
consci
|
male
|
-0.403
|
-0.959
|
0.341
|
-0.189
|
-0.541
|
0.591
|
0.429
|
0.187
|
0.852
|
|
satis
|
extra
|
female
|
0.93
|
0.428
|
0.67
|
-3.508
|
-0.806
|
0.423
|
6.111
|
0.224
|
0.823
|
|
satis
|
extra
|
male
|
-5.243
|
-1.842
|
0.071
|
2.337
|
1.643
|
0.106
|
30.795
|
1.728
|
0.089
|
|
satis
|
agree
|
female
|
1.395
|
1.7
|
0.095
|
0.18
|
0.103
|
0.919
|
-18.499
|
-1.31
|
0.195
|
|
satis
|
agree
|
male
|
-1.019
|
-0.874
|
0.386
|
-0.612
|
-1.124
|
0.266
|
15.345
|
1.639
|
0.107
|
|
satis
|
neuro
|
female
|
4.191
|
0.502
|
0.617
|
33.207
|
1.288
|
0.203
|
-416.919
|
-1.418
|
0.162
|
|
satis
|
neuro
|
male
|
-10.454
|
-0.598
|
0.552
|
-1.141
|
-0.202
|
0.841
|
104.064
|
0.522
|
0.604
|
|
satis
|
care_self
|
female
|
-0.429
|
-0.948
|
0.347
|
-0.164
|
-0.148
|
0.883
|
-0.305
|
-0.041
|
0.968
|
|
satis
|
care_self
|
male
|
0.882
|
1.29
|
0.202
|
0.733
|
2.625
|
0.011
|
2.587
|
0.561
|
0.577
|
|
satis
|
care_partner
|
female
|
-2.292
|
-0.295
|
0.769
|
-3.417
|
-0.68
|
0.499
|
-90.344
|
-0.857
|
0.395
|
|
satis
|
care_partner
|
male
|
-2.393
|
-0.726
|
0.471
|
-0.615
|
-0.121
|
0.904
|
-66.748
|
-0.966
|
0.338
|
h6_results$difference_tab %>%
knitr::kable(
caption = "Longitudinal predictors: Simple regression results with difference scores predicting longitudinal relationship quality"
) %>% kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Longitudinal predictors: Simple regression results with difference
scores predicting longitudinal relationship quality
|
quality_slope
|
personality_slope
|
gender
|
diff_est
|
diff_tval
|
diff_pval
|
|
satis
|
open
|
female
|
-1.309
|
-0.834
|
0.408
|
|
satis
|
open
|
male
|
-0.655
|
-0.628
|
0.533
|
|
satis
|
consci
|
female
|
-0.346
|
-0.622
|
0.536
|
|
satis
|
consci
|
male
|
-0.265
|
-0.719
|
0.475
|
|
satis
|
extra
|
female
|
0.969
|
1.026
|
0.309
|
|
satis
|
extra
|
male
|
0.349
|
0.554
|
0.582
|
|
satis
|
agree
|
female
|
3.225
|
2.955
|
0.005
|
|
satis
|
agree
|
male
|
-1.089
|
-1.427
|
0.159
|
|
satis
|
neuro
|
female
|
-0.188
|
-0.049
|
0.961
|
|
satis
|
neuro
|
male
|
1.305
|
0.515
|
0.608
|
|
satis
|
care_self
|
female
|
0.477
|
0.7
|
0.487
|
|
satis
|
care_self
|
male
|
0
|
0
|
1
|
|
satis
|
care_partner
|
female
|
1.852
|
0.653
|
0.516
|
|
satis
|
care_partner
|
male
|
2.193
|
1.176
|
0.245
|
H7. Cross-lagged effects
Longitudinally, there may be cross-lagged effects such that partner
similarity in personality at each time point is associated with
relationship quality at a subsequent time point, and vice versa. This is
an exploratory analysis with no hypothesized direction.
I will run a random-intercept cross-lagged panel model, following the
general structure as depicted in Figure 1. Four separate sets of models
will be run, with the variable for relationship quality being
female/male satisfaction and cohesion. Within each set, there will be
separate models for similarity in each measured personality variable,
with similarity operationalized as the reversed discrepancy scores: the
absolute value of the difference between the female and male partner’s
scores on a particular personality variable.
In addition to the bivariate discrepancy score, for the BFAS scales
in study one and CQ and CPS scales in study two, I will run the same
sets of models in which similarity is operationalized as the Fisher’s
\(z\)-transformed score of the profile
correlations calculated in H1 at each wave.
Figure 1. General structure for the
random-intercept cross-lagged panel model
var_list <- c("open", "consci", "extra", "agree", "neuro",
"care_self", "care_partner")
prof_list <- c("bigfive")
quality_list <- c("satis")
# run function
h7_results <- h7_function(var_list = var_list, prof_list = prof_list,
quality_list = quality_list, df = dat)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated lv
## variances are negative
h7_results$fit_df %>%
knitr::kable(
caption = "Fit statistics for models of univariate personality difference") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Fit statistics for models of univariate personality difference
|
partner
|
personality
|
quality
|
chisq
|
df
|
pvalue
|
cfi
|
rmsea
|
srmr
|
|
1
|
open
|
satis
|
0.674
|
1
|
0.412
|
1
|
0
|
0.03
|
|
2
|
open
|
satis
|
2.533
|
1
|
0.112
|
0
|
0.16
|
0.049
|
|
1
|
consci
|
satis
|
1.019
|
1
|
0.313
|
0.984
|
0.018
|
0.031
|
|
2
|
consci
|
satis
|
0.921
|
1
|
0.337
|
1
|
0
|
0.031
|
|
1
|
extra
|
satis
|
0.083
|
1
|
0.773
|
1
|
0
|
0.009
|
|
2
|
extra
|
satis
|
0.009
|
1
|
0.926
|
1
|
0
|
0.003
|
|
1
|
agree
|
satis
|
0.699
|
1
|
0.403
|
1
|
0
|
0.028
|
|
2
|
agree
|
satis
|
0.749
|
1
|
0.387
|
1
|
0
|
0.031
|
|
1
|
neuro
|
satis
|
0.38
|
1
|
0.538
|
1
|
0
|
0.024
|
|
2
|
neuro
|
satis
|
0.029
|
1
|
0.864
|
1
|
0
|
0.005
|
|
1
|
care_self
|
satis
|
0.007
|
1
|
0.934
|
1
|
0
|
0.002
|
|
2
|
care_self
|
satis
|
0.373
|
1
|
0.541
|
1
|
0
|
0.016
|
|
1
|
care_partner
|
satis
|
0.18
|
1
|
0.671
|
1
|
0
|
0.016
|
|
2
|
care_partner
|
satis
|
0.711
|
1
|
0.399
|
1
|
0
|
0.024
|
h7_results$est_df %>%
knitr::kable(
caption = "Standardized solutions for models of univariate personality difference") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Standardized solutions for models of univariate personality difference
|
partner
|
personality
|
quality
|
lhs
|
op
|
rhs
|
est.std
|
se
|
z
|
pvalue
|
ci.lower
|
ci.upper
|
|
1
|
open
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.364
|
0.171
|
2.133
|
0.033
|
0.030
|
0.699
|
|
1
|
open
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.075
|
0.271
|
-0.278
|
0.781
|
-0.607
|
0.456
|
|
1
|
open
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.024
|
0.208
|
-0.114
|
0.909
|
-0.431
|
0.384
|
|
1
|
open
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
-0.343
|
0.198
|
-1.730
|
0.084
|
-0.732
|
0.046
|
|
1
|
open
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
-0.053
|
0.274
|
-0.195
|
0.845
|
-0.590
|
0.483
|
|
1
|
open
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.202
|
0.289
|
0.700
|
0.484
|
-0.364
|
0.768
|
|
1
|
open
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
-0.543
|
0.223
|
-2.437
|
0.015
|
-0.979
|
-0.106
|
|
1
|
open
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
-0.022
|
0.229
|
-0.097
|
0.923
|
-0.470
|
0.426
|
|
2
|
open
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.201
|
0.199
|
1.012
|
0.312
|
-0.189
|
0.592
|
|
2
|
open
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
0.016
|
0.317
|
0.051
|
0.959
|
-0.605
|
0.637
|
|
2
|
open
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.075
|
0.244
|
-0.307
|
0.759
|
-0.553
|
0.403
|
|
2
|
open
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.024
|
0.242
|
0.101
|
0.920
|
-0.449
|
0.498
|
|
2
|
open
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
-0.006
|
0.232
|
-0.024
|
0.981
|
-0.460
|
0.449
|
|
2
|
open
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.172
|
0.306
|
0.562
|
0.574
|
-0.428
|
0.772
|
|
2
|
open
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
0.054
|
0.246
|
0.221
|
0.825
|
-0.427
|
0.535
|
|
2
|
open
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
-0.067
|
0.241
|
-0.277
|
0.782
|
-0.538
|
0.405
|
|
1
|
consci
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.291
|
0.173
|
1.683
|
0.092
|
-0.048
|
0.630
|
|
1
|
consci
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.129
|
0.178
|
-0.726
|
0.468
|
-0.477
|
0.219
|
|
1
|
consci
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.038
|
0.175
|
-0.219
|
0.827
|
-0.382
|
0.305
|
|
1
|
consci
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.124
|
0.187
|
0.665
|
0.506
|
-0.243
|
0.491
|
|
1
|
consci
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.104
|
0.212
|
0.493
|
0.622
|
-0.310
|
0.519
|
|
1
|
consci
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
-0.335
|
0.227
|
-1.476
|
0.140
|
-0.780
|
0.110
|
|
1
|
consci
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
0.450
|
0.166
|
2.714
|
0.007
|
0.125
|
0.774
|
|
1
|
consci
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.026
|
0.238
|
0.109
|
0.913
|
-0.441
|
0.493
|
|
2
|
consci
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.183
|
0.183
|
1.000
|
0.317
|
-0.176
|
0.542
|
|
2
|
consci
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.025
|
0.178
|
-0.140
|
0.889
|
-0.375
|
0.325
|
|
2
|
consci
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
0.372
|
0.170
|
2.186
|
0.029
|
0.038
|
0.705
|
|
2
|
consci
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.020
|
0.170
|
0.119
|
0.905
|
-0.312
|
0.353
|
|
2
|
consci
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
-0.037
|
0.221
|
-0.166
|
0.868
|
-0.470
|
0.397
|
|
2
|
consci
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
-0.335
|
0.214
|
-1.565
|
0.118
|
-0.755
|
0.085
|
|
2
|
consci
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
0.140
|
0.209
|
0.673
|
0.501
|
-0.269
|
0.549
|
|
2
|
consci
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.255
|
0.205
|
1.243
|
0.214
|
-0.147
|
0.658
|
|
1
|
extra
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.243
|
0.188
|
1.295
|
0.195
|
-0.125
|
0.611
|
|
1
|
extra
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
0.026
|
0.279
|
0.094
|
0.925
|
-0.521
|
0.574
|
|
1
|
extra
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.041
|
0.187
|
-0.220
|
0.826
|
-0.409
|
0.326
|
|
1
|
extra
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.172
|
0.203
|
0.848
|
0.397
|
-0.226
|
0.570
|
|
1
|
extra
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.124
|
0.207
|
0.600
|
0.548
|
-0.282
|
0.531
|
|
1
|
extra
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
-0.182
|
0.266
|
-0.682
|
0.496
|
-0.704
|
0.341
|
|
1
|
extra
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
-0.054
|
0.198
|
-0.272
|
0.785
|
-0.442
|
0.334
|
|
1
|
extra
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
-0.304
|
0.225
|
-1.353
|
0.176
|
-0.745
|
0.136
|
|
2
|
extra
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.147
|
0.189
|
0.779
|
0.436
|
-0.223
|
0.517
|
|
2
|
extra
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
0.029
|
0.225
|
0.128
|
0.898
|
-0.412
|
0.470
|
|
2
|
extra
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
0.301
|
0.167
|
1.806
|
0.071
|
-0.026
|
0.628
|
|
2
|
extra
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.417
|
0.150
|
2.772
|
0.006
|
0.122
|
0.711
|
|
2
|
extra
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.059
|
0.223
|
0.265
|
0.791
|
-0.377
|
0.495
|
|
2
|
extra
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
-0.297
|
0.259
|
-1.149
|
0.250
|
-0.805
|
0.210
|
|
2
|
extra
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
-0.035
|
0.241
|
-0.146
|
0.884
|
-0.507
|
0.437
|
|
2
|
extra
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.384
|
0.231
|
1.663
|
0.096
|
-0.068
|
0.837
|
|
1
|
agree
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.235
|
0.168
|
1.401
|
0.161
|
-0.094
|
0.564
|
|
1
|
agree
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.032
|
0.223
|
-0.145
|
0.885
|
-0.469
|
0.405
|
|
1
|
agree
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.064
|
0.198
|
-0.321
|
0.749
|
-0.452
|
0.325
|
|
1
|
agree
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.005
|
0.190
|
0.027
|
0.979
|
-0.367
|
0.377
|
|
1
|
agree
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.101
|
0.186
|
0.543
|
0.587
|
-0.264
|
0.466
|
|
1
|
agree
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.032
|
0.189
|
0.168
|
0.866
|
-0.339
|
0.402
|
|
1
|
agree
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
0.062
|
0.182
|
0.339
|
0.735
|
-0.296
|
0.419
|
|
1
|
agree
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.268
|
0.160
|
1.678
|
0.093
|
-0.045
|
0.580
|
|
2
|
agree
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.150
|
0.216
|
0.694
|
0.487
|
-0.273
|
0.573
|
|
2
|
agree
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.053
|
0.230
|
-0.232
|
0.816
|
-0.505
|
0.398
|
|
2
|
agree
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.050
|
0.183
|
-0.274
|
0.784
|
-0.408
|
0.308
|
|
2
|
agree
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
-0.285
|
0.207
|
-1.377
|
0.169
|
-0.690
|
0.121
|
|
2
|
agree
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.001
|
0.214
|
0.005
|
0.996
|
-0.418
|
0.420
|
|
2
|
agree
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.056
|
0.191
|
0.294
|
0.769
|
-0.318
|
0.430
|
|
2
|
agree
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
-0.037
|
0.184
|
-0.202
|
0.840
|
-0.397
|
0.323
|
|
2
|
agree
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
-0.156
|
0.173
|
-0.906
|
0.365
|
-0.494
|
0.182
|
|
1
|
neuro
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.288
|
0.203
|
1.415
|
0.157
|
-0.111
|
0.686
|
|
1
|
neuro
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.405
|
0.295
|
-1.374
|
0.170
|
-0.983
|
0.173
|
|
1
|
neuro
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
0.003
|
0.182
|
0.016
|
0.987
|
-0.354
|
0.360
|
|
1
|
neuro
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
-0.412
|
0.301
|
-1.370
|
0.171
|
-1.002
|
0.178
|
|
1
|
neuro
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.214
|
0.204
|
1.047
|
0.295
|
-0.186
|
0.614
|
|
1
|
neuro
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.195
|
0.194
|
1.002
|
0.316
|
-0.186
|
0.575
|
|
1
|
neuro
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
0.024
|
0.184
|
0.129
|
0.897
|
-0.337
|
0.385
|
|
1
|
neuro
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.010
|
0.238
|
0.043
|
0.966
|
-0.456
|
0.476
|
|
2
|
neuro
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.221
|
0.186
|
1.188
|
0.235
|
-0.144
|
0.586
|
|
2
|
neuro
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.139
|
0.285
|
-0.487
|
0.626
|
-0.698
|
0.420
|
|
2
|
neuro
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.128
|
0.199
|
-0.642
|
0.521
|
-0.517
|
0.262
|
|
2
|
neuro
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
-0.093
|
0.229
|
-0.406
|
0.685
|
-0.542
|
0.356
|
|
2
|
neuro
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.000
|
0.204
|
0.000
|
1.000
|
-0.399
|
0.399
|
|
2
|
neuro
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.253
|
0.202
|
1.255
|
0.209
|
-0.142
|
0.648
|
|
2
|
neuro
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
-0.006
|
0.190
|
-0.031
|
0.975
|
-0.379
|
0.367
|
|
2
|
neuro
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
-0.156
|
0.158
|
-0.990
|
0.322
|
-0.465
|
0.153
|
|
1
|
care_self
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.234
|
0.189
|
1.237
|
0.216
|
-0.136
|
0.603
|
|
1
|
care_self
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.277
|
0.241
|
-1.146
|
0.252
|
-0.749
|
0.196
|
|
1
|
care_self
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
0.033
|
0.165
|
0.203
|
0.839
|
-0.289
|
0.356
|
|
1
|
care_self
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
-0.068
|
0.224
|
-0.306
|
0.760
|
-0.508
|
0.371
|
|
1
|
care_self
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.127
|
0.203
|
0.627
|
0.531
|
-0.270
|
0.524
|
|
1
|
care_self
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.255
|
0.192
|
1.330
|
0.183
|
-0.121
|
0.631
|
|
1
|
care_self
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
0.147
|
0.184
|
0.800
|
0.424
|
-0.213
|
0.507
|
|
1
|
care_self
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
-0.080
|
0.186
|
-0.432
|
0.666
|
-0.444
|
0.283
|
|
2
|
care_self
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.221
|
0.192
|
1.156
|
0.248
|
-0.154
|
0.597
|
|
2
|
care_self
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
-0.346
|
0.230
|
-1.500
|
0.134
|
-0.797
|
0.106
|
|
2
|
care_self
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
-0.206
|
0.161
|
-1.279
|
0.201
|
-0.521
|
0.109
|
|
2
|
care_self
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.040
|
0.227
|
0.178
|
0.859
|
-0.405
|
0.486
|
|
2
|
care_self
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
-0.014
|
0.213
|
-0.066
|
0.948
|
-0.432
|
0.404
|
|
2
|
care_self
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
0.264
|
0.184
|
1.438
|
0.150
|
-0.096
|
0.624
|
|
2
|
care_self
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
-0.240
|
0.161
|
-1.490
|
0.136
|
-0.557
|
0.076
|
|
2
|
care_self
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.124
|
0.160
|
0.776
|
0.437
|
-0.189
|
0.437
|
|
1
|
care_partner
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.308
|
0.262
|
1.175
|
0.240
|
-0.206
|
0.823
|
|
1
|
care_partner
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
0.113
|
0.302
|
0.376
|
0.707
|
-0.478
|
0.705
|
|
1
|
care_partner
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
0.063
|
0.292
|
0.215
|
0.830
|
-0.510
|
0.635
|
|
1
|
care_partner
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.367
|
0.252
|
1.460
|
0.144
|
-0.126
|
0.860
|
|
1
|
care_partner
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.157
|
0.221
|
0.709
|
0.478
|
-0.276
|
0.590
|
|
1
|
care_partner
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
-0.231
|
0.267
|
-0.864
|
0.387
|
-0.756
|
0.293
|
|
1
|
care_partner
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
0.220
|
0.188
|
1.169
|
0.242
|
-0.149
|
0.589
|
|
1
|
care_partner
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.570
|
0.244
|
2.339
|
0.019
|
0.092
|
1.047
|
|
2
|
care_partner
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.175
|
0.195
|
0.896
|
0.370
|
-0.208
|
0.557
|
|
2
|
care_partner
|
satis
|
w_diff_t2
|
~
|
w_diff_t1
|
0.294
|
0.210
|
1.400
|
0.162
|
-0.118
|
0.705
|
|
2
|
care_partner
|
satis
|
w_qual_t2
|
~
|
w_diff_t1
|
0.132
|
0.196
|
0.673
|
0.501
|
-0.253
|
0.517
|
|
2
|
care_partner
|
satis
|
w_diff_t2
|
~
|
w_qual_t1
|
0.047
|
0.162
|
0.289
|
0.772
|
-0.271
|
0.364
|
|
2
|
care_partner
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.026
|
0.215
|
0.123
|
0.902
|
-0.395
|
0.448
|
|
2
|
care_partner
|
satis
|
w_diff_t3
|
~
|
w_diff_t2
|
-0.048
|
0.267
|
-0.181
|
0.857
|
-0.572
|
0.476
|
|
2
|
care_partner
|
satis
|
w_qual_t3
|
~
|
w_diff_t2
|
-0.069
|
0.198
|
-0.346
|
0.730
|
-0.457
|
0.320
|
|
2
|
care_partner
|
satis
|
w_diff_t3
|
~
|
w_qual_t2
|
0.092
|
0.235
|
0.391
|
0.696
|
-0.369
|
0.553
|
h7_results$fitprof_df %>%
knitr::kable(
caption = "Fit statistics for models of personality profile correlation") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Fit statistics for models of personality profile correlation
|
partner
|
type
|
profile
|
quality
|
chisq
|
df
|
pvalue
|
cfi
|
rmsea
|
srmr
|
|
1
|
raw
|
bigfive
|
satis
|
2.594
|
1
|
0.107
|
0.848
|
0.163
|
0.046
|
|
2
|
raw
|
bigfive
|
satis
|
0.065
|
1
|
0.799
|
1
|
0
|
0.007
|
|
1
|
centered
|
bigfive
|
satis
|
5.474
|
1
|
0.019
|
0.172
|
0.273
|
0.069
|
|
2
|
centered
|
bigfive
|
satis
|
0.175
|
1
|
0.676
|
1
|
0
|
0.01
|
|
1
|
std
|
bigfive
|
satis
|
5.511
|
1
|
0.019
|
0.583
|
0.274
|
0.07
|
|
2
|
std
|
bigfive
|
satis
|
0.242
|
1
|
0.622
|
1
|
0
|
0.012
|
h7_results$estprof_df %>%
knitr::kable(
caption = "Standardized solutions for models of personality profile correlation") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Standardized solutions for models of personality profile correlation
|
partner
|
type
|
profile
|
quality
|
lhs
|
op
|
rhs
|
est.std
|
se
|
z
|
pvalue
|
ci.lower
|
ci.upper
|
|
1
|
raw
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.172
|
0.194
|
0.886
|
0.375
|
-0.209
|
0.554
|
|
1
|
raw
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_profz_t1
|
0.264
|
0.217
|
1.219
|
0.223
|
-0.161
|
0.690
|
|
1
|
raw
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_profz_t1
|
0.039
|
0.168
|
0.234
|
0.815
|
-0.290
|
0.369
|
|
1
|
raw
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_qual_t1
|
-0.052
|
0.190
|
-0.274
|
0.784
|
-0.425
|
0.321
|
|
1
|
raw
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.086
|
0.198
|
0.437
|
0.662
|
-0.301
|
0.474
|
|
1
|
raw
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_profz_t2
|
0.125
|
0.219
|
0.572
|
0.567
|
-0.304
|
0.554
|
|
1
|
raw
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_profz_t2
|
-0.089
|
0.193
|
-0.461
|
0.645
|
-0.466
|
0.289
|
|
1
|
raw
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_qual_t2
|
-0.183
|
0.160
|
-1.141
|
0.254
|
-0.496
|
0.131
|
|
2
|
raw
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.200
|
0.209
|
0.956
|
0.339
|
-0.210
|
0.609
|
|
2
|
raw
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_profz_t1
|
0.219
|
0.221
|
0.991
|
0.322
|
-0.214
|
0.653
|
|
2
|
raw
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_profz_t1
|
-0.191
|
0.164
|
-1.162
|
0.245
|
-0.512
|
0.131
|
|
2
|
raw
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_qual_t1
|
-0.179
|
0.186
|
-0.964
|
0.335
|
-0.544
|
0.185
|
|
2
|
raw
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
-0.004
|
0.217
|
-0.020
|
0.984
|
-0.429
|
0.421
|
|
2
|
raw
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_profz_t2
|
0.104
|
0.221
|
0.469
|
0.639
|
-0.329
|
0.536
|
|
2
|
raw
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_profz_t2
|
-0.311
|
0.198
|
-1.573
|
0.116
|
-0.698
|
0.077
|
|
2
|
raw
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_qual_t2
|
-0.207
|
0.158
|
-1.313
|
0.189
|
-0.517
|
0.102
|
|
1
|
centered
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.101
|
0.192
|
0.527
|
0.598
|
-0.275
|
0.477
|
|
1
|
centered
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_profz_t1
|
-0.060
|
0.190
|
-0.314
|
0.754
|
-0.431
|
0.312
|
|
1
|
centered
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_profz_t1
|
0.065
|
0.159
|
0.412
|
0.681
|
-0.246
|
0.376
|
|
1
|
centered
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_qual_t1
|
-0.003
|
0.196
|
-0.018
|
0.986
|
-0.387
|
0.380
|
|
1
|
centered
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.026
|
0.196
|
0.135
|
0.893
|
-0.357
|
0.410
|
|
1
|
centered
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_profz_t2
|
0.086
|
0.196
|
0.440
|
0.660
|
-0.298
|
0.471
|
|
1
|
centered
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_profz_t2
|
-0.207
|
0.164
|
-1.264
|
0.206
|
-0.528
|
0.114
|
|
1
|
centered
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_qual_t2
|
-0.163
|
0.176
|
-0.926
|
0.355
|
-0.507
|
0.182
|
|
2
|
centered
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.195
|
0.190
|
1.024
|
0.306
|
-0.178
|
0.567
|
|
2
|
centered
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_profz_t1
|
-0.187
|
0.182
|
-1.028
|
0.304
|
-0.543
|
0.169
|
|
2
|
centered
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_profz_t1
|
0.127
|
0.140
|
0.908
|
0.364
|
-0.148
|
0.403
|
|
2
|
centered
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_qual_t1
|
-0.011
|
0.174
|
-0.061
|
0.952
|
-0.351
|
0.330
|
|
2
|
centered
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
-0.067
|
0.239
|
-0.280
|
0.780
|
-0.536
|
0.402
|
|
2
|
centered
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_profz_t2
|
0.009
|
0.196
|
0.048
|
0.962
|
-0.375
|
0.393
|
|
2
|
centered
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_profz_t2
|
-0.146
|
0.194
|
-0.751
|
0.453
|
-0.526
|
0.235
|
|
2
|
centered
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_qual_t2
|
-0.019
|
0.173
|
-0.110
|
0.913
|
-0.357
|
0.319
|
|
1
|
std
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.113
|
0.194
|
0.581
|
0.561
|
-0.268
|
0.494
|
|
1
|
std
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_profz_t1
|
-0.085
|
0.228
|
-0.374
|
0.709
|
-0.532
|
0.361
|
|
1
|
std
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_profz_t1
|
0.042
|
0.162
|
0.260
|
0.795
|
-0.276
|
0.360
|
|
1
|
std
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_qual_t1
|
0.064
|
0.210
|
0.305
|
0.761
|
-0.347
|
0.475
|
|
1
|
std
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
0.047
|
0.194
|
0.241
|
0.809
|
-0.333
|
0.426
|
|
1
|
std
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_profz_t2
|
0.170
|
0.184
|
0.920
|
0.358
|
-0.192
|
0.531
|
|
1
|
std
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_profz_t2
|
-0.158
|
0.175
|
-0.901
|
0.368
|
-0.501
|
0.186
|
|
1
|
std
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_qual_t2
|
-0.089
|
0.161
|
-0.556
|
0.578
|
-0.405
|
0.226
|
|
2
|
std
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_qual_t1
|
0.191
|
0.191
|
0.996
|
0.319
|
-0.184
|
0.565
|
|
2
|
std
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_profz_t1
|
-0.232
|
0.205
|
-1.130
|
0.258
|
-0.634
|
0.170
|
|
2
|
std
|
bigfive
|
satis
|
w_qual_t2
|
~
|
w_profz_t1
|
0.195
|
0.138
|
1.412
|
0.158
|
-0.076
|
0.465
|
|
2
|
std
|
bigfive
|
satis
|
w_profz_t2
|
~
|
w_qual_t1
|
0.146
|
0.174
|
0.837
|
0.402
|
-0.195
|
0.487
|
|
2
|
std
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_qual_t2
|
-0.022
|
0.234
|
-0.096
|
0.924
|
-0.481
|
0.436
|
|
2
|
std
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_profz_t2
|
0.079
|
0.180
|
0.439
|
0.661
|
-0.274
|
0.433
|
|
2
|
std
|
bigfive
|
satis
|
w_qual_t3
|
~
|
w_profz_t2
|
-0.036
|
0.192
|
-0.188
|
0.851
|
-0.412
|
0.340
|
|
2
|
std
|
bigfive
|
satis
|
w_profz_t3
|
~
|
w_qual_t2
|
0.073
|
0.151
|
0.486
|
0.627
|
-0.223
|
0.370
|
Research Question 3. Actor/Partner/Perceived/Similarity
H8. Actor/partner effect on quality
At baseline, self-reported characteristic adaptations are most
strongly associated with self-reported relationship quality, more so
than the effect of partner-reported and similarity on these
variables.
I will run an Actor-Partner Interdependence Model (APIM; Campbell
& Kashy, 2002; Cook & Kenny, 2005; Kenny & Ledermann, 2010)
following the general structures as depicted in Figures 2. Figure 2
depicts a model for actual similarity, including both partners’
self-reported personality scores. The hypothesis is supported if the
actor path estimates are larger than the partner and similarity path
estimates, using 95% confidence intervals.
Figure 2. General structure for the
actor-partner interdependence model at baseline - Actual
similarity
var_list <- c("open", "consci", "extra", "agree", "neuro",
"care_self", "care_partner")
quality_list <- c("satis")
# run function
h8_results <- h8_function(var_list = var_list,
quality_list = quality_list,
time = 1, df = dat)
h8_results %>%
knitr::kable(
caption = "Standardized solutions for APIM models with actual similarity"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Standardized solutions for APIM models with actual similarity
|
lhs
|
op
|
rhs
|
label
|
est.std
|
se
|
z
|
pvalue
|
ci.lower
|
ci.upper
|
|
satis_1
|
~
|
open_1
|
a1
|
0.073
|
0.090
|
0.808
|
0.419
|
-0.103
|
0.249
|
|
satis_2
|
~
|
open_2
|
a2
|
-0.041
|
0.083
|
-0.496
|
0.620
|
-0.203
|
0.121
|
|
satis_2
|
~
|
open_1
|
p12
|
0.011
|
0.083
|
0.136
|
0.892
|
-0.151
|
0.174
|
|
satis_1
|
~
|
open_2
|
p21
|
-0.087
|
0.082
|
-1.073
|
0.283
|
-0.247
|
0.072
|
|
satis_1
|
~
|
open_diff
|
d1
|
-0.085
|
0.090
|
-0.952
|
0.341
|
-0.261
|
0.090
|
|
satis_2
|
~
|
open_diff
|
d2
|
0.056
|
0.090
|
0.622
|
0.534
|
-0.121
|
0.233
|
|
satis_1
|
~
|
consci_1
|
a1
|
-0.067
|
0.087
|
-0.778
|
0.437
|
-0.237
|
0.102
|
|
satis_2
|
~
|
consci_2
|
a2
|
-0.056
|
0.080
|
-0.705
|
0.481
|
-0.213
|
0.100
|
|
satis_2
|
~
|
consci_1
|
p12
|
-0.072
|
0.084
|
-0.868
|
0.386
|
-0.236
|
0.091
|
|
satis_1
|
~
|
consci_2
|
p21
|
-0.095
|
0.082
|
-1.148
|
0.251
|
-0.256
|
0.067
|
|
satis_1
|
~
|
consci_diff
|
d1
|
-0.075
|
0.088
|
-0.859
|
0.390
|
-0.247
|
0.097
|
|
satis_2
|
~
|
consci_diff
|
d2
|
-0.112
|
0.083
|
-1.355
|
0.175
|
-0.274
|
0.050
|
|
satis_1
|
~
|
extra_1
|
a1
|
0.005
|
0.084
|
0.055
|
0.956
|
-0.160
|
0.169
|
|
satis_2
|
~
|
extra_2
|
a2
|
-0.034
|
0.081
|
-0.420
|
0.674
|
-0.194
|
0.125
|
|
satis_2
|
~
|
extra_1
|
p12
|
-0.011
|
0.083
|
-0.137
|
0.891
|
-0.174
|
0.151
|
|
satis_1
|
~
|
extra_2
|
p21
|
-0.104
|
0.082
|
-1.278
|
0.201
|
-0.264
|
0.056
|
|
satis_1
|
~
|
extra_diff
|
d1
|
-0.062
|
0.085
|
-0.725
|
0.468
|
-0.228
|
0.105
|
|
satis_2
|
~
|
extra_diff
|
d2
|
0.012
|
0.085
|
0.138
|
0.890
|
-0.155
|
0.178
|
|
satis_1
|
~
|
agree_1
|
a1
|
0.017
|
0.081
|
0.211
|
0.833
|
-0.142
|
0.177
|
|
satis_2
|
~
|
agree_2
|
a2
|
-0.035
|
0.083
|
-0.418
|
0.676
|
-0.197
|
0.128
|
|
satis_2
|
~
|
agree_1
|
p12
|
-0.139
|
0.082
|
-1.699
|
0.089
|
-0.299
|
0.021
|
|
satis_1
|
~
|
agree_2
|
p21
|
0.073
|
0.089
|
0.817
|
0.414
|
-0.102
|
0.247
|
|
satis_1
|
~
|
agree_diff
|
d1
|
0.147
|
0.089
|
1.656
|
0.098
|
-0.027
|
0.321
|
|
satis_2
|
~
|
agree_diff
|
d2
|
-0.016
|
0.092
|
-0.173
|
0.863
|
-0.196
|
0.164
|
|
satis_1
|
~
|
neuro_1
|
a1
|
-0.162
|
0.084
|
-1.930
|
0.054
|
-0.326
|
0.003
|
|
satis_2
|
~
|
neuro_2
|
a2
|
0.067
|
0.082
|
0.816
|
0.415
|
-0.094
|
0.227
|
|
satis_2
|
~
|
neuro_1
|
p12
|
-0.084
|
0.079
|
-1.060
|
0.289
|
-0.239
|
0.071
|
|
satis_1
|
~
|
neuro_2
|
p21
|
0.073
|
0.087
|
0.849
|
0.396
|
-0.096
|
0.243
|
|
satis_1
|
~
|
neuro_diff
|
d1
|
-0.088
|
0.100
|
-0.878
|
0.380
|
-0.285
|
0.109
|
|
satis_2
|
~
|
neuro_diff
|
d2
|
0.002
|
0.086
|
0.018
|
0.986
|
-0.167
|
0.170
|
|
satis_1
|
~
|
care_self_1
|
a1
|
0.051
|
0.084
|
0.611
|
0.541
|
-0.113
|
0.216
|
|
satis_2
|
~
|
care_self_2
|
a2
|
0.144
|
0.082
|
1.742
|
0.082
|
-0.018
|
0.305
|
|
satis_2
|
~
|
care_self_1
|
p12
|
0.119
|
0.077
|
1.551
|
0.121
|
-0.031
|
0.270
|
|
satis_1
|
~
|
care_self_2
|
p21
|
-0.129
|
0.085
|
-1.513
|
0.130
|
-0.297
|
0.038
|
|
satis_1
|
~
|
care_self_diff
|
d1
|
0.053
|
0.093
|
0.577
|
0.564
|
-0.128
|
0.235
|
|
satis_2
|
~
|
care_self_diff
|
d2
|
-0.026
|
0.087
|
-0.302
|
0.763
|
-0.197
|
0.144
|
|
satis_1
|
~
|
care_partner_1
|
a1
|
0.031
|
0.083
|
0.379
|
0.705
|
-0.131
|
0.194
|
|
satis_2
|
~
|
care_partner_2
|
a2
|
0.078
|
0.079
|
0.988
|
0.323
|
-0.077
|
0.233
|
|
satis_2
|
~
|
care_partner_1
|
p12
|
-0.099
|
0.080
|
-1.244
|
0.214
|
-0.256
|
0.057
|
|
satis_1
|
~
|
care_partner_2
|
p21
|
-0.016
|
0.084
|
-0.187
|
0.852
|
-0.181
|
0.149
|
|
satis_1
|
~
|
care_partner_diff
|
d1
|
-0.024
|
0.088
|
-0.274
|
0.784
|
-0.196
|
0.148
|
|
satis_2
|
~
|
care_partner_diff
|
d2
|
0.100
|
0.082
|
1.224
|
0.221
|
-0.060
|
0.261
|
H9. Perceived/actual similarity comparison
At baseline, perceived similarity in personality traits and
characteristic adaptations is stronger than actual similarity. That is,
the correlation between each partner’s self-perception and perception of
their partner is stronger than the correlation between two partners’
self-perceptions.
In order to compare the effect size of actual and perceived
similarity, I will conduct a z-difference test using Fisher’s \(z\)-transformed bivariate correlations
between (a) self-reports of each partner, (b) female partner’s
self-perception and perception of male partner, and (c) male partner’s
self-perception and perception of female partner. The difference between
these associations is considered significant if the two 95% confidence
intervals do not overlap.
perception_list <- c("care")
# run function
h9_results <- h9_function(perception_list = perception_list,
time = 1, df = dat)
h9_results$similarity_df %>%
knitr::kable(
caption = "Actual and perceived similarities as bivariate correlations") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Actual and perceived similarities as bivariate correlations
|
similarity
|
personality
|
correlation
|
p-value
|
|
actual
|
care
|
-0.057 [-0.328 - 0.222]
|
0.69
|
|
female-perceived
|
care
|
0.013 [-0.261 - 0.285]
|
0.928
|
|
male-perceived
|
care
|
0.117 [-0.167 - 0.382]
|
0.42
|
h9_results$compare_df %>%
knitr::kable(
caption = "Comparison between actual and perceived similarities") %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Comparison between actual and perceived similarities
|
V1
|
V2
|
personality
|
z_stat
|
sig
|
|
actual
|
female-perceived
|
care
|
-0.3452100
|
FALSE
|
|
actual
|
male-perceived
|
care
|
-0.8495454
|
FALSE
|
|
female-perceived
|
male-perceived
|
care
|
-0.5104973
|
FALSE
|
H10. Perceived/actual similarity effects
At baseline, each partner’s perceived similarity is more strongly
associated with self-reported relationship quality than actual
similarity is.
In order to compare the effect sizes of the relationship between
actual/perceived similarity and relationship quality, we will run the
Actor-Partner Interdependence Models following the general structures as
depicted in Figure 3. This structure is similar to Figure 2 of H8, but
it depicts a model for perceived similarity, including one
partner’s perception of their own personality and of their partner’s
personality. There are technically two sets of models for perceived
similarity, one using the female partner’s perception and one with the
male partner’s perception. I compare the estimated paths and their
standard errors. The difference between these associations is considered
significant if the two 95% confidence intervals do not overlap.
Figure 3. General structure for the
actor-partner interdependence model at baseline - Perceived
similarity
perception_list <- c("care")
quality_list <- c("satis")
# run function
h10_results <- h10_function(perception_list = perception_list,
quality_list = quality_list,
time = 1, df = dat)
h10_results$est_df_p1 %>%
knitr::kable(
caption = "Standardized solutions for APIM models with female-perceived similarity"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Standardized solutions for APIM models with female-perceived similarity
|
perception
|
lhs
|
op
|
rhs
|
label
|
est.std
|
se
|
z
|
pvalue
|
ci.lower
|
ci.upper
|
|
female
|
satis_1
|
~
|
care_self_1
|
a1
|
0.034
|
0.091
|
0.370
|
0.711
|
-0.144
|
0.211
|
|
female
|
satis_2
|
~
|
care_partner_1
|
ap1
|
-0.125
|
0.081
|
-1.537
|
0.124
|
-0.284
|
0.034
|
|
female
|
satis_2
|
~
|
care_self_1
|
p12
|
0.143
|
0.080
|
1.792
|
0.073
|
-0.013
|
0.300
|
|
female
|
satis_1
|
~
|
care_partner_1
|
p21
|
0.021
|
0.086
|
0.240
|
0.811
|
-0.148
|
0.190
|
|
female
|
satis_1
|
~
|
care_diff_p1
|
d1
|
-0.044
|
0.095
|
-0.465
|
0.642
|
-0.231
|
0.142
|
|
female
|
satis_2
|
~
|
care_diff_p1
|
d2
|
0.022
|
0.081
|
0.271
|
0.786
|
-0.137
|
0.181
|
h10_results$est_df_p2 %>%
knitr::kable(
caption = "Standardized solutions for APIM models with male-perceived similarity"
) %>%
kableExtra::kable_styling() %>%
scroll_box(height = "300px")
Standardized solutions for APIM models with male-perceived similarity
|
perception
|
lhs
|
op
|
rhs
|
label
|
est.std
|
se
|
z
|
pvalue
|
ci.lower
|
ci.upper
|
|
male
|
satis_2
|
~
|
care_self_2
|
a2
|
0.153
|
0.084
|
1.817
|
0.069
|
-0.012
|
0.317
|
|
male
|
satis_1
|
~
|
care_partner_2
|
ap2
|
-0.016
|
0.084
|
-0.185
|
0.853
|
-0.180
|
0.149
|
|
male
|
satis_1
|
~
|
care_self_2
|
p21
|
-0.036
|
0.057
|
-0.640
|
0.522
|
-0.148
|
0.075
|
|
male
|
satis_2
|
~
|
care_partner_2
|
p21
|
-0.039
|
0.060
|
-0.644
|
0.519
|
-0.157
|
0.079
|
|
male
|
satis_1
|
~
|
care_diff_p2
|
d1
|
-0.036
|
0.094
|
-0.384
|
0.701
|
-0.221
|
0.149
|
|
male
|
satis_2
|
~
|
care_diff_p2
|
d2
|
-0.007
|
0.085
|
-0.080
|
0.936
|
-0.174
|
0.161
|