data_color_merged %>%
select(pop, pred_trt, tutor_pop) %>%
ftable()
## tutor_pop solo AH AL
## pop pred_trt
## AH N 20 19 20
## Y 20 20 16
## AL N 20 20 20
## Y 21 20 19
#prep dataset for facet wrap
data_long <- data_color_merged %>%
select("pop","tutor_pop","pred_trt",
"body_black_num", "body_black_area", "body_black_prop",
"body_fuzzyblack_num", "body_fuzzyblack_area","body_fuzzyblack_prop",
"body_melanin_num", "body_melanin_area","body_melanin_prop",
"body_yellow_num", "body_yellow_area","body_yellow_prop",
"body_orange_num", "body_orange_area","body_orange_prop",
"body_xanthophore_num", "body_xanthophore_area", "body_xanthophore_prop",
"tail_black_num", "tail_black_area", "tail_black_prop",
"tail_fuzzyblack_num", "tail_fuzzyblack_area","tail_fuzzyblack_prop",
"tail_melanin_num", "tail_melanin_area","tail_melanin_prop",
"tail_yellow_num", "tail_yellow_area","tail_yellow_prop",
"tail_orange_num", "tail_orange_area","tail_orange_prop",
"tail_xanthophore_num", "tail_xanthophore_area", "tail_xanthophore_prop",
"body_area","tail_area",'gono_resid') %>%
pivot_longer(-c("pop", "tutor_pop", "pred_trt"),
names_to = "variable",
values_to = "value") %>%
group_by(variable) %>%
#reorder for neater plotting
mutate(variable = as.factor(variable)) %>%
mutate(variable = fct_relevel(variable,
"body_black_num", "body_black_area", "body_black_prop",
"body_fuzzyblack_num", "body_fuzzyblack_area","body_fuzzyblack_prop",
"body_melanin_num", "body_melanin_area","body_melanin_prop",
"body_yellow_num", "body_yellow_area","body_yellow_prop",
"body_orange_num", "body_orange_area","body_orange_prop",
"body_xanthophore_num", "body_xanthophore_area", "body_xanthophore_prop",
"tail_black_num", "tail_black_area", "tail_black_prop",
"tail_fuzzyblack_num", "tail_fuzzyblack_area","tail_fuzzyblack_prop",
"tail_melanin_num", "tail_melanin_area","tail_melanin_prop",
"tail_yellow_num", "tail_yellow_area","tail_yellow_prop",
"tail_orange_num", "tail_orange_area","tail_orange_prop",
"tail_xanthophore_num", "tail_xanthophore_area", "tail_xanthophore_prop",
"body_area","tail_area",'gono_resid'))
ggplot(data_long, aes(x =pop,fill = pop, y = value)) +
geom_boxplot() + facet_wrap(variable ~., scales = 'free', ncol = 3) +
theme_bw() + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) +
scale_fill_manual(values=c("steelblue", "lightsalmon1" ))
ggplot(data_long,
aes(x =tutor_pop:pred_trt ,fill = pop, y = value)) +
geom_boxplot() + facet_wrap(variable ~., scales = 'free', ncol = 3) +
theme_bw() + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = "top") +
scale_fill_manual(values=c("steelblue","lightsalmon1" ))
data_cor <- data_color_merged %>%
gather(variable, value,
body_melanin_prop, tail_melanin_prop, body_xanthophore_prop, tail_xanthophore_prop)
ggplot(data_cor, aes(x = value, y = gono_resid, color = pop, fill = pop)) +
geom_point(pch = 21, color = "black") +
geom_smooth(method = lm, alpha = 0.2) +
stat_cor(method = "pearson") +
theme_bw(base_size = 15) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
aspect.ratio = 1,
legend.position = "none") +
scale_fill_manual(values = c("SteelBlue", "lightsalmon1")) +
scale_color_manual(values = c("SteelBlue", "lightsalmon1")) +
facet_wrap(~variable, nrow = 2)
## `geom_smooth()` using formula = 'y ~ x'
Strategy: start with pop*(pred_trt + tutor_pop) and drop when non-significant
Both HP and LP males responded to social treatment. Body black solo > LP~HP
mod <- lmer(logit(body_black_prop) ~ pop+pred_trt + tutor_pop+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -1.365 | 0.076 | -17.850 |
| popAL | -0.043 | 0.088 | -0.495 |
| pred_trtY | -0.051 | 0.055 | -0.932 |
| tutor_popAH | -0.190 | 0.067 | -2.836 |
| tutor_popAL | -0.121 | 0.067 | -1.812 |
Anova(mod)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: logit(body_black_prop)
## Chisq Df Pr(>Chisq)
## pop 0.2452 1 0.6205
## pred_trt 0.8685 1 0.3514
## tutor_pop 8.2954 2 0.0158 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(mod, ~ tutor_pop) %>% pairs() %>% kable(digits=3)
| contrast | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|
| solo - AH | 0.190 | 0.067 | 224.381 | 2.823 | 0.014 |
| solo - AL | 0.121 | 0.067 | 216.399 | 1.807 | 0.170 |
| AH - AL | -0.068 | 0.068 | 222.761 | -1.002 | 0.577 |
trend of pred+ having less tail black
mod <- lmer(car::logit(tail_black_prop) ~ pop+pred_trt + tutor_pop+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -1.847 | 0.239 | -7.715 |
| popAL | 0.550 | 0.334 | 1.644 |
| pred_trtY | -0.148 | 0.084 | -1.772 |
| tutor_popAH | -0.107 | 0.103 | -1.034 |
| tutor_popAL | -0.014 | 0.102 | -0.134 |
LP overall have less body melanin compare to HP males They showed trend of responding differently to predator treatment; when reared in pred+, HP decreased melanin and LP increased.
mod <- lmer(logit(body_melanin_prop) ~ pop*pred_trt + tutor_pop+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -0.982 | 0.070 | -14.012 |
| popAL | -0.188 | 0.092 | -2.055 |
| pred_trtY | -0.095 | 0.062 | -1.543 |
| tutor_popAH | -0.006 | 0.053 | -0.119 |
| tutor_popAL | -0.036 | 0.053 | -0.681 |
| popAL:pred_trtY | 0.160 | 0.087 | 1.840 |
emmeans(mod, ~ pred_trt|pop) %>% pairs() %>% kable(digits=3)
| contrast | pop | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|---|
| N - Y | AH | 0.095 | 0.062 | 212.900 | 1.540 | 0.125 |
| N - Y | AL | -0.065 | 0.062 | 217.401 | -1.056 | 0.292 |
Nothing
mod <- lmer(car::logit(tail_melanin_prop) ~ pop+pred_trt+tutor_pop+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -1.829 | 0.240 | -7.622 |
| popAL | 0.563 | 0.335 | 1.681 |
| pred_trtY | -0.127 | 0.083 | -1.526 |
| tutor_popAH | -0.080 | 0.103 | -0.775 |
| tutor_popAL | -0.020 | 0.101 | -0.196 |
Only LP fish is sensitive to social treatment; when reared alone they have more orange
mod <- lmer(car::logit(body_orange_prop) ~ pop*tutor_pop+ pred_trt+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -2.399 | 0.142 | -16.913 |
| popAL | 0.322 | 0.197 | 1.638 |
| tutor_popAH | 0.024 | 0.129 | 0.187 |
| tutor_popAL | 0.002 | 0.127 | 0.016 |
| pred_trtY | -0.026 | 0.071 | -0.366 |
| popAL:tutor_popAH | -0.390 | 0.175 | -2.225 |
| popAL:tutor_popAL | -0.183 | 0.173 | -1.056 |
emmeans(mod, ~ tutor_pop|pop) %>% pairs() %>% kable(digits=3)
| contrast | pop | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|---|
| solo - AH | AH | -0.024 | 0.129 | 220.638 | -0.186 | 0.981 |
| solo - AL | AH | -0.002 | 0.127 | 210.121 | -0.016 | 1.000 |
| AH - AL | AH | 0.022 | 0.134 | 220.651 | 0.165 | 0.985 |
| solo - AH | AL | 0.366 | 0.119 | 205.051 | 3.067 | 0.007 |
| solo - AL | AL | 0.181 | 0.118 | 203.047 | 1.532 | 0.278 |
| AH - AL | AL | -0.185 | 0.119 | 201.300 | -1.557 | 0.267 |
Both HP and LP responded to social treatment; solo < HP ~ LP
mod <- lmer(car::logit(tail_orange_prop) ~ pop+tutor_pop+ pred_trt+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -2.215 | 0.326 | -6.788 |
| popAL | 0.131 | 0.443 | 0.296 |
| tutor_popAH | 0.264 | 0.175 | 1.504 |
| tutor_popAL | 0.446 | 0.173 | 2.580 |
| pred_trtY | 0.136 | 0.142 | 0.959 |
emmeans(mod, ~ tutor_pop) %>% pairs() %>% kable(digits=3)
| contrast | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|
| solo - AH | -0.264 | 0.176 | 210.379 | -1.501 | 0.292 |
| solo - AL | -0.446 | 0.173 | 205.567 | -2.577 | 0.029 |
| AH - AL | -0.182 | 0.178 | 208.678 | -1.025 | 0.562 |
Population differ in response to tutor treatment; only AL is sensitive-ish, not significant.
mod <- lmer(car::logit(body_xanthophore_prop) ~ pop*tutor_pop+ pred_trt+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -1.974 | 0.119 | -16.572 |
| popAL | 0.218 | 0.164 | 1.329 |
| tutor_popAH | 0.108 | 0.114 | 0.948 |
| tutor_popAL | -0.041 | 0.113 | -0.365 |
| pred_trtY | 0.002 | 0.063 | 0.034 |
| popAL:tutor_popAH | -0.330 | 0.156 | -2.115 |
| popAL:tutor_popAL | -0.038 | 0.155 | -0.245 |
Anova(mod)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: car::logit(body_xanthophore_prop)
## Chisq Df Pr(>Chisq)
## pop 0.5000 1 0.47951
## tutor_pop 0.9359 2 0.62629
## pred_trt 0.0011 1 0.97320
## pop:tutor_pop 5.2359 2 0.07295 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(mod, ~tutor_pop|pop) %>% pairs %>% kable(digits=3)
| contrast | pop | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|---|
| solo - AH | AH | -0.108 | 0.115 | 222.671 | -0.944 | 0.613 |
| solo - AL | AH | 0.041 | 0.113 | 211.962 | 0.364 | 0.930 |
| AH - AL | AH | 0.149 | 0.119 | 222.791 | 1.259 | 0.420 |
| solo - AH | AL | 0.222 | 0.106 | 206.156 | 2.082 | 0.096 |
| solo - AL | AL | 0.079 | 0.105 | 203.736 | 0.750 | 0.734 |
| AH - AL | AL | -0.143 | 0.106 | 202.070 | -1.345 | 0.372 |
This ones pretty interesting. 1. Both HP and LP males are influenced by social treatment; when raised with AL tutor, they develop more xantho on tail (marginal) 2. Only HP is sensitive to pred treatment; they develop more xantho in predator water.
mod <- lmer(car::logit(tail_xanthophore_prop) ~ pop*pred_trt + tutor_pop+ (1|mom_ID),
data = data_color_merged)
summary(mod)$coefficient %>% kable(digits = 3)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -1.907 | 0.301 | -6.342 |
| popAL | 0.778 | 0.428 | 1.820 |
| pred_trtY | 0.295 | 0.142 | 2.082 |
| tutor_popAH | -0.001 | 0.124 | -0.006 |
| tutor_popAL | 0.274 | 0.122 | 2.241 |
| popAL:pred_trtY | -0.427 | 0.201 | -2.126 |
Anova(mod, type =3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: car::logit(tail_xanthophore_prop)
## Chisq Df Pr(>Chisq)
## (Intercept) 40.2258 1 2.262e-10 ***
## pop 3.3138 1 0.06870 .
## pred_trt 4.3360 1 0.03731 *
## tutor_pop 6.5459 2 0.03790 *
## pop:pred_trt 4.5184 1 0.03353 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(mod, ~tutor_pop) %>% pairs %>% kable(digits=3)
| contrast | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|
| solo - AH | 0.001 | 0.125 | 205.446 | 0.006 | 1.000 |
| solo - AL | -0.274 | 0.122 | 202.402 | -2.240 | 0.067 |
| AH - AL | -0.275 | 0.126 | 204.158 | -2.183 | 0.076 |
emmeans(mod, ~pred_trt|pop) %>% pairs %>% kable(digits=3)
| contrast | pop | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|---|
| N - Y | AH | -0.295 | 0.142 | 202.771 | -2.081 | 0.039 |
| N - Y | AL | 0.132 | 0.143 | 203.250 | 0.925 | 0.356 |
Trend of solo fish having relatively shorter gonopodia, but not significant
mod <- lmer(gono_length ~ pop+pred_trt+tutor_pop+ length + (1|mom_ID) ,
data = data_color_merged)
Anova(mod, type = 3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: gono_length
## Chisq Df Pr(>Chisq)
## (Intercept) 12.9019 1 0.0003282 ***
## pop 0.7101 1 0.3994059
## pred_trt 0.4304 1 0.5118131
## tutor_pop 4.6454 2 0.0980079 .
## length 91.4419 1 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(mod, ~tutor_pop) %>% pairs %>% kable(digits=3)
| contrast | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|
| solo - AH | -0.096 | 0.047 | 227.553 | -2.044 | 0.104 |
| solo - AL | -0.086 | 0.048 | 222.123 | -1.787 | 0.176 |
| AH - AL | 0.009 | 0.041 | 224.401 | 0.228 | 0.972 |
Significant went grouping the two tutored groups together.
mod <- lmer(gono_length ~ pop+pred_trt+tutor+ length + (1|mom_ID) ,
data = data_color_merged)
Anova(mod, type = 3)
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: gono_length
## Chisq Df Pr(>Chisq)
## (Intercept) 13.1252 1 0.0002914 ***
## pop 0.7172 1 0.3970707
## pred_trt 0.4316 1 0.5111979
## tutor 4.6030 1 0.0319167 *
## length 91.9168 1 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
emmeans(mod, ~tutor) %>% pairs %>% kable(digits=3)
| contrast | estimate | SE | df | t.ratio | p.value |
|---|---|---|---|---|---|
| solo - tutor | -0.091 | 0.043 | 226.647 | -2.134 | 0.034 |
Stats in this preliminary plot are based on Gaussian correlations with no random effects so could be different from the GLMM models but should show the same trends
scatterplot<-
ggpairs(data_color_merged,
columns = c("gono_resid", "BM_resid", "sigmoid_prop",
"body_melanin_prop", 'tail_melanin_prop', 'body_xanthophore_prop', 'tail_xanthophore_prop'),
aes(color = pop),
title = "Scatterplots & Correlation matrix")
print(scatterplot)
Relative gonopodia length is negatively correlated with sigmoid proportion
# ID is added as OLRE to help with overdispersion
mod <-glmer(cbind(sigmoid, sneak) ~ gono_resid+pop+
(1|ID)+(1|mom_ID),
data = data_color_merged,
family = binomial())
summary(mod)$coefficients %>% kable(digit = 3)
| Estimate | Std. Error | z value | Pr(>|z|) | |
|---|---|---|---|---|
| (Intercept) | -0.309 | 0.271 | -1.140 | 0.254 |
| gono_resid | -5.467 | 1.968 | -2.778 | 0.005 |
| popAL | -0.396 | 0.382 | -1.037 | 0.300 |
mod.fit <- emmip(mod, pop~gono_resid, cov.reduce = range, type = "response", plotit = F)
gono_behav <- ggplot(data = data_color_merged)+
geom_point(aes(x = gono_resid, y = sigmoid_prop, color = pop), alpha = 0.3) +
stat_summary_bin(aes(x = gono_resid, y = sigmoid_prop, color = pop),
fun.data = mean_se,
bins=8, size =0.5, position = position_dodge(0.02))+
geom_line(size = 1 ,data = mod.fit, aes(x = xvar, y = yvar, color = pop))+
labs( x = "Residual gonopodium length", y = "Sigmoid proportion") +
scale_color_manual("Population origin",
labels = c("HP","LP"),
values=c("SteelBlue", "lightsalmon1")) +
theme_bw(base_size = 15)+
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = "bottom",
aspect.ratio=1)
gono_behav
Marginal: HP males that have larger brain sigmoids proportionally more
mod <-glmer(cbind(sigmoid, sneak) ~ pop*BM_resid+
(1|ID) + (1|mom_ID),
data = data_color_merged,
family = binomial(),
control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=100000)))
## boundary (singular) fit: see help('isSingular')
summary(mod)$coefficients %>% kable(digit = 3)
| Estimate | Std. Error | z value | Pr(>|z|) | |
|---|---|---|---|---|
| (Intercept) | -1.045 | 0.423 | -2.470 | 0.014 |
| popAL | 0.768 | 0.527 | 1.458 | 0.145 |
| BM_resid | 3.199 | 1.768 | 1.809 | 0.070 |
| popAL:BM_resid | -4.360 | 2.347 | -1.858 | 0.063 |
emtrends(mod, ~pop, "BM_resid") %>% test
## pop BM_resid.trend SE df z.ratio p.value
## AH 3.20 1.77 Inf 1.809 0.0705
## AL -1.16 1.54 Inf -0.754 0.4510
mod.fit <- emmip(mod, pop~BM_resid, cov.reduce = range, type = "response", plotit = F)
BM_behav <- ggplot(data = data_color_merged)+
geom_point(aes(x = BM_resid, y = sigmoid_prop, color = pop), alpha = 0.3) +
geom_line(size = 1 ,data = mod.fit, aes(x = xvar, y = yvar, color = pop))+
stat_summary_bin(aes(x = BM_resid, y = sigmoid_prop, color = pop),
fun.data = mean_se,
bins=8, size =0.5, position = position_dodge(0.025))+
labs( x = "Residual brain mass", y = "Sigmoid proportion") +
scale_color_manual("Population origin",
labels = c("HP","LP"),
values=c("SteelBlue", "lightsalmon1")) +
scale_x_continuous(limits =c(-0.2506015, 0.4115183)) +
theme_bw(base_size = 15)+
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = "bottom",
aspect.ratio=1)
BM_behav
Marginal: males with longer gonopodia have smaller brains
mod <-lmer(scale(BM) ~ gono_resid+pop + weight +
(1|mom_ID),
data = data_color_merged )
summary(mod)$coefficients %>% kable(digit = 4)
| Estimate | Std. Error | t value | |
|---|---|---|---|
| (Intercept) | -2.4043 | 0.3498 | -6.8739 |
| gono_resid | -1.8360 | 0.9941 | -1.8468 |
| popAL | -0.3690 | 0.1681 | -2.1948 |
| weight | 20.3387 | 2.5998 | 7.8231 |
Anova(mod)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: scale(BM)
## Chisq Df Pr(>Chisq)
## gono_resid 3.4107 1 0.06478 .
## pop 4.8172 1 0.02818 *
## weight 61.2010 1 5.154e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod <-lmer(BM_resid ~ gono_resid+pop + (1|mom_ID),
data = data_color_merged)
mod.fit <- emmip(mod, pop~gono_resid, cov.reduce = range, type = "response", plotit = F)
BM_gono <- ggplot(data = data_color_merged)+
geom_point(aes(x = gono_resid, y = BM_resid, color = pop), alpha = 0.3) +
geom_line(size = 1 ,data = mod.fit, aes(x = xvar, y = yvar, color = pop))+
stat_summary_bin(aes(x = gono_resid, y = BM_resid, color = pop),
fun.data = mean_se,
bins=8, size =0.5, position = position_dodge(0.025))+
labs( x = "Residual gonopodium length", y = "Residual brain mass") +
scale_color_manual("Population origin",
labels = c("HP","LP"),
values=c("SteelBlue", "lightsalmon1")) +
theme_bw(base_size = 15)+
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = "bottom",
aspect.ratio=1)
BM_gono
Didn’t run full sets yet - pending discussion on what we want to run.
egg::ggarrange(gono_behav + theme(legend.position = "none"),
BM_behav,
BM_gono + theme(legend.position = "none"), nrow = 1,labels = c("A","B","C"))
1. Treatment variables & fish info:
ID: unique ID of the fishflag: highlighted during analysis, y = uncertainty
about ID handwriting, c = corrected when mergingpop: fish origin; Aripo HP (AH) / Aripo LP(AL)pred_trt: Rearing water treatment; with or without
predator chemical cues (Y/N)tutor_pop: Social treatment; reared with AH tutors, AL
tutors, or by itself (AH/AL/solo)block: Experiment block; fish in the same block are
processed on the same daymom_ID: the focal’s mom ID; fish with the same mom_ID
are full siblingsclutch_num: the number of the clutch the focal fish is
fromsex: Focal fish sex; male or female (M/F); all M in
this datasettutor_ID: ID of the tutors
2. Life history and morphology data:
birth: date of birthmature_date: date of reaching sexual maturity (based on
gonopodium hood; checked every week)mature_lat: latency (days) to sexual maturityassay_date: date of behavioral assayage: age (days) when assayedweight: weight (g) when assayedlength: body length (mm) when assayedgono_length: gonopodium length (mm)eye_width: eye width(mm)body_width: body width (mm)tail_width: tail width (mm)BM: Brain mass (g)Cb: Cerebellum volume (mm^3)OT: Optic Tectum volume (mm^3)Tel: Telencephalon volume (mm^3)OB: Olfactory bulb volume (mm^3)Hyp: Hypothalamus volume (mm^3)BM_resid: Brain mass residual against body massCb_resid: Cerebellum volume against brain massOT_resid: Optic Tectum volume against brain massTel_resid: Telencephalon volume against brain massOB_resid: Olfactory bulb volume against brain massHyp_resid: Hypothalamus volume against brain mass
3. Color data:
body_length: ImageJ measured body length (mm)body_area: body area (does not include tail)
(mm^2)body_black_num: number of black spotsbody_black_area: total area of black spotsbody_black_prop: body_black_area /
body_areabody_fuzzyblack_num: number of fuzzy black spotsbody_fuzzyblack_area: total area of fuzzy black
spotsbody_fuzzyblack_prop: body_fuzzyblack_area
/ body_areabody_melanin_num: body_black_num +
body_fuzzyblack_numbody_melanin_area: body_black_area +
body_fuzzyblack_areabody_melanin_prop: body_melanin_area/
body_areabody_yellow_num: number of yellow orange spotsbody_yellow_area: total area of yellow orange
spotsbody_yellow_prop:
body_yellow_area/body_areabody_orange_num: number of orange spotsbody_orange_area: total area of orange spotsbody_orange_prop:
body_orange_area/body_areabody_xanthophore_num:
body_yellow_num+body_orange_numbody_xanthophore_area:
body_yellow_area+body_orange_areabody_xanthophore_prop:
body_xanthophore_area/body_areatail_area: tail area (mm^2)tail_black_num: total number of black spots on
tailtail_black_area: total area of black spots on
tailtail_black_prop:
tail_black_area/tail_areatail_fuzzyblack_num: total number of fuzzy black spots
on tailtail_fuzzyblack_area: total area of fuzzy black spots
on tailtail_fuzzyblack_prop:
tail_fuzzyblack_area/tail_areatail_melanin_num: tail_black_num +
tail_fuzzyblack_numtail_melanin_area: tail_black_area +
tail_fuzzyblack_areatail_melanin_prop:
tail_melanin_area/tail_areatail_yellow_num: total number of yellow orange spots on
tailtail_yellow_area: total area of yellow orange spots on
tailtail_yellow_prop:
tail_yellow_area/tail_areatail_orange_num: total number of orange spots on
tailtail_orange_area: total number of orange area on
tailtail_orange_prop:
tail_orange_area/tail_areatail_xanthophore_num: tail_yellow_num +
tail_orange_numtail_xanthophore_area: tail_yellow_area +
tail_orange_areatail_xanthophore_prop:
tail_xanthophore_area/tail_area