#clean the environmentrm(list =ls())#Librarieslibrary(readr)library(stringr)library(plyr)library(dplyr)library(tidyverse)library(lme4)library(car)library(emmeans)library(ggthemes)library(data.table)library(corrplot)library(Hmisc)library(lavaan)library(lavaanPlot)library(semPlot)library(effectsize)
#select dataframe from our analysisdf.1<- df %>%filter(EXCL_PAR==0)
The dataset contains the following variables :
EXCL_CRIT(binary): specify participants who must be excluded based on the following specific exclusion criteria : […]. Based on this criteria 0 participants must be excluded.
m.DEM.UD <-' # direct effect AL_dsCTL ~ c * s_LPLA_P_time AL_dsCTL ~ d * PA_dsSUP # mediator DEM_dsHT ~ a * s_LPLA_P_time AL_dsCTL ~ b * DEM_dsHT # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.DEM.UD.fit <-sem(m.DEM.UD, data=df.1, se ="bootstrap", bootstrap =1000)summary(m.DEM.UD.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 2 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 199
Model Test User Model:
Test statistic 1.239
Degrees of freedom 1
P-value (Chi-square) 0.266
Model Test Baseline Model:
Test statistic 127.985
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.998
Tucker-Lewis Index (TLI) 0.990
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -636.527
Loglikelihood unrestricted model (H1) -635.907
Akaike (AIC) 1285.053
Bayesian (BIC) 1304.813
Sample-size adjusted Bayesian (SABIC) 1285.805
Root Mean Square Error of Approximation:
RMSEA 0.035
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.195
P-value H_0: RMSEA <= 0.050 0.376
P-value H_0: RMSEA >= 0.080 0.481
Standardized Root Mean Square Residual:
SRMR 0.027
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCTL ~
s_LPLA_P_t (c) 0.333 0.082 4.077 0.000
PA_dsSUP (d) 0.220 0.072 3.030 0.002
DEM_dsHT ~
s_LPLA_P_t (a) -0.360 0.096 -3.751 0.000
AL_dsCTL ~
DEM_dsHT (b) -0.400 0.030 -13.237 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCTL 0.880 0.084 10.442 0.000
.DEM_dsHT 2.339 0.309 7.572 0.000
R-Square:
Estimate
AL_dsCTL 0.435
DEM_dsHT 0.052
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.144 0.041 3.530 0.000
total 0.696 0.120 5.817 0.000
m.PA.UD <-' # direct effect AL_dsCTL ~ c * s_LPLA_P_time AL_dsCTL ~ d * DEM_dsHT # mediator PA_dsSUP ~ a * s_LPLA_P_time AL_dsCTL ~ b * PA_dsSUP # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.PA.UD.fit <-sem(m.PA.UD, data=df.1, se ="bootstrap", bootstrap =1000)summary(m.PA.UD.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 2 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 199
Model Test User Model:
Test statistic 1.239
Degrees of freedom 1
P-value (Chi-square) 0.266
Model Test Baseline Model:
Test statistic 123.718
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.998
Tucker-Lewis Index (TLI) 0.990
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -540.620
Loglikelihood unrestricted model (H1) -540.001
Akaike (AIC) 1093.240
Bayesian (BIC) 1113.000
Sample-size adjusted Bayesian (SABIC) 1093.992
Root Mean Square Error of Approximation:
RMSEA 0.035
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.195
P-value H_0: RMSEA <= 0.050 0.376
P-value H_0: RMSEA >= 0.080 0.481
Standardized Root Mean Square Residual:
SRMR 0.027
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCTL ~
s_LPLA_P_t (c) 0.333 0.083 4.021 0.000
DEM_dsHT (d) -0.400 0.032 -12.671 0.000
PA_dsSUP ~
s_LPLA_P_t (a) 0.171 0.057 3.012 0.003
AL_dsCTL ~
PA_dsSUP (b) 0.220 0.072 3.036 0.002
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCTL 0.880 0.086 10.197 0.000
.PA_dsSUP 0.892 0.069 12.932 0.000
R-Square:
Estimate
AL_dsCTL 0.435
PA_dsSUP 0.031
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.038 0.019 1.937 0.053
total -0.029 0.095 -0.310 0.757
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan WARNING:
Some restricted models fit better than less restricted models;
either these models are not nested, or the less restricted model
failed to reach a global optimum. Smallest difference =
-1.34851480908035
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan
WARNING: some models have the same degrees of freedom
m.DEM.UD.cm <-' # direct effect AL_dsCM ~ c * s_LPLA_P_time AL_dsCM ~ d * PA_dsSUP # mediator DEM_dsHT ~ a * s_LPLA_P_time AL_dsCM ~ b * DEM_dsHT # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.DEM.UD.cm.fit <-sem(m.DEM.UD.cm, data=df.1, se ="bootstrap", bootstrap =1000)summary(m.DEM.UD.cm.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 199
Model Test User Model:
Test statistic 1.239
Degrees of freedom 1
P-value (Chi-square) 0.266
Model Test Baseline Model:
Test statistic 83.973
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.997
Tucker-Lewis Index (TLI) 0.985
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -647.161
Loglikelihood unrestricted model (H1) -646.542
Akaike (AIC) 1306.322
Bayesian (BIC) 1326.082
Sample-size adjusted Bayesian (SABIC) 1307.074
Root Mean Square Error of Approximation:
RMSEA 0.035
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.195
P-value H_0: RMSEA <= 0.050 0.376
P-value H_0: RMSEA >= 0.080 0.481
Standardized Root Mean Square Residual:
SRMR 0.027
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCM ~
s_LPLA_P_t (c) 0.100 0.051 1.968 0.049
PA_dsSUP (d) 0.142 0.074 1.907 0.057
DEM_dsHT ~
s_LPLA_P_t (a) -0.360 0.096 -3.755 0.000
AL_dsCM ~
DEM_dsHT (b) -0.376 0.094 -3.999 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCM 0.979 0.218 4.498 0.000
.DEM_dsHT 2.339 0.300 7.808 0.000
R-Square:
Estimate
AL_dsCM 0.298
DEM_dsHT 0.052
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.136 0.059 2.313 0.021
total 0.377 0.080 4.704 0.000
m.PA.UD.cm <-' # direct effect AL_dsCM ~ c * s_LPLA_P_time AL_dsCM ~ d * DEM_dsHT # mediator PA_dsSUP ~ a * s_LPLA_P_time AL_dsCM ~ b * PA_dsSUP # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.PA.UD.cm.fit <-sem(m.PA.UD.cm, data=df.1, se ="bootstrap", bootstrap =1000)summary(m.PA.UD.cm.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 199
Model Test User Model:
Test statistic 1.239
Degrees of freedom 1
P-value (Chi-square) 0.266
Model Test Baseline Model:
Test statistic 79.706
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.997
Tucker-Lewis Index (TLI) 0.984
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -551.254
Loglikelihood unrestricted model (H1) -550.635
Akaike (AIC) 1114.509
Bayesian (BIC) 1134.269
Sample-size adjusted Bayesian (SABIC) 1115.260
Root Mean Square Error of Approximation:
RMSEA 0.035
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.195
P-value H_0: RMSEA <= 0.050 0.376
P-value H_0: RMSEA >= 0.080 0.481
Standardized Root Mean Square Residual:
SRMR 0.027
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCM ~
s_LPLA_P_t (c) 0.100 0.052 1.917 0.055
DEM_dsHT (d) -0.376 0.098 -3.837 0.000
PA_dsSUP ~
s_LPLA_P_t (a) 0.171 0.060 2.828 0.005
AL_dsCM ~
PA_dsSUP (b) 0.142 0.077 1.846 0.065
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCM 0.979 0.222 4.407 0.000
.PA_dsSUP 0.892 0.068 13.110 0.000
R-Square:
Estimate
AL_dsCM 0.298
PA_dsSUP 0.031
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.024 0.017 1.411 0.158
total -0.253 0.115 -2.192 0.028
df.c2 <- df.1%>%filter(cycle=="2")m.DEM.UD.c2 <-' # direct effect AL_dsCTL ~ c * s_LPLA_P_time AL_dsCTL ~ d * PA_dsSUP # mediator DEM_dsHT ~ a * s_LPLA_P_time AL_dsCTL ~ b * DEM_dsHT # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.DEM.UD.c2.fit <-sem(m.DEM.UD.c2, data=df.c2, se ="bootstrap", bootstrap =1000)summary(m.DEM.UD.c2.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 102
Model Test User Model:
Test statistic 0.551
Degrees of freedom 1
P-value (Chi-square) 0.458
Model Test Baseline Model:
Test statistic 78.386
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.031
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -340.370
Loglikelihood unrestricted model (H1) -340.095
Akaike (AIC) 692.741
Bayesian (BIC) 708.491
Sample-size adjusted Bayesian (SABIC) 689.539
Root Mean Square Error of Approximation:
RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.235
P-value H_0: RMSEA <= 0.050 0.512
P-value H_0: RMSEA >= 0.080 0.413
Standardized Root Mean Square Residual:
SRMR 0.026
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCTL ~
s_LPLA_P_t (c) 0.276 0.175 1.575 0.115
PA_dsSUP (d) 0.411 0.109 3.757 0.000
DEM_dsHT ~
s_LPLA_P_t (a) -0.557 0.192 -2.905 0.004
AL_dsCTL ~
DEM_dsHT (b) -0.418 0.041 -10.167 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCTL 0.946 0.122 7.759 0.000
.DEM_dsHT 2.869 0.493 5.821 0.000
R-Square:
Estimate
AL_dsCTL 0.503
DEM_dsHT 0.080
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.233 0.079 2.955 0.003
total 0.919 0.216 4.251 0.000
m.PA.UD.c2 <-' # direct effect AL_dsCTL ~ c * s_LPLA_P_time AL_dsCTL ~ d * DEM_dsHT # mediator PA_dsSUP ~ a * s_LPLA_P_time AL_dsCTL ~ b * PA_dsSUP # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.PA.UD.c2.fit <-sem(m.PA.UD.c2, data=df.c2, se ="bootstrap", bootstrap =1000)summary(m.PA.UD.c2.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 102
Model Test User Model:
Test statistic 0.551
Degrees of freedom 1
P-value (Chi-square) 0.458
Model Test Baseline Model:
Test statistic 80.218
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.030
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -272.184
Loglikelihood unrestricted model (H1) -271.909
Akaike (AIC) 556.369
Bayesian (BIC) 572.118
Sample-size adjusted Bayesian (SABIC) 553.167
Root Mean Square Error of Approximation:
RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.235
P-value H_0: RMSEA <= 0.050 0.512
P-value H_0: RMSEA >= 0.080 0.413
Standardized Root Mean Square Residual:
SRMR 0.026
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCTL ~
s_LPLA_P_t (c) 0.276 0.188 1.464 0.143
DEM_dsHT (d) -0.418 0.043 -9.645 0.000
PA_dsSUP ~
s_LPLA_P_t (a) 0.316 0.084 3.769 0.000
AL_dsCTL ~
PA_dsSUP (b) 0.411 0.111 3.713 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCTL 0.946 0.121 7.830 0.000
.PA_dsSUP 0.754 0.074 10.240 0.000
R-Square:
Estimate
AL_dsCTL 0.503
PA_dsSUP 0.097
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.130 0.053 2.450 0.014
total -0.012 0.214 -0.057 0.954
Warning in lav_model_nvcov_bootstrap(lavmodel = lavmodel, lavsamplestats =
lavsamplestats, : lavaan WARNING: 1 bootstrap runs failed or did not converge.
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan WARNING:
Some restricted models fit better than less restricted models;
either these models are not nested, or the less restricted model
failed to reach a global optimum. Smallest difference =
-3.9283015008133
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan
WARNING: some models have the same degrees of freedom
m.DEM.UD.cm.c2 <-' # direct effect AL_dsCM ~ c * s_LPLA_P_time AL_dsCM ~ d * PA_dsSUP # mediator DEM_dsHT ~ a * s_LPLA_P_time AL_dsCM ~ b * DEM_dsHT # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.DEM.UD.cm.c2.fit <-sem(m.DEM.UD.cm.c2, data=df.c2, se ="bootstrap", bootstrap =1000)summary(m.DEM.UD.cm.c2.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 102
Model Test User Model:
Test statistic 0.551
Degrees of freedom 1
P-value (Chi-square) 0.458
Model Test Baseline Model:
Test statistic 58.083
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.042
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -360.265
Loglikelihood unrestricted model (H1) -359.990
Akaike (AIC) 732.531
Bayesian (BIC) 748.281
Sample-size adjusted Bayesian (SABIC) 729.329
Root Mean Square Error of Approximation:
RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.235
P-value H_0: RMSEA <= 0.050 0.512
P-value H_0: RMSEA >= 0.080 0.413
Standardized Root Mean Square Residual:
SRMR 0.025
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCM ~
s_LPLA_P_t (c) -0.040 0.095 -0.417 0.676
PA_dsSUP (d) 0.340 0.130 2.609 0.009
DEM_dsHT ~
s_LPLA_P_t (a) -0.557 0.186 -2.987 0.003
AL_dsCM ~
DEM_dsHT (b) -0.499 0.126 -3.950 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCM 1.397 0.346 4.037 0.000
.DEM_dsHT 2.869 0.512 5.607 0.000
R-Square:
Estimate
AL_dsCM 0.391
DEM_dsHT 0.080
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.278 0.141 1.966 0.049
total 0.578 0.160 3.603 0.000
m.PA.UD.cm.c2 <-' # direct effect AL_dsCM ~ c * s_LPLA_P_time AL_dsCM ~ d * DEM_dsHT # mediator PA_dsSUP ~ a * s_LPLA_P_time AL_dsCM ~ b * PA_dsSUP # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.PA.UD.cm.c2.fit <-sem(m.PA.UD.cm.c2, data=df.c2, se ="bootstrap", bootstrap =1000)summary(m.PA.UD.cm.c2.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 2 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 102
Model Test User Model:
Test statistic 0.551
Degrees of freedom 1
P-value (Chi-square) 0.458
Model Test Baseline Model:
Test statistic 59.914
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.041
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -292.079
Loglikelihood unrestricted model (H1) -291.804
Akaike (AIC) 596.158
Bayesian (BIC) 611.908
Sample-size adjusted Bayesian (SABIC) 592.957
Root Mean Square Error of Approximation:
RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.235
P-value H_0: RMSEA <= 0.050 0.512
P-value H_0: RMSEA >= 0.080 0.413
Standardized Root Mean Square Residual:
SRMR 0.025
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCM ~
s_LPLA_P_t (c) -0.040 0.096 -0.416 0.678
DEM_dsHT (d) -0.499 0.125 -3.995 0.000
PA_dsSUP ~
s_LPLA_P_t (a) 0.316 0.084 3.748 0.000
AL_dsCM ~
PA_dsSUP (b) 0.340 0.127 2.682 0.007
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCM 1.397 0.330 4.230 0.000
.PA_dsSUP 0.754 0.073 10.263 0.000
R-Square:
Estimate
AL_dsCM 0.391
PA_dsSUP 0.097
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.107 0.054 2.001 0.045
total -0.431 0.168 -2.571 0.010
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan WARNING:
Some restricted models fit better than less restricted models;
either these models are not nested, or the less restricted model
failed to reach a global optimum. Smallest difference =
-2.8433420749944
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan
WARNING: some models have the same degrees of freedom
df.c3 <- df.1%>%filter(cycle=="3")m.DEM.UD.c3 <-' # direct effect AL_dsCTL ~ c * s_LPLA_P_time AL_dsCTL ~ d * PA_dsSUP # mediator DEM_dsHT ~ a * s_LPLA_P_time AL_dsCTL ~ b * DEM_dsHT # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.DEM.UD.c3.fit <-sem(m.DEM.UD.c3, data=df.c3, se ="bootstrap", bootstrap =1000)summary(m.DEM.UD.c3.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 2 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 97
Model Test User Model:
Test statistic 5.476
Degrees of freedom 1
P-value (Chi-square) 0.019
Model Test Baseline Model:
Test statistic 58.636
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.917
Tucker-Lewis Index (TLI) 0.583
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -288.172
Loglikelihood unrestricted model (H1) -285.434
Akaike (AIC) 588.344
Bayesian (BIC) 603.792
Sample-size adjusted Bayesian (SABIC) 584.846
Root Mean Square Error of Approximation:
RMSEA 0.215
90 Percent confidence interval - lower 0.069
90 Percent confidence interval - upper 0.405
P-value H_0: RMSEA <= 0.050 0.035
P-value H_0: RMSEA >= 0.080 0.939
Standardized Root Mean Square Residual:
SRMR 0.081
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCTL ~
s_LPLA_P_t (c) 0.339 0.071 4.740 0.000
PA_dsSUP (d) 0.062 0.103 0.603 0.546
DEM_dsHT ~
s_LPLA_P_t (a) -0.215 0.124 -1.737 0.082
AL_dsCTL ~
DEM_dsHT (b) -0.406 0.066 -6.122 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCTL 0.757 0.117 6.456 0.000
.DEM_dsHT 1.725 0.268 6.423 0.000
R-Square:
Estimate
AL_dsCTL 0.397
DEM_dsHT 0.029
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.088 0.055 1.602 0.109
total 0.488 0.129 3.794 0.000
m.PA.UD.c3 <-' # direct effect AL_dsCTL ~ c * s_LPLA_P_time AL_dsCTL ~ d * DEM_dsHT # mediator PA_dsSUP ~ a * s_LPLA_P_time AL_dsCTL ~ b * PA_dsSUP # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.PA.UD.c3.fit <-sem(m.PA.UD.c3, data=df.c3, se ="bootstrap", bootstrap =1000)summary(m.PA.UD.c3.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 2 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 97
Model Test User Model:
Test statistic 5.476
Degrees of freedom 1
P-value (Chi-square) 0.019
Model Test Baseline Model:
Test statistic 56.609
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.913
Tucker-Lewis Index (TLI) 0.566
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -261.387
Loglikelihood unrestricted model (H1) -258.649
Akaike (AIC) 534.773
Bayesian (BIC) 550.222
Sample-size adjusted Bayesian (SABIC) 531.276
Root Mean Square Error of Approximation:
RMSEA 0.215
90 Percent confidence interval - lower 0.069
90 Percent confidence interval - upper 0.405
P-value H_0: RMSEA <= 0.050 0.035
P-value H_0: RMSEA >= 0.080 0.939
Standardized Root Mean Square Residual:
SRMR 0.081
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCTL ~
s_LPLA_P_t (c) 0.339 0.069 4.939 0.000
DEM_dsHT (d) -0.406 0.065 -6.270 0.000
PA_dsSUP ~
s_LPLA_P_t (a) 0.089 0.095 0.932 0.351
AL_dsCTL ~
PA_dsSUP (b) 0.062 0.102 0.610 0.542
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCTL 0.757 0.112 6.730 0.000
.PA_dsSUP 0.993 0.098 10.166 0.000
R-Square:
Estimate
AL_dsCTL 0.397
PA_dsSUP 0.009
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.006 0.014 0.397 0.691
total -0.062 0.098 -0.636 0.525
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan WARNING:
Some restricted models fit better than less restricted models;
either these models are not nested, or the less restricted model
failed to reach a global optimum. Smallest difference =
-0.266276183108956
Warning in lavTestLRT(object = object, ..., model.names = NAMES): lavaan
WARNING: some models have the same degrees of freedom
df.c3 <- df.1%>%filter(cycle=="3")m.DEM.UD.cm.c3 <-' # direct effect AL_dsCM ~ c * s_LPLA_P_time AL_dsCM ~ d * PA_dsSUP # mediator DEM_dsHT ~ a * s_LPLA_P_time AL_dsCM ~ b * DEM_dsHT # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.DEM.UD.cm.c3.fit <-sem(m.DEM.UD.cm.c3, data=df.c3, se ="bootstrap", bootstrap =1000)summary(m.DEM.UD.cm.c3.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 97
Model Test User Model:
Test statistic 5.476
Degrees of freedom 1
P-value (Chi-square) 0.019
Model Test Baseline Model:
Test statistic 32.955
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.840
Tucker-Lewis Index (TLI) 0.199
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -253.911
Loglikelihood unrestricted model (H1) -251.173
Akaike (AIC) 519.822
Bayesian (BIC) 535.270
Sample-size adjusted Bayesian (SABIC) 516.324
Root Mean Square Error of Approximation:
RMSEA 0.215
90 Percent confidence interval - lower 0.069
90 Percent confidence interval - upper 0.405
P-value H_0: RMSEA <= 0.050 0.035
P-value H_0: RMSEA >= 0.080 0.939
Standardized Root Mean Square Residual:
SRMR 0.078
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCM ~
s_LPLA_P_t (c) 0.124 0.055 2.273 0.023
PA_dsSUP (d) 0.076 0.064 1.187 0.235
DEM_dsHT ~
s_LPLA_P_t (a) -0.215 0.128 -1.680 0.093
AL_dsCM ~
DEM_dsHT (b) -0.187 0.060 -3.108 0.002
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCM 0.373 0.054 6.852 0.000
.DEM_dsHT 1.725 0.279 6.192 0.000
R-Square:
Estimate
AL_dsCM 0.210
DEM_dsHT 0.029
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.040 0.029 1.399 0.162
total 0.241 0.082 2.918 0.004
m.PA.UD.cm.c3 <-' # direct effect AL_dsCM ~ c * s_LPLA_P_time AL_dsCM ~ d * DEM_dsHT # mediator PA_dsSUP ~ a * s_LPLA_P_time AL_dsCM ~ b * PA_dsSUP # indirect effect (a*b) ab := a*b # total effect total := d + c + (a*b) 'm.PA.UD.cm.c3.fit <-sem(m.PA.UD.cm.c3, data=df.c3, se ="bootstrap", bootstrap =1000)summary(m.PA.UD.cm.c3.fit, fit.measures=TRUE, rsquare=TRUE)
lavaan 0.6.16 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 6
Number of observations 97
Model Test User Model:
Test statistic 5.476
Degrees of freedom 1
P-value (Chi-square) 0.019
Model Test Baseline Model:
Test statistic 30.927
Degrees of freedom 5
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.827
Tucker-Lewis Index (TLI) 0.137
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -227.126
Loglikelihood unrestricted model (H1) -224.388
Akaike (AIC) 466.251
Bayesian (BIC) 481.700
Sample-size adjusted Bayesian (SABIC) 462.754
Root Mean Square Error of Approximation:
RMSEA 0.215
90 Percent confidence interval - lower 0.069
90 Percent confidence interval - upper 0.405
P-value H_0: RMSEA <= 0.050 0.035
P-value H_0: RMSEA >= 0.080 0.939
Standardized Root Mean Square Residual:
SRMR 0.078
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 1000
Number of successful bootstrap draws 1000
Regressions:
Estimate Std.Err z-value P(>|z|)
AL_dsCM ~
s_LPLA_P_t (c) 0.124 0.055 2.242 0.025
DEM_dsHT (d) -0.187 0.060 -3.135 0.002
PA_dsSUP ~
s_LPLA_P_t (a) 0.089 0.093 0.958 0.338
AL_dsCM ~
PA_dsSUP (b) 0.076 0.063 1.196 0.232
Variances:
Estimate Std.Err z-value P(>|z|)
.AL_dsCM 0.373 0.055 6.848 0.000
.PA_dsSUP 0.993 0.102 9.734 0.000
R-Square:
Estimate
AL_dsCM 0.210
PA_dsSUP 0.009
Defined Parameters:
Estimate Std.Err z-value P(>|z|)
ab 0.007 0.011 0.641 0.522
total -0.056 0.092 -0.605 0.545