k <- 0 + 2 + 9
sigmaX <- 1.12
meanX <- 2
n <- 1000
set.seed(123)
dataX <- round(replicate(100, rnorm(n, mean = meanX, sd=sigmaX), round(2)),4)
dataX <- as.data.frame(dataX)
correlatedValue = function(x, r){
r2 = r**2
ve = 1-r2
SD = sqrt(ve)
e = rnorm(length(x), mean = 0, sd=SD)
y = r*x + e
return(y)
}
dataX$V2 <- round(correlatedValue(x=dataX$V1, r=0.65),4)
dataX$V5 <- round(correlatedValue(x=dataX$V4, r=-(0.85)),4)
print(cor(dataX$V1,dataX$V2))
## [1] 0.6674958
print(cor(dataX$V4,dataX$V5))
## [1] -0.8748241
set.seed(123)
miu <- rnorm(n, 0, 1.212)
X1 <- dataX$V1
X2 <- dataX$V2
X11 <- round(X1*1.15 + miu,4)
X12 <- round(X2*-0.65 + miu,4)
dataX$V11 <- X11
dataX$V12 <- X12
B0 <- 0.5
B1 = B2 = B3 = B4 = B5 = B6 = B7 = B8 = B9 = B10 = B11 = B12 = B13 = B14 = B15 = B16 = B17 = B18 = B19 = B20 = B21 = B22 = B23 = B24 = B25 = 2.5
set.seed(123)
epsilon <- rnorm(n, 0, 1.312)
Y <- round(B0 + B1*dataX$V1+ B2*dataX$V2 + B3*dataX$V3 + B4*dataX$V4 + B5*dataX$V5 + B6*dataX$V6 + B7*dataX$V7 + B8*dataX$V8 + B9*dataX$V9 + B10*dataX$V10 + B11*dataX$V11 + B12*dataX$V12 + B13*dataX$V13 + B14*dataX$V14 + B15*dataX$V15 + B16*dataX$V16 + B17*dataX$V17 + B18*dataX$V18 + B19*dataX$V19 + B20*dataX$V20 + B21*dataX$V11 + B22*dataX$V12 + B23*dataX$V13 + B24*dataX$V14 + B25*dataX$V15 + epsilon,4)
dataX <- cbind(Y, dataX)
write.csv(dataX, file = "DAT.SIM.01.csv")
dataX$Y<- as.integer(dataX$Y)
dataX$V1<- as.integer(dataX$V1)
dataX$V2<- as.integer(dataX$V2)
dataX$V3<- as.integer(dataX$V3)
dataX$V4<- as.integer(dataX$V4)
dataX$V5<- as.integer(dataX$V5)
dataX$V6<- as.integer(dataX$V6)
dataX$V7<- as.integer(dataX$V7)
dataX$V8<- as.integer(dataX$V8)
dataX$V9<- as.integer(dataX$V9)
dataX$V10<- as.integer(dataX$V10)
dataX$V11<- as.integer(dataX$V11)
dataX$V12<- as.integer(dataX$V12)
dataX$V13<- as.integer(dataX$V13)
dataX$V14<- as.integer(dataX$V14)
dataX$V15<- as.integer(dataX$V15)
dataX$V16<- as.integer(dataX$V16)
dataX$V17<- as.integer(dataX$V17)
dataX$V18<- as.integer(dataX$V18)
dataX$V19<- as.integer(dataX$V19)
dataX$V20<- as.integer(dataX$V20)
dataX$V21<- as.integer(dataX$V21)
dataX$V22<- as.integer(dataX$V22)
dataX$V23<- as.integer(dataX$V23)
dataX$V24<- as.integer(dataX$V24)
dataX$V25<- as.integer(dataX$V25)
dataX$V26<- as.integer(dataX$V26)
dataX$V27<- as.integer(dataX$V27)
dataX$V28<- as.integer(dataX$V28)
dataX$V29<- as.integer(dataX$V29)
dataX$V30<- as.integer(dataX$V30)
dataX$V31<- as.integer(dataX$V31)
dataX$V32<- as.integer(dataX$V32)
dataX$V33<- as.integer(dataX$V33)
dataX$V34<- as.integer(dataX$V34)
dataX$V35<- as.integer(dataX$V35)
dataX$V36<- as.integer(dataX$V36)
dataX$V37<- as.integer(dataX$V37)
dataX$V38<- as.integer(dataX$V38)
dataX$V39<- as.integer(dataX$V39)
dataX$V40<- as.integer(dataX$V40)
dataX$V41<- as.integer(dataX$V41)
dataX$V42<- as.integer(dataX$V42)
dataX$V43<- as.integer(dataX$V43)
dataX$V44<- as.integer(dataX$V44)
dataX$V45<- as.integer(dataX$V45)
dataX$V46<- as.integer(dataX$V46)
dataX$V47<- as.integer(dataX$V47)
dataX$V48<- as.integer(dataX$V48)
dataX$V49<- as.integer(dataX$V49)
dataX$V50<- as.integer(dataX$V50)
dataX$V51<- as.integer(dataX$V51)
dataX$V52<- as.integer(dataX$V52)
dataX$V53<- as.integer(dataX$V53)
dataX$V54<- as.integer(dataX$V54)
dataX$V55<- as.integer(dataX$V55)
dataX$V56<- as.integer(dataX$V56)
dataX$V57<- as.integer(dataX$V57)
dataX$V58<- as.integer(dataX$V58)
dataX$V59<- as.integer(dataX$V59)
dataX$V60<- as.integer(dataX$V60)
dataX$V61<- as.integer(dataX$V61)
dataX$V62<- as.integer(dataX$V62)
dataX$V63<- as.integer(dataX$V63)
dataX$V64<- as.integer(dataX$V64)
dataX$V65<- as.integer(dataX$V65)
dataX$V66<- as.integer(dataX$V66)
dataX$V67<- as.integer(dataX$V67)
dataX$V68<- as.integer(dataX$V68)
dataX$V69<- as.integer(dataX$V69)
dataX$V70<- as.integer(dataX$V70)
dataX$V71<- as.integer(dataX$V71)
dataX$V72<- as.integer(dataX$V72)
dataX$V73<- as.integer(dataX$V73)
dataX$V74<- as.integer(dataX$V74)
dataX$V75<- as.integer(dataX$V75)
dataX$V76<- as.integer(dataX$V76)
dataX$V77<- as.integer(dataX$V77)
dataX$V78<- as.integer(dataX$V78)
dataX$V79<- as.integer(dataX$V79)
dataX$V80<- as.integer(dataX$V80)
dataX$V81<- as.integer(dataX$V81)
dataX$V82<- as.integer(dataX$V82)
dataX$V83<- as.integer(dataX$V83)
dataX$V84<- as.integer(dataX$V84)
dataX$V85<- as.integer(dataX$V85)
dataX$V86<- as.integer(dataX$V86)
dataX$V87<- as.integer(dataX$V87)
dataX$V88<- as.integer(dataX$V88)
dataX$V89<- as.integer(dataX$V89)
dataX$V90<- as.integer(dataX$V90)
dataX$V91<- as.integer(dataX$V91)
dataX$V92<- as.integer(dataX$V92)
dataX$V93<- as.integer(dataX$V93)
dataX$V94<- as.integer(dataX$V94)
dataX$V95<- as.integer(dataX$V95)
dataX$V96<- as.integer(dataX$V96)
dataX$V97<- as.integer(dataX$V97)
dataX$V98<- as.integer(dataX$V98)
dataX$V99<- as.integer(dataX$V99)
dataX$V100<- as.integer(dataX$V100)
glimpse(dataX)
## Rows: 1,000
## Columns: 101
## $ Y <int> 74, 88, 111, 110, 123, 147, 97, 74, 112, 90, 128, 122, 118, 131, …
## $ V1 <int> 1, 1, 3, 2, 2, 3, 2, 0, 1, 1, 3, 2, 2, 2, 1, 4, 2, 0, 2, 1, 0, 1,…
## $ V2 <int> 1, 2, 2, 1, 1, 3, 1, 0, 1, 0, 1, 1, 1, 2, 0, 2, 1, 0, 1, 0, 0, 1,…
## $ V3 <int> 1, 2, 1, 3, 2, 1, 0, 1, 4, 1, 1, 2, 2, 2, 1, 3, 0, 1, 1, 2, 2, 3,…
## $ V4 <int> 1, 1, 0, 1, 4, 1, 3, 1, 2, 1, 3, 1, 0, 3, 1, 3, 2, 3, 2, 1, 2, 1,…
## $ V5 <int> -1, -1, 0, -1, -3, -1, -3, -2, -2, -2, -4, -1, 0, -2, -1, -3, -1,…
## $ V6 <int> 1, 3, 0, 3, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1, 4, 0, 1, 1,…
## $ V7 <int> 1, 3, 1, 1, 2, 1, 2, 3, 1, 0, 2, 1, 1, 2, 2, 3, 1, 1, 1, 1, 4, 1,…
## $ V8 <int> 0, 2, 4, 2, 3, 1, 1, 3, 2, 2, 1, 1, 2, 2, 2, 1, 0, 3, 1, 2, 0, 1,…
## $ V9 <int> 2, 4, 0, 2, 1, 1, 1, 1, 3, 1, 1, 2, 2, 3, 1, 1, 0, 3, 2, 3, 0, 3,…
## $ V10 <int> 4, 1, 1, 0, 5, 1, 3, 0, 3, 2, 1, 2, 3, 3, 2, 1, 0, 0, 0, 2, 1, 2,…
## $ V11 <int> 0, 1, 6, 2, 2, 6, 3, 0, 0, 1, 5, 3, 3, 2, 0, 6, 3, -2, 4, 1, 0, 1…
## $ V12 <int> -1, -1, 0, 0, 0, 0, 0, -2, -1, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, -1…
## $ V13 <int> 1, 2, 0, 2, 2, 3, 0, 2, 2, 1, 2, 1, 3, 2, 1, 1, 1, 2, 0, 2, 0, 1,…
## $ V14 <int> 0, 0, 2, 1, 1, 3, 0, 0, 1, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 1,…
## $ V15 <int> 0, 2, 0, 2, 2, 2, 4, 1, 2, 1, 2, 2, 1, 4, 0, 1, 0, 4, 2, 2, 3, 1,…
## $ V16 <int> 0, 1, 1, 3, 2, 3, 0, 2, 2, 2, 2, 0, 2, 1, 2, 1, 2, 3, 1, 2, 3, 0,…
## $ V17 <int> 0, 0, 3, 2, 1, 2, 1, 2, 1, 0, 3, 2, 2, 3, 1, 2, 1, 1, 3, 1, 2, 0,…
## $ V18 <int> 2, 1, 0, 1, 3, 0, 2, 3, 3, 2, 0, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0,…
## $ V19 <int> 2, 0, 1, 0, 1, 2, 1, 2, 4, 3, 0, 3, 1, 1, 2, 1, 1, 1, 2, 0, 2, 2,…
## $ V20 <int> 4, 0, 0, 1, 1, 0, 4, 0, 3, 3, 1, 2, 0, 1, 1, 2, 3, 0, 3, 4, 1, 0,…
## $ V21 <int> 1, 1, 0, 0, 0, 0, 1, 3, 1, 2, 2, 3, 0, 0, 3, 3, 1, 2, 1, 0, 2, 0,…
## $ V22 <int> 0, 0, 3, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 2, 2,…
## $ V23 <int> -1, 2, 0, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 3, 0, 0, 4, 0, 2, 1, 3…
## $ V24 <int> 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 2, 0, 1, 3, 1, 0, 3, 1,…
## $ V25 <int> 1, 3, 1, 0, 0, 3, 4, 0, 2, 3, 2, 2, 3, 3, 1, 3, 2, 1, 3, 1, 1, 2,…
## $ V26 <int> 1, 0, 2, 2, 2, 1, 1, 1, 3, 1, 2, 2, 0, 3, 1, 2, 1, 3, 0, 2, 1, 2,…
## $ V27 <int> 2, 2, 0, 0, 1, 2, 2, 1, 3, 1, 1, 2, 1, 0, 2, 3, 2, 2, 2, 2, 1, 1,…
## $ V28 <int> 1, 1, 2, 4, 0, 2, 0, 1, 3, 0, 0, 1, 2, 4, 2, 0, 0, 2, 1, 1, 0, 0,…
## $ V29 <int> 3, 1, 2, 0, 3, 1, 2, 0, 2, 1, 1, 2, 2, 1, 3, 3, 2, 3, 2, 1, 2, 3,…
## $ V30 <int> 0, 0, 1, 3, 2, 2, 1, 2, 3, 1, 3, 2, 0, 1, 3, 2, 0, 3, 4, 5, 1, 0,…
## $ V31 <int> 1, 2, 1, 0, 3, 1, 2, 2, 2, 2, 1, 2, 0, 2, 3, 1, 0, 1, 0, 2, 2, 3,…
## $ V32 <int> 3, 0, 2, 2, 2, 0, 2, 2, 1, 2, 3, 0, 0, 3, 1, 0, 2, 1, 1, 3, 1, 1,…
## $ V33 <int> 1, 1, 3, 0, 2, 2, 2, 2, 0, 1, 1, 3, 1, 0, 0, 2, 2, 0, 1, 3, 1, 3,…
## $ V34 <int> 2, 2, 2, 2, 0, 2, 2, 3, 2, 2, 3, 2, 0, 0, 2, 4, 0, 0, 1, 2, 0, 1,…
## $ V35 <int> 1, 3, 2, 1, 1, 0, 2, 1, 1, 1, 3, 2, 2, 1, 2, 2, 2, 1, 4, 2, 3, 1,…
## $ V36 <int> 1, 2, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 0, 3, 2, 0, 1, 3, 2, 1, 1, 0,…
## $ V37 <int> 2, 2, 1, 2, 2, 2, 1, 0, 1, 4, 1, 3, 3, 2, 1, 1, 2, 0, 1, 2, 0, 2,…
## $ V38 <int> 1, 2, 1, 1, 3, 2, 3, 0, 3, 0, 1, 3, 2, 1, 0, 2, 1, 1, -1, 1, 2, 3…
## $ V39 <int> 0, 1, 4, 1, 2, 2, 1, 2, 0, 0, 1, 4, 1, 1, 2, 2, 1, 1, 2, 1, 5, 1,…
## $ V40 <int> 1, 2, 2, 1, 2, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, -1, 3, 0, 3, 0, 2, 2…
## $ V41 <int> 2, 2, 1, 1, 3, 1, 3, 3, 1, 0, 2, 1, 0, 3, 2, 2, 1, 4, 1, 2, 2, 2,…
## $ V42 <int> 2, 2, 1, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 3, 2, 2, 0, 0, 0, 0, 1, 2,…
## $ V43 <int> 1, 1, 3, 1, 2, 2, 2, 2, 2, 1, 0, 3, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1,…
## $ V44 <int> 0, 3, 2, 1, 4, 0, 1, 0, 0, 5, 0, 2, 2, 1, 0, 3, 1, 3, 0, 2, 2, 1,…
## $ V45 <int> 0, 2, 1, 0, 2, 3, 1, 2, 2, 2, 2, 1, 1, 0, 4, 1, 0, 2, 2, 2, 3, 1,…
## $ V46 <int> 3, 1, 2, 1, 2, 3, 2, 1, 1, 2, 2, 1, 0, 2, 2, 2, 1, 3, 2, 1, 2, 1,…
## $ V47 <int> 2, 1, 0, 0, 2, 1, 1, 4, 3, 0, 4, 2, 1, 3, 1, 1, 2, 3, 2, 4, 1, 2,…
## $ V48 <int> 2, 2, 1, 2, 1, 0, 1, 3, 2, 3, 1, 3, 3, 3, 3, 1, 3, 3, 2, 0, 2, 2,…
## $ V49 <int> 3, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 0, 1, 1, 3, 1, 0, 3, 3, 1, 3, 1,…
## $ V50 <int> 0, 2, 3, 0, 0, 5, 1, 0, 2, 1, 0, 0, 1, 1, 1, 3, 2, 2, 2, 2, 0, 1,…
## $ V51 <int> 2, 3, 1, 1, 1, 4, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 0, 1, 2, 0, 0, 4,…
## $ V52 <int> 3, 4, 2, 4, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 1, 1,…
## $ V53 <int> 1, 3, 3, 0, 1, 3, 1, 3, 2, 0, 1, 3, 1, 0, 3, 2, 3, 3, 0, 2, 1, 0,…
## $ V54 <int> 2, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 3, 0, 1, 1, 1, 1, 0, 2, 1, 0,…
## $ V55 <int> 0, 2, 4, 0, 3, 2, 1, 1, 2, 0, 1, 0, 4, 2, 1, 2, 0, 1, 1, 3, 2, 3,…
## $ V56 <int> 2, 3, 1, 3, 2, 2, 2, 1, 2, 1, 1, 0, 2, 3, 0, 0, 2, 1, 0, 1, 2, 1,…
## $ V57 <int> 1, 2, 0, 1, 1, 3, 3, 1, 2, 1, 0, 0, 1, 3, 0, 1, 0, 4, 3, 3, 2, 2,…
## $ V58 <int> 3, 3, 1, 2, 2, 2, 2, 0, 3, 3, 3, 1, 0, 1, 2, 2, 2, 2, 2, 1, 0, 1,…
## $ V59 <int> 2, 2, 2, 3, 1, 2, 3, 5, 1, 2, 2, 1, 0, 4, 0, 1, 2, 2, 0, 4, 2, 4,…
## $ V60 <int> 1, 1, 1, 3, 3, 3, 1, 0, 1, 2, 1, 2, 0, 2, 1, 2, 0, 1, 2, 2, 1, 0,…
## $ V61 <int> 1, 2, 1, 1, 4, 1, 0, 4, 2, 2, 1, 1, 0, 2, 3, 4, 3, 1, 0, 1, 1, 2,…
## $ V62 <int> 2, 2, 1, 3, 1, 2, 2, 3, 3, 1, 1, 1, 3, 1, 1, 0, 2, 1, 2, 2, 2, 0,…
## $ V63 <int> 1, 3, 1, 1, 2, 1, 0, 1, 2, 3, 1, 0, 3, 1, 2, 2, 2, 2, 1, 2, 2, 0,…
## $ V64 <int> 1, 1, 0, 1, 4, 4, 3, 1, 2, 1, 1, 2, 2, 1, 2, 1, 3, 2, 0, 1, 3, 1,…
## $ V65 <int> 2, 0, 0, 1, 2, 1, 0, 2, 1, 1, 2, 2, 3, 2, 2, 3, 3, 0, 2, 1, 2, 4,…
## $ V66 <int> 2, 1, 0, 3, 3, 0, 1, 0, 1, 2, 1, 0, 1, 1, 1, 3, 1, 2, 0, 3, 2, 1,…
## $ V67 <int> 2, 2, 1, 2, 3, 1, 2, 3, 4, 2, 2, 2, 2, 0, 2, 1, 0, 2, 1, 4, 1, 1,…
## $ V68 <int> 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1,…
## $ V69 <int> 1, 0, 2, 2, 2, 2, 0, 1, 2, 1, 3, 0, 1, 1, 2, 2, 0, 1, 2, 3, 2, 2,…
## $ V70 <int> 0, 2, 1, 1, 1, 2, 2, 0, 1, 4, 4, 3, 0, 2, 1, 3, 0, 2, 1, 2, 0, 1,…
## $ V71 <int> 2, 1, 2, 1, 1, 1, 2, 1, 3, 3, 1, 0, 2, 0, 3, 1, 0, 1, 0, 2, 0, 3,…
## $ V72 <int> 1, 1, 0, 2, 1, 4, 1, 1, 2, 2, 1, 2, 0, 3, 1, 2, 2, 0, 2, 2, 4, 4,…
## $ V73 <int> 0, 0, 2, 3, 1, 0, 1, 2, 3, 1, 2, 2, 2, 3, 0, 0, 1, 2, 2, 0, 1, 2,…
## $ V74 <int> 2, 5, 2, 1, 0, 0, 3, 2, 3, 3, 1, 3, 2, 1, 2, 3, 1, 1, 1, 2, 1, 2,…
## $ V75 <int> 2, 2, 0, 0, 4, 1, 0, 2, 3, 3, 2, 0, 3, 3, 0, 0, 2, 1, 2, 1, 1, 2,…
## $ V76 <int> 2, 2, 2, 1, 0, 2, 3, 2, 2, 0, 1, 2, 2, 2, 1, 2, 1, 0, 2, 1, 0, 1,…
## $ V77 <int> 0, 1, 3, 1, 2, 1, 0, 0, 1, 4, 1, 2, 1, 1, 2, 2, 3, 1, 0, 0, 2, 0,…
## $ V78 <int> 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 2, 0, 0, 0, 2, 2, 2, 1, 1, 2, 3, 3,…
## $ V79 <int> 3, 2, 1, 0, 1, 2, 2, 2, 3, 4, 2, 2, 1, 2, 1, 2, 0, 0, 2, 2, 2, 1,…
## $ V80 <int> 0, 1, 2, 2, 2, 1, 4, 4, 2, 1, 0, 3, 2, 0, 2, 3, 2, 0, 0, 1, 4, 2,…
## $ V81 <int> 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 4, 2, 0, 2, 3, 1, 1, 2, 1, 3,…
## $ V82 <int> 2, 4, 0, 3, 0, 3, 3, 1, 3, 1, 2, 4, 2, 3, 2, 2, 1, 2, 2, 2, 0, 2,…
## $ V83 <int> 1, 2, 1, 0, 2, 2, 2, 0, 3, 2, 1, 1, 1, 3, 0, 1, 2, 1, 2, 1, 3, 2,…
## $ V84 <int> 0, 4, 1, 1, 2, 0, 2, 4, 0, 2, 2, 3, 3, 2, 3, 2, 1, 2, 4, 2, 0, 2,…
## $ V85 <int> 3, 2, 3, 2, 1, 0, 0, 0, 3, 3, 1, 3, 0, 1, 2, 2, 0, 2, 0, 2, 0, 4,…
## $ V86 <int> 3, 2, 4, 0, 0, 1, 2, 3, 2, 0, 1, 3, 2, 2, 0, 3, 2, 3, 0, 1, 1, 3,…
## $ V87 <int> 0, 2, 3, 2, 2, 1, 2, 4, 2, 0, 3, 2, 1, 3, 1, 2, 2, 1, 2, 1, 3, 3,…
## $ V88 <int> 2, 2, 0, 0, 0, 3, 1, 3, 3, 1, 3, 1, 1, 4, 3, 1, 3, 1, 3, 1, 1, 3,…
## $ V89 <int> 1, 2, 3, 0, 1, 2, 0, 2, 2, 2, 1, 3, 1, 1, 2, 4, 2, 1, 2, 2, 2, 1,…
## $ V90 <int> 2, 0, 3, 2, 1, 1, 1, 2, 1, 0, 0, 0, 2, 3, 3, 2, -1, 2, 5, 1, 1, 0…
## $ V91 <int> 2, 2, 1, 1, 1, 3, 0, 3, 3, 0, 3, 3, 0, 0, 1, 4, 3, 3, 0, 2, 2, 1,…
## $ V92 <int> 1, 3, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 3, 2, 0, 1, 2, 2, 0,…
## $ V93 <int> 0, 1, 2, 2, 0, 3, 2, 0, 2, 2, 0, 2, 2, 3, 3, 3, 3, 1, 2, 3, 1, 0,…
## $ V94 <int> 1, 4, 2, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 3, 1, 2, 0, 3, 1, 2, 3, 3,…
## $ V95 <int> 3, 2, 3, 1, 2, 4, 1, 0, 2, 2, 3, 0, 0, 2, 0, 1, 4, 3, 1, 1, 2, 2,…
## $ V96 <int> 1, 2, 2, 1, 0, 2, 0, 1, 1, 3, 1, 2, 3, 3, 1, 3, 4, 2, 0, 1, 2, 0,…
## $ V97 <int> 2, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 3, 3, 2, 0, 2, 0, 1, 1, 0, 3, 1,…
## $ V98 <int> 1, 0, 1, 2, 1, 1, 2, 0, 1, 0, 1, 2, 1, 1, 3, 0, 2, 0, 3, 2, 0, 1,…
## $ V99 <int> 3, 2, 4, 0, 3, 2, 0, -1, 1, 1, 3, 2, 3, 2, 3, 1, 2, 0, 2, 4, 3, 1…
## $ V100 <int> 2, 3, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 0, 3, 0, 1, 1,…
DAT.SIM.01 <- dataX
head(DAT.SIM.01)
## Y V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
## 1 74 1 1 1 1 -1 1 1 0 2 4 0 -1 1 0 0 0 0 2 2 4
## 2 88 1 2 2 1 -1 3 3 2 4 1 1 -1 2 0 2 1 0 1 0 0
## 3 111 3 2 1 0 0 0 1 4 0 1 6 0 0 2 0 1 3 0 1 0
## 4 110 2 1 3 1 -1 3 1 2 2 0 2 0 2 1 2 3 2 1 0 1
## 5 123 2 1 2 4 -3 3 2 3 1 5 2 0 2 1 2 2 1 3 1 1
## 6 147 3 3 1 1 -1 2 1 1 1 1 6 0 3 3 2 3 2 0 2 0
## V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39
## 1 1 0 -1 2 1 1 2 1 3 0 1 3 1 2 1 1 2 1 0
## 2 1 0 2 0 3 0 2 1 1 0 2 0 1 2 3 2 2 2 1
## 3 0 3 0 1 1 2 0 2 2 1 1 2 3 2 2 2 1 1 4
## 4 0 0 1 1 0 2 0 4 0 3 0 2 0 2 1 1 2 1 1
## 5 0 1 1 1 0 2 1 0 3 2 3 2 2 0 1 2 2 3 2
## 6 0 1 2 1 3 1 2 2 1 2 1 0 2 2 0 3 2 2 2
## V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58
## 1 1 2 2 1 0 0 3 2 2 3 0 2 3 1 2 0 2 1 3
## 2 2 2 2 1 3 2 1 1 2 1 2 3 4 3 2 2 3 2 3
## 3 2 1 1 3 2 1 2 0 1 1 3 1 2 3 0 4 1 0 1
## 4 1 1 1 1 1 0 1 0 2 0 0 1 4 0 1 0 3 1 2
## 5 2 3 0 2 4 2 2 2 1 1 0 1 0 1 2 3 2 1 2
## 6 2 1 3 2 0 3 3 1 0 1 5 4 1 3 2 2 2 3 2
## V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74 V75 V76 V77
## 1 2 1 1 2 1 1 2 2 2 1 1 0 2 1 0 2 2 2 0
## 2 2 1 2 2 3 1 0 1 2 2 0 2 1 1 0 5 2 2 1
## 3 2 1 1 1 1 0 0 0 1 3 2 1 2 0 2 2 0 2 3
## 4 3 3 1 3 1 1 1 3 2 1 2 1 1 2 3 1 0 1 1
## 5 1 3 4 1 2 4 2 3 3 1 2 1 1 1 1 0 4 0 2
## 6 2 3 1 2 1 4 1 0 1 1 2 2 1 4 0 0 1 2 1
## V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92 V93 V94 V95 V96
## 1 1 3 0 2 2 1 0 3 3 0 2 1 2 2 1 0 1 3 1
## 2 1 2 1 1 4 2 4 2 2 2 2 2 0 2 3 1 4 2 2
## 3 1 1 2 1 0 1 1 3 4 3 0 3 3 1 1 2 2 3 2
## 4 1 0 2 2 3 0 1 2 0 2 0 0 2 1 1 2 1 1 1
## 5 1 1 2 3 0 2 2 1 0 2 0 1 1 1 2 0 1 2 0
## 6 3 2 1 1 3 2 0 0 1 1 3 2 1 3 2 3 1 4 2
## V97 V98 V99 V100
## 1 2 1 3 2
## 2 1 0 2 3
## 3 1 1 4 1
## 4 1 2 0 1
## 5 1 1 3 1
## 6 2 1 2 0
set.seed(123)
indeks <- createDataPartition(DAT.SIM.01$Y, p = 0.8, list = FALSE)
data.train <- DAT.SIM.01[indeks,]
data.test <- DAT.SIM.01[-indeks,]
head(data.train)
## Y V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
## 1 74 1 1 1 1 -1 1 1 0 2 4 0 -1 1 0 0 0 0 2 2 4
## 3 111 3 2 1 0 0 0 1 4 0 1 6 0 0 2 0 1 3 0 1 0
## 4 110 2 1 3 1 -1 3 1 2 2 0 2 0 2 1 2 3 2 1 0 1
## 6 147 3 3 1 1 -1 2 1 1 1 1 6 0 3 3 2 3 2 0 2 0
## 7 97 2 1 0 3 -3 2 2 1 1 3 3 0 0 0 4 0 1 2 1 4
## 10 90 1 0 1 1 -2 1 0 2 1 2 1 0 1 2 1 2 0 2 3 3
## V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39
## 1 1 0 -1 2 1 1 2 1 3 0 1 3 1 2 1 1 2 1 0
## 3 0 3 0 1 1 2 0 2 2 1 1 2 3 2 2 2 1 1 4
## 4 0 0 1 1 0 2 0 4 0 3 0 2 0 2 1 1 2 1 1
## 6 0 1 2 1 3 1 2 2 1 2 1 0 2 2 0 3 2 2 2
## 7 1 1 2 1 4 1 2 0 2 1 2 2 2 2 2 2 1 3 1
## 10 2 2 1 2 3 1 1 0 1 1 2 2 1 2 1 1 4 0 0
## V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58
## 1 1 2 2 1 0 0 3 2 2 3 0 2 3 1 2 0 2 1 3
## 3 2 1 1 3 2 1 2 0 1 1 3 1 2 3 0 4 1 0 1
## 4 1 1 1 1 1 0 1 0 2 0 0 1 4 0 1 0 3 1 2
## 6 2 1 3 2 0 3 3 1 0 1 5 4 1 3 2 2 2 3 2
## 7 2 3 2 2 1 1 2 1 1 1 1 0 1 1 2 1 2 3 2
## 10 0 0 1 1 5 2 2 0 3 1 1 2 1 0 0 0 1 1 3
## V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74 V75 V76 V77
## 1 2 1 1 2 1 1 2 2 2 1 1 0 2 1 0 2 2 2 0
## 3 2 1 1 1 1 0 0 0 1 3 2 1 2 0 2 2 0 2 3
## 4 3 3 1 3 1 1 1 3 2 1 2 1 1 2 3 1 0 1 1
## 6 2 3 1 2 1 4 1 0 1 1 2 2 1 4 0 0 1 2 1
## 7 3 1 0 2 0 3 0 1 2 1 0 2 2 1 1 3 0 3 0
## 10 2 2 2 1 3 1 1 2 2 1 1 4 3 2 1 3 3 0 4
## V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92 V93 V94 V95 V96
## 1 1 3 0 2 2 1 0 3 3 0 2 1 2 2 1 0 1 3 1
## 3 1 1 2 1 0 1 1 3 4 3 0 3 3 1 1 2 2 3 2
## 4 1 0 2 2 3 0 1 2 0 2 0 0 2 1 1 2 1 1 1
## 6 3 2 1 1 3 2 0 0 1 1 3 2 1 3 2 3 1 4 2
## 7 2 2 4 1 3 2 2 0 2 2 1 0 1 0 2 2 0 1 0
## 10 1 4 1 1 1 2 2 3 0 0 1 2 0 0 3 2 2 2 3
## V97 V98 V99 V100
## 1 2 1 3 2
## 3 1 1 4 1
## 4 1 2 0 1
## 6 2 1 2 0
## 7 2 2 0 2
## 10 0 0 1 1
head(data.test)
## Y V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
## 2 88 1 2 2 1 -1 3 3 2 4 1 1 -1 2 0 2 1 0 1 0 0
## 5 123 2 1 2 4 -3 3 2 3 1 5 2 0 2 1 2 2 1 3 1 1
## 8 74 0 0 1 1 -2 2 3 3 1 0 0 -2 2 0 1 2 2 3 2 0
## 9 112 1 1 4 2 -2 1 1 2 3 3 0 -1 2 1 2 2 1 3 4 3
## 18 73 0 0 1 3 -2 1 1 3 3 0 -2 -2 2 2 4 3 1 2 1 0
## 19 119 2 1 1 2 -2 4 1 1 2 0 4 0 0 2 2 1 3 1 2 3
## V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39
## 2 1 0 2 0 3 0 2 1 1 0 2 0 1 2 3 2 2 2 1
## 5 0 1 1 1 0 2 1 0 3 2 3 2 2 0 1 2 2 3 2
## 8 3 1 2 1 0 1 1 1 0 2 2 2 2 3 1 1 0 0 2
## 9 1 1 1 1 2 3 3 3 2 3 2 1 0 2 1 2 1 3 0
## 18 2 2 4 3 1 3 2 2 3 3 1 1 0 0 1 3 0 1 1
## 19 1 2 0 1 3 0 2 1 2 4 0 1 1 1 4 2 1 -1 2
## V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58
## 2 2 2 2 1 3 2 1 1 2 1 2 3 4 3 2 2 3 2 3
## 5 2 3 0 2 4 2 2 2 1 1 0 1 0 1 2 3 2 1 2
## 8 2 3 1 2 0 2 1 4 3 0 0 1 1 3 0 1 1 1 0
## 9 1 1 0 2 0 2 1 3 2 1 2 1 0 2 0 2 2 2 3
## 18 0 4 0 2 3 2 3 3 3 3 2 1 0 3 1 1 1 4 2
## 19 3 1 0 1 0 2 2 2 2 3 2 2 0 0 0 1 0 3 2
## V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74 V75 V76 V77
## 2 2 1 2 2 3 1 0 1 2 2 0 2 1 1 0 5 2 2 1
## 5 1 3 4 1 2 4 2 3 3 1 2 1 1 1 1 0 4 0 2
## 8 5 0 4 3 1 1 2 0 3 1 1 0 1 1 2 2 2 2 0
## 9 1 1 2 3 2 2 1 1 4 1 2 1 3 2 3 3 3 2 1
## 18 2 1 1 1 2 2 0 2 2 1 1 2 1 0 2 1 1 0 1
## 19 0 2 0 2 1 0 2 0 1 1 2 1 0 2 2 1 2 2 0
## V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89 V90 V91 V92 V93 V94 V95 V96
## 2 1 2 1 1 4 2 4 2 2 2 2 2 0 2 3 1 4 2 2
## 5 1 1 2 3 0 2 2 1 0 2 0 1 1 1 2 0 1 2 0
## 8 2 2 4 2 1 0 4 0 3 4 3 2 2 3 1 0 0 0 1
## 9 1 3 2 2 3 3 0 3 2 2 3 2 1 3 2 2 1 2 1
## 18 1 0 0 1 2 1 2 2 3 1 1 1 2 3 0 1 3 3 2
## 19 1 2 0 1 2 2 4 0 0 2 3 2 5 0 1 2 1 1 0
## V97 V98 V99 V100
## 2 1 0 2 3
## 5 1 1 3 1
## 8 1 0 -1 2
## 9 2 1 1 2
## 18 1 0 0 0
## 19 1 3 2 3
sum(anyNA(data.train))
## [1] 0
ggpubr::gghistogram(data = data.train, x = "Y", fill = "yellow") + scale_y_continuous(expand = c(0,0))
## Warning: Using `bins = 30` by default. Pick better value with the argument
## `bins`.
Hasil pemrosesan data didapatkan data yang sudah dibagi menjadi data train dan data test. Pada data train tidak terdapat data hilang dan variabel respon menyebar normal. Hal ini menandakan bahwa data train sudah siap untuk dibuatkan ke dalam model regresi linear, regresi seleksi peubah terbaik, regresi gulud, regresi LASSO, dan regresi jaring elastis.
Dalam penggunaan metode kuadrat tengah terkecil (MKT) terdapat beberapa asumsi regresi klasik yang harus diuji sebagai berikut : 1. Sisaan menyebar normal 2. Sisaan memiliki ragam yang homogen (konstan) 3. Sisaan saling bebas 4. Multikolinearitas
model.regresi.linear <- lm(Y~., data = data.train)
summary(model.regresi.linear)
##
## Call:
## lm(formula = Y ~ ., data = data.train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.5709 -3.1188 0.0566 3.0629 13.9154
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.551643 2.605867 6.352 3.83e-10 ***
## V1 4.351409 0.512555 8.490 < 2e-16 ***
## V2 1.525206 0.323505 4.715 2.92e-06 ***
## V3 2.431327 0.178210 13.643 < 2e-16 ***
## V4 2.162966 0.293925 7.359 5.21e-13 ***
## V5 2.191349 0.309092 7.090 3.29e-12 ***
## V6 2.740667 0.173956 15.755 < 2e-16 ***
## V7 2.232646 0.175321 12.735 < 2e-16 ***
## V8 2.250465 0.167150 13.464 < 2e-16 ***
## V9 2.610128 0.167606 15.573 < 2e-16 ***
## V10 2.642479 0.176074 15.008 < 2e-16 ***
## V11 6.573465 0.270785 24.276 < 2e-16 ***
## V12 3.466450 0.476114 7.281 8.95e-13 ***
## V13 5.277090 0.175129 30.133 < 2e-16 ***
## V14 5.007867 0.173426 28.876 < 2e-16 ***
## V15 4.709994 0.172038 27.378 < 2e-16 ***
## V16 2.832360 0.171605 16.505 < 2e-16 ***
## V17 2.228721 0.167349 13.318 < 2e-16 ***
## V18 2.321515 0.170648 13.604 < 2e-16 ***
## V19 2.461780 0.174024 14.146 < 2e-16 ***
## V20 2.483444 0.170456 14.569 < 2e-16 ***
## V21 0.121989 0.175993 0.693 0.4884
## V22 0.311899 0.177584 1.756 0.0795 .
## V23 0.147121 0.173905 0.846 0.3979
## V24 0.212430 0.174089 1.220 0.2228
## V25 -0.107407 0.166007 -0.647 0.5178
## V26 -0.104556 0.180504 -0.579 0.5626
## V27 -0.131992 0.177852 -0.742 0.4582
## V28 0.226806 0.172279 1.317 0.1884
## V29 0.126034 0.172221 0.732 0.4645
## V30 -0.220707 0.174396 -1.266 0.2061
## V31 0.237266 0.174551 1.359 0.1745
## V32 -0.224840 0.177269 -1.268 0.2051
## V33 0.076177 0.178326 0.427 0.6694
## V34 -0.085518 0.171518 -0.499 0.6182
## V35 0.201455 0.170265 1.183 0.2371
## V36 0.174484 0.181992 0.959 0.3380
## V37 -0.154026 0.171932 -0.896 0.3706
## V38 0.232239 0.172298 1.348 0.1781
## V39 0.173590 0.176086 0.986 0.3246
## V40 0.009873 0.169578 0.058 0.9536
## V41 -0.265033 0.176008 -1.506 0.1326
## V42 0.041339 0.169972 0.243 0.8079
## V43 -0.036930 0.173845 -0.212 0.8318
## V44 0.019317 0.177016 0.109 0.9131
## V45 0.052071 0.171815 0.303 0.7619
## V46 -0.119634 0.168332 -0.711 0.4775
## V47 -0.192958 0.166607 -1.158 0.2472
## V48 -0.181408 0.173409 -1.046 0.2959
## V49 -0.007231 0.181767 -0.040 0.9683
## V50 -0.005442 0.169531 -0.032 0.9744
## V51 0.000143 0.167145 0.001 0.9993
## V52 -0.305258 0.172507 -1.770 0.0772 .
## V53 -0.063606 0.174754 -0.364 0.7160
## V54 -0.063777 0.168303 -0.379 0.7048
## V55 0.102452 0.170641 0.600 0.5484
## V56 -0.170433 0.169484 -1.006 0.3150
## V57 0.187456 0.169054 1.109 0.2679
## V58 0.015732 0.181481 0.087 0.9309
## V59 -0.080146 0.169423 -0.473 0.6363
## V60 0.119279 0.174109 0.685 0.4935
## V61 -0.058997 0.172236 -0.343 0.7320
## V62 -0.152777 0.177990 -0.858 0.3910
## V63 0.140543 0.176439 0.797 0.4260
## V64 -0.305468 0.168435 -1.814 0.0702 .
## V65 0.271861 0.172947 1.572 0.1164
## V66 -0.169608 0.174483 -0.972 0.3314
## V67 -0.322922 0.175213 -1.843 0.0657 .
## V68 0.015587 0.180912 0.086 0.9314
## V69 0.056360 0.180593 0.312 0.7551
## V70 0.154523 0.172317 0.897 0.3702
## V71 0.228565 0.179811 1.271 0.2041
## V72 -0.199801 0.169433 -1.179 0.2387
## V73 0.027051 0.177208 0.153 0.8787
## V74 0.110846 0.176139 0.629 0.5294
## V75 -0.243778 0.170577 -1.429 0.1534
## V76 -0.218921 0.170051 -1.287 0.1984
## V77 -0.002171 0.173142 -0.013 0.9900
## V78 -0.038314 0.172311 -0.222 0.8241
## V79 -0.108883 0.173472 -0.628 0.5304
## V80 -0.041350 0.166737 -0.248 0.8042
## V81 0.123786 0.175361 0.706 0.4805
## V82 -0.031149 0.162395 -0.192 0.8479
## V83 0.067811 0.174491 0.389 0.6977
## V84 0.050946 0.174461 0.292 0.7704
## V85 0.020459 0.178328 0.115 0.9087
## V86 -0.278107 0.172455 -1.613 0.1073
## V87 0.006003 0.178410 0.034 0.9732
## V88 0.242294 0.173901 1.393 0.1640
## V89 0.231220 0.178273 1.297 0.1951
## V90 0.137853 0.170840 0.807 0.4200
## V91 0.057881 0.175587 0.330 0.7418
## V92 0.109140 0.178153 0.613 0.5403
## V93 -0.101326 0.174401 -0.581 0.5614
## V94 -0.357585 0.177719 -2.012 0.0446 *
## V95 -0.265361 0.173522 -1.529 0.1267
## V96 0.344979 0.179455 1.922 0.0550 .
## V97 -0.230002 0.177017 -1.299 0.1943
## V98 0.249162 0.176072 1.415 0.1575
## V99 0.161082 0.169467 0.951 0.3422
## V100 -0.040963 0.172710 -0.237 0.8126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.985 on 700 degrees of freedom
## Multiple R-squared: 0.967, Adjusted R-squared: 0.9623
## F-statistic: 205.2 on 100 and 700 DF, p-value: < 2.2e-16
Hipotesis : H0 : Sisaan menyebar normal H1 : Sisaan tidak menyebar normal
jarque.bera.test(model.regresi.linear$residuals)
##
## Jarque Bera Test
##
## data: model.regresi.linear$residuals
## X-squared = 0.35701, df = 2, p-value = 0.8365
Nilai p-value hasil uji Jarque Bera sebesar 0.8365 > 0.05, hal ini menandakan tidak cukup bukti untuk menolak H0 / gagal tolak H0. Dengan tingkat kepercayaan 95% dapat dikatakan bahwa sisaan menyebar normal.
Hipotesis : H0 : Sisaan homogen H1 : Sisaan tidak homogen
bptest(model.regresi.linear, data = DAT.SIM.01)
##
## studentized Breusch-Pagan test
##
## data: model.regresi.linear
## BP = 105.21, df = 100, p-value = 0.3412
Nilai p-Value hasil uji Breush Pagan sebesar 0.3412 > 0.05, hal ini menandakan tidak cukup bukti untuk menolak H0 / gagal tolak H0. Dengan tingkat kepercayaan 95% dapat dikatakan bahwa sisaan memiliki ragam yang homogen (konstan)
Hipotesis : H0 : Sisaan saling bebas H1 : Sisaan tidak saling bebas
dwtest(model.regresi.linear)
##
## Durbin-Watson test
##
## data: model.regresi.linear
## DW = 1.9898, p-value = 0.4464
## alternative hypothesis: true autocorrelation is greater than 0
Nilai p-Value hasil uji Durbin Watson sebesar 0.4464 > 0.05, hal ini menandakan tidak cukup bukti untuk menolak H0 / gagal tolak H0. Dengan tingkat kepercayaan 95% dapat dikatakan bahwa sisaan saling bebas atau tidak ada autokorelasi
vif(model.regresi.linear)
## V1 V2 V3 V4 V5 V6 V7 V8
## 9.859183 2.986742 1.142864 3.191945 3.176066 1.135861 1.167592 1.136962
## V9 V10 V11 V12 V13 V14 V15 V16
## 1.153166 1.168007 12.069284 3.717045 1.167975 1.143789 1.137468 1.147510
## V17 V18 V19 V20 V21 V22 V23 V24
## 1.136317 1.116181 1.169285 1.166407 1.164244 1.171535 1.178129 1.136768
## V25 V26 V27 V28 V29 V30 V31 V32
## 1.124246 1.175202 1.158268 1.161678 1.118670 1.138116 1.169020 1.141702
## V33 V34 V35 V36 V37 V38 V39 V40
## 1.159280 1.135183 1.145771 1.191939 1.115526 1.173597 1.155169 1.125545
## V41 V42 V43 V44 V45 V46 V47 V48
## 1.132544 1.138796 1.142632 1.173180 1.133684 1.152016 1.111677 1.125962
## V49 V50 V51 V52 V53 V54 V55 V56
## 1.142097 1.183673 1.140522 1.143138 1.123609 1.142416 1.108325 1.110466
## V57 V58 V59 V60 V61 V62 V63 V64
## 1.123029 1.158043 1.127158 1.176676 1.140685 1.140117 1.116569 1.166171
## V65 V66 V67 V68 V69 V70 V71 V72
## 1.133264 1.110892 1.158347 1.118306 1.123369 1.118666 1.218804 1.138590
## V73 V74 V75 V76 V77 V78 V79 V80
## 1.145184 1.141012 1.167923 1.160514 1.137807 1.115903 1.129608 1.105986
## V81 V82 V83 V84 V85 V86 V87 V88
## 1.142010 1.121857 1.165568 1.129511 1.159757 1.174263 1.111889 1.121383
## V89 V90 V91 V92 V93 V94 V95 V96
## 1.139645 1.132556 1.129106 1.180500 1.177181 1.114833 1.123984 1.127896
## V97 V98 V99 V100
## 1.144945 1.144474 1.143441 1.123875
Dapat dilihat bahwa terdapat nilai yang tinggi di atas 5 pada V1 dan V11, hal ini menandakan adanya multikolinearitas.
preds_linear <- predict(model.regresi.linear, data.test)
head(preds_linear)
## 2 5 8 9 18 19
## 87.30999 125.39733 66.04281 109.18904 76.27754 121.57398
Melihat akurasi prediksi dengan plot :
plot(data.test$Y, preds_linear, col="red")
cor(data.test$Y, preds_linear)
## [1] 0.9775027
model.forward.subsets <- regsubsets(Y ~ ., data = data.train, nvmax = 100,method = "forward", really.big = T)
summary(model.forward.subsets)
## Subset selection object
## Call: regsubsets.formula(Y ~ ., data = data.train, nvmax = 100, method = "forward",
## really.big = T)
## 100 Variables (and intercept)
## Forced in Forced out
## V1 FALSE FALSE
## V2 FALSE FALSE
## V3 FALSE FALSE
## V4 FALSE FALSE
## V5 FALSE FALSE
## V6 FALSE FALSE
## V7 FALSE FALSE
## V8 FALSE FALSE
## V9 FALSE FALSE
## V10 FALSE FALSE
## V11 FALSE FALSE
## V12 FALSE FALSE
## V13 FALSE FALSE
## V14 FALSE FALSE
## V15 FALSE FALSE
## V16 FALSE FALSE
## V17 FALSE FALSE
## V18 FALSE FALSE
## V19 FALSE FALSE
## V20 FALSE FALSE
## V21 FALSE FALSE
## V22 FALSE FALSE
## V23 FALSE FALSE
## V24 FALSE FALSE
## V25 FALSE FALSE
## V26 FALSE FALSE
## V27 FALSE FALSE
## V28 FALSE FALSE
## V29 FALSE FALSE
## V30 FALSE FALSE
## V31 FALSE FALSE
## V32 FALSE FALSE
## V33 FALSE FALSE
## V34 FALSE FALSE
## V35 FALSE FALSE
## V36 FALSE FALSE
## V37 FALSE FALSE
## V38 FALSE FALSE
## V39 FALSE FALSE
## V40 FALSE FALSE
## V41 FALSE FALSE
## V42 FALSE FALSE
## V43 FALSE FALSE
## V44 FALSE FALSE
## V45 FALSE FALSE
## V46 FALSE FALSE
## V47 FALSE FALSE
## V48 FALSE FALSE
## V49 FALSE FALSE
## V50 FALSE FALSE
## V51 FALSE FALSE
## V52 FALSE FALSE
## V53 FALSE FALSE
## V54 FALSE FALSE
## V55 FALSE FALSE
## V56 FALSE FALSE
## V57 FALSE FALSE
## V58 FALSE FALSE
## V59 FALSE FALSE
## V60 FALSE FALSE
## V61 FALSE FALSE
## V62 FALSE FALSE
## V63 FALSE FALSE
## V64 FALSE FALSE
## V65 FALSE FALSE
## V66 FALSE FALSE
## V67 FALSE FALSE
## V68 FALSE FALSE
## V69 FALSE FALSE
## V70 FALSE FALSE
## V71 FALSE FALSE
## V72 FALSE FALSE
## V73 FALSE FALSE
## V74 FALSE FALSE
## V75 FALSE FALSE
## V76 FALSE FALSE
## V77 FALSE FALSE
## V78 FALSE FALSE
## V79 FALSE FALSE
## V80 FALSE FALSE
## V81 FALSE FALSE
## V82 FALSE FALSE
## V83 FALSE FALSE
## V84 FALSE FALSE
## V85 FALSE FALSE
## V86 FALSE FALSE
## V87 FALSE FALSE
## V88 FALSE FALSE
## V89 FALSE FALSE
## V90 FALSE FALSE
## V91 FALSE FALSE
## V92 FALSE FALSE
## V93 FALSE FALSE
## V94 FALSE FALSE
## V95 FALSE FALSE
## V96 FALSE FALSE
## V97 FALSE FALSE
## V98 FALSE FALSE
## V99 FALSE FALSE
## V100 FALSE FALSE
## 1 subsets of each size up to 100
## Selection Algorithm: forward
## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " " " " " " " " "*" " " "*" " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " " " " " " " " "*" " " "*" " " "*" " " " "
## 4 ( 1 ) " " " " " " " " " " " " " " " " " " " " "*" " " "*" "*" "*" " " " "
## 5 ( 1 ) " " " " " " " " " " " " " " " " " " " " "*" " " "*" "*" "*" " " " "
## 6 ( 1 ) " " " " " " " " " " " " " " " " " " " " "*" " " "*" "*" "*" "*" " "
## 7 ( 1 ) " " " " " " " " " " " " " " " " " " "*" "*" " " "*" "*" "*" "*" " "
## 8 ( 1 ) " " " " " " " " " " " " " " " " "*" "*" "*" " " "*" "*" "*" "*" " "
## 9 ( 1 ) " " " " " " " " " " " " " " " " "*" "*" "*" " " "*" "*" "*" "*" " "
## 10 ( 1 ) " " " " " " " " " " "*" " " " " "*" "*" "*" " " "*" "*" "*" "*" " "
## 11 ( 1 ) " " " " " " " " " " "*" " " "*" "*" "*" "*" " " "*" "*" "*" "*" " "
## 12 ( 1 ) " " " " " " " " " " "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" " "
## 13 ( 1 ) " " " " " " " " " " "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*"
## 14 ( 1 ) " " " " " " " " " " "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*"
## 15 ( 1 ) " " " " "*" " " " " "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*"
## 16 ( 1 ) "*" " " "*" " " " " "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*"
## 17 ( 1 ) "*" " " "*" " " " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 18 ( 1 ) "*" "*" "*" " " " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 19 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 20 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 21 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 22 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 23 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 24 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 25 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 26 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 27 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 28 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 29 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 30 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 31 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 32 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 33 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 34 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 35 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 36 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 37 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 38 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 39 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 40 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 41 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 42 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 43 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 44 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 45 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 46 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 47 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 48 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 49 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 50 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 51 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 52 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 53 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 54 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 55 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 56 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 57 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 58 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 59 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 60 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 61 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 62 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 63 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 64 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 65 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 66 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 67 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 68 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 69 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 70 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 71 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 72 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 73 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 74 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 75 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 76 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 77 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 78 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 79 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 80 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 81 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 82 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 83 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 84 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 85 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 86 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 87 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 88 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 89 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 90 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 91 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 92 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 93 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 94 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 95 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 96 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 97 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 98 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 99 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 100 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 4 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 6 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 7 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 8 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 9 ( 1 ) " " "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 10 ( 1 ) " " "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 11 ( 1 ) " " "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 12 ( 1 ) " " "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 13 ( 1 ) " " "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 14 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 15 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 16 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 17 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 18 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 19 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 20 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 21 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 22 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 23 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 24 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 25 ( 1 ) "*" "*" "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 26 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 27 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 28 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 29 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 30 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 31 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 32 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 33 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 34 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " " " " " " " " " " "
## 35 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " "*" " " " " " " " "
## 36 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " "*" " " "*" " " " "
## 37 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " "*" " " "*" " " " "
## 38 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " "*" "*" "*" " " " "
## 39 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " "*" "*" "*" " " " "
## 40 ( 1 ) "*" "*" "*" " " "*" " " " " " " " " " " " " " " "*" "*" "*" " " " "
## 41 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " " " " " "*" "*" "*" " " " "
## 42 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 43 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 44 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 45 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 46 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 47 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 48 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 49 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 50 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 51 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 52 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 53 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 54 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 55 ( 1 ) "*" "*" "*" " " "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 56 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 57 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 58 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 59 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 60 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 61 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " "*" "*" " " "*" "*" "*" " " " "
## 62 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " "*" "*" " " "*" "*" "*" " " " "
## 63 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " " " " "*" "*" " " "*" "*" "*" " " " "
## 64 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " " " " "*" "*" "*" "*" "*" "*" " " " "
## 65 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " " " " "*" "*" "*" "*" "*" "*" " " " "
## 66 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " " " " "*" "*" "*" "*" "*" "*" " " " "
## 67 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" " " " "
## 68 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" " " " "
## 69 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" " " " "
## 70 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" " " " "
## 71 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " " "
## 72 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " " "
## 73 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " " "
## 74 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*"
## 75 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*"
## 76 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 77 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 78 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 79 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 80 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 81 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 82 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 83 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 84 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 85 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 86 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 87 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 88 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 89 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 90 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 91 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 92 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 93 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 94 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 95 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 96 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 97 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 98 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 99 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 100 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## V35 V36 V37 V38 V39 V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 4 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 5 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 6 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 7 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 8 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 9 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 10 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 11 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 12 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 13 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 14 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 15 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 16 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 17 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 18 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 19 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 20 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 21 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 22 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 23 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 24 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 25 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 26 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 27 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 28 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 29 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 30 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 31 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 32 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 33 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 34 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 35 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 36 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 37 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 38 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 39 ( 1 ) "*" " " " " " " " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 40 ( 1 ) "*" " " " " " " " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 41 ( 1 ) "*" " " " " " " " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 42 ( 1 ) "*" " " " " " " " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 43 ( 1 ) "*" " " " " " " " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 44 ( 1 ) "*" " " " " "*" " " " " "*" " " " " " " " " " " "*" " " " " " " " "
## 45 ( 1 ) "*" " " " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 46 ( 1 ) "*" " " " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 47 ( 1 ) "*" " " " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 48 ( 1 ) "*" " " " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 49 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 50 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 51 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 52 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 53 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 54 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 55 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 56 ( 1 ) "*" "*" " " "*" " " " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 57 ( 1 ) "*" "*" " " "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 58 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 59 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 60 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 61 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 62 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 63 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 64 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " " " "*" "*" " " " " " "
## 65 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 66 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 67 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 68 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 69 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 70 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 71 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 72 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 73 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 74 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 75 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 76 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 77 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 78 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 79 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 80 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 81 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " " " "*" "*" "*" " " " " " "
## 82 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" "*" "*" "*" " " " " " "
## 83 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" "*" "*" "*" " " " " " "
## 84 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" "*" "*" "*" " " " " " "
## 85 ( 1 ) "*" "*" "*" "*" "*" " " "*" " " " " " " "*" "*" "*" "*" " " " " " "
## 86 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" " " " " "*" "*" "*" "*" " " " " " "
## 87 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" " " " " "*" "*" "*" "*" " " " " " "
## 88 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " " " " "
## 89 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " " " " "
## 90 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " " " " "
## 91 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " " " " " "
## 92 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " " " " " "
## 93 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " " " " " "
## 94 ( 1 ) "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " " " " " "
## 95 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " " " " "
## 96 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " " "
## 97 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " " " "
## 98 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 99 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 100 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## V52 V53 V54 V55 V56 V57 V58 V59 V60 V61 V62 V63 V64 V65 V66 V67 V68
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 4 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 5 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 6 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 7 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 8 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 9 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 10 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 11 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 12 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 13 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 14 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 15 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 16 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 17 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 18 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 19 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 20 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 21 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 22 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 23 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 24 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" " " " " " " " "
## 25 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " "
## 26 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " "
## 27 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " "
## 28 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " " " " "
## 29 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 30 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 31 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 32 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 33 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 34 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 35 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 36 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 37 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 38 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 39 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 40 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 41 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 42 ( 1 ) "*" " " " " " " " " " " " " " " " " " " " " " " "*" "*" " " "*" " "
## 43 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 44 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 45 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 46 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 47 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 48 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 49 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 50 ( 1 ) "*" " " " " " " " " " " " " " " " " " " "*" " " "*" "*" " " "*" " "
## 51 ( 1 ) "*" " " " " " " " " "*" " " " " " " " " "*" " " "*" "*" " " "*" " "
## 52 ( 1 ) "*" " " " " " " " " "*" " " " " " " " " "*" " " "*" "*" " " "*" " "
## 53 ( 1 ) "*" " " " " " " " " "*" " " " " " " " " "*" " " "*" "*" " " "*" " "
## 54 ( 1 ) "*" " " " " " " "*" "*" " " " " " " " " "*" " " "*" "*" " " "*" " "
## 55 ( 1 ) "*" " " " " " " "*" "*" " " " " " " " " "*" " " "*" "*" "*" "*" " "
## 56 ( 1 ) "*" " " " " " " "*" "*" " " " " " " " " "*" " " "*" "*" "*" "*" " "
## 57 ( 1 ) "*" " " " " " " "*" "*" " " " " " " " " "*" " " "*" "*" "*" "*" " "
## 58 ( 1 ) "*" " " " " " " "*" "*" " " " " " " " " "*" " " "*" "*" "*" "*" " "
## 59 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" " " "*" "*" "*" "*" " "
## 60 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 61 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 62 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 63 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 64 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 65 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 66 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 67 ( 1 ) "*" " " " " " " "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 68 ( 1 ) "*" " " " " "*" "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 69 ( 1 ) "*" " " " " "*" "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 70 ( 1 ) "*" " " " " "*" "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 71 ( 1 ) "*" " " " " "*" "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 72 ( 1 ) "*" " " " " "*" "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 73 ( 1 ) "*" " " " " "*" "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 74 ( 1 ) "*" " " " " "*" "*" "*" " " " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 75 ( 1 ) "*" " " " " "*" "*" "*" " " "*" "*" " " "*" "*" "*" "*" "*" "*" " "
## 76 ( 1 ) "*" " " " " "*" "*" "*" " " "*" "*" " " "*" "*" "*" "*" "*" "*" " "
## 77 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" "*" " " "*" "*" "*" "*" "*" "*" " "
## 78 ( 1 ) "*" " " "*" "*" "*" "*" " " "*" "*" " " "*" "*" "*" "*" "*" "*" " "
## 79 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" " " "*" "*" "*" "*" "*" "*" " "
## 80 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 81 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 82 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 83 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 84 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 85 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 86 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 87 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 88 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 89 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 90 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 91 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 92 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 93 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 94 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 95 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 96 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 97 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 98 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 99 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 100 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## V69 V70 V71 V72 V73 V74 V75 V76 V77 V78 V79 V80 V81 V82 V83 V84 V85
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 4 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 5 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 6 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 7 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 8 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 9 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 10 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 11 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 12 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 13 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 14 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 15 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 16 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 17 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 18 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 19 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 20 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 21 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 22 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 23 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 24 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 25 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 26 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 27 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 28 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 29 ( 1 ) " " " " " " " " " " " " "*" " " " " " " " " " " " " " " " " " " " "
## 30 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 31 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 32 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 33 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 34 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 35 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 36 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 37 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 38 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 39 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 40 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 41 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 42 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 43 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 44 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 45 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 46 ( 1 ) " " " " " " " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 47 ( 1 ) " " " " "*" " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 48 ( 1 ) " " "*" "*" " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 49 ( 1 ) " " "*" "*" " " " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 50 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 51 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 52 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 53 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 54 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 55 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 56 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 57 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 58 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 59 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 60 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 61 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " " " " " " " " " " "
## 62 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " "*" " " " " " " " "
## 63 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " "*" " " " " " " " "
## 64 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " "*" " " " " " " " "
## 65 ( 1 ) " " "*" "*" "*" " " " " "*" "*" " " " " " " " " "*" " " " " " " " "
## 66 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " " " " " "*" " " " " " " " "
## 67 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " " " " " "*" " " " " " " " "
## 68 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " " " " " "*" " " " " " " " "
## 69 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " " " " " " "
## 70 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " " " " " " "
## 71 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " " " " " " "
## 72 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " " " " " " "
## 73 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 74 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 75 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 76 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 77 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 78 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 79 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 80 ( 1 ) " " "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 81 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 82 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " " " "*" " " "*" " " "*" " " " "
## 83 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" " " "*" " " "*" " " " "
## 84 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " "*" " " " "
## 85 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " "*" "*" " "
## 86 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " "*" "*" " "
## 87 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " "*" "*" " "
## 88 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" " " "*" "*" " "
## 89 ( 1 ) "*" "*" "*" "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" " "
## 90 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" " "
## 91 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" " "
## 92 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*"
## 93 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*"
## 94 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*"
## 95 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*"
## 96 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*"
## 97 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*"
## 98 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*"
## 99 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 100 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## V86 V87 V88 V89 V90 V91 V92 V93 V94 V95 V96 V97 V98 V99 V100
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 4 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 5 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 6 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 7 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 8 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 9 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 10 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 11 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 12 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 13 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 14 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 15 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 16 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 17 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 18 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 19 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 20 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
## 21 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " "
## 22 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " "
## 23 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " "
## 24 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " "
## 25 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " "
## 26 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " " " " " " "
## 27 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " "*" " " " "
## 28 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " "*" " " " "
## 29 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " "*" " " " "
## 30 ( 1 ) " " " " " " " " " " " " " " " " "*" " " " " " " "*" " " " "
## 31 ( 1 ) " " " " " " " " " " " " " " " " "*" "*" " " " " "*" " " " "
## 32 ( 1 ) " " " " " " " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 33 ( 1 ) " " " " "*" " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 34 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 35 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 36 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 37 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 38 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 39 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" " " "*" " " " "
## 40 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 41 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 42 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 43 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 44 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 45 ( 1 ) "*" " " "*" " " " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 46 ( 1 ) "*" " " "*" "*" " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 47 ( 1 ) "*" " " "*" "*" " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 48 ( 1 ) "*" " " "*" "*" " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 49 ( 1 ) "*" " " "*" "*" " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 50 ( 1 ) "*" " " "*" "*" " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 51 ( 1 ) "*" " " "*" "*" " " " " " " " " "*" "*" "*" "*" "*" " " " "
## 52 ( 1 ) "*" " " "*" "*" " " " " " " " " "*" "*" "*" "*" "*" "*" " "
## 53 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 54 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 55 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 56 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 57 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 58 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 59 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 60 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 61 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 62 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 63 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 64 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 65 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 66 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 67 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 68 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 69 ( 1 ) "*" " " "*" "*" "*" " " " " " " "*" "*" "*" "*" "*" "*" " "
## 70 ( 1 ) "*" " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 71 ( 1 ) "*" " " "*" "*" "*" " " "*" " " "*" "*" "*" "*" "*" "*" " "
## 72 ( 1 ) "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " "
## 73 ( 1 ) "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " "
## 74 ( 1 ) "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " "
## 75 ( 1 ) "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " "
## 76 ( 1 ) "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " "
## 77 ( 1 ) "*" " " "*" "*" "*" " " "*" "*" "*" "*" "*" "*" "*" "*" " "
## 78 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 79 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 80 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 81 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 82 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 83 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 84 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 85 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 86 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" " "
## 87 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 88 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 89 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 90 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 91 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 92 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 93 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 94 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 95 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 96 ( 1 ) "*" " " "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 97 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 98 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 99 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## 100 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
res.sum <- summary(model.forward.subsets)
data.frame(
Adj.R2 = which.max(res.sum$adjr2),
CP = which.min(res.sum$cp),
BIC = which.min(res.sum$bic)
)
## Adj.R2 CP BIC
## 1 51 33 20
Pada output di atas dapat dilihat bahwa penyusunan model dengan 20 peubah penjelas menghasilkan nilai BIC terkecil. Maka dari itu penyusunan model regresi akan dimasukkan 20 peubah terbaik.
# id: model id
# object: regsubsets object
# data: data used to fit regsubsets
# outcome: outcome variable
get_model_formula <- function(id, object, outcome){
# get models data
models <- summary(object)$which[id,-1]
# Get outcome variable
#form <- as.formula(object$call[[2]])
#outcome <- all.vars(form)[1]
# Get model predictors
predictors <- names(which(models == TRUE))
predictors <- paste(predictors, collapse = "+")
# Build model formula
as.formula(paste0(outcome, "~", predictors))
}
20 peubah penjelas yang akan dibuatkan model regresi
get_model_formula(20, model.forward.subsets, "Y")
## Y ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 +
## V12 + V13 + V14 + V15 + V16 + V17 + V18 + V19 + V20
## <environment: 0x000001fa2fa81eb8>
Model regresi terbaik hasil seleksi peubah
model.regresi.terbaik <- lm(Y ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11 +
V12 + V13 + V14 + V15 + V16 + V17 + V18 + V19 + V20, data = data.train)
summary(model.regresi.terbaik)
##
## Call:
## lm(formula = Y ~ V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 +
## V10 + V11 + V12 + V13 + V14 + V15 + V16 + V17 + V18 + V19 +
## V20, data = data.train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.6280 -3.4048 0.1137 3.3310 14.2054
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.6598 1.1255 14.802 < 2e-16 ***
## V1 4.0780 0.4824 8.453 < 2e-16 ***
## V2 1.6828 0.3020 5.572 3.46e-08 ***
## V3 2.4013 0.1696 14.157 < 2e-16 ***
## V4 2.1611 0.2765 7.816 1.76e-14 ***
## V5 2.2121 0.2915 7.589 9.22e-14 ***
## V6 2.6452 0.1643 16.098 < 2e-16 ***
## V7 2.2791 0.1641 13.890 < 2e-16 ***
## V8 2.3256 0.1579 14.729 < 2e-16 ***
## V9 2.5307 0.1582 15.993 < 2e-16 ***
## V10 2.5953 0.1661 15.627 < 2e-16 ***
## V11 6.6458 0.2547 26.096 < 2e-16 ***
## V12 3.6323 0.4461 8.142 1.54e-15 ***
## V13 5.2076 0.1633 31.885 < 2e-16 ***
## V14 4.9730 0.1641 30.296 < 2e-16 ***
## V15 4.7847 0.1625 29.442 < 2e-16 ***
## V16 2.8968 0.1617 17.911 < 2e-16 ***
## V17 2.2621 0.1591 14.219 < 2e-16 ***
## V18 2.3092 0.1632 14.149 < 2e-16 ***
## V19 2.4908 0.1636 15.227 < 2e-16 ***
## V20 2.4678 0.1596 15.467 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.977 on 780 degrees of freedom
## Multiple R-squared: 0.9634, Adjusted R-squared: 0.9624
## F-statistic: 1025 on 20 and 780 DF, p-value: < 2.2e-16
Hipotesis : H0 : Sisaan menyebar normal H1 : Sisaan tidak menyebar normal
jarque.bera.test(model.regresi.terbaik$residuals)
##
## Jarque Bera Test
##
## data: model.regresi.terbaik$residuals
## X-squared = 1.1813, df = 2, p-value = 0.554
Nilai p-value hasil uji Jarque Bera sebesar 0.554 > 0.05, hal ini menandakan tidak cukup bukti untuk menolak H0 / gagal tolak H0. Dengan tingkat kepercayaan 95% dapat dikatakan bahwa sisaan menyebar normal.
Hipotesis : H0 : Sisaan homogen H1 : Sisaan tidak homogen
bptest(model.regresi.terbaik, data = DAT.SIM.01)
##
## studentized Breusch-Pagan test
##
## data: model.regresi.terbaik
## BP = 36.406, df = 20, p-value = 0.01378
Nilai p-Value hasil uji Breush Pagan sebesar 0.001378 < 0.05, hal ini menandakan cukup bukti untuk menolak H0 / tolak H0. Dengan tingkat kepercayaan 95% dapat dikatakan bahwa sisaan memiliki ragam yang tidak homogen.
Hipotesis : H0 : Sisaan saling bebas H1 : Sisaan tidak saling bebas
dwtest(model.regresi.terbaik)
##
## Durbin-Watson test
##
## data: model.regresi.terbaik
## DW = 1.9937, p-value = 0.4675
## alternative hypothesis: true autocorrelation is greater than 0
Nilai p-Value hasil uji Durbin Watson sebesar 0.4675 > 0.05, hal ini menandakan tidak cukup bukti untuk menolak H0 / gagal tolak H0. Dengan tingkat kepercayaan 95% dapat dikatakan bahwa sisaan saling bebas atau tidak ada autokorelasi
vif(model.regresi.terbaik)
## V1 V2 V3 V4 V5 V6 V7 V8
## 8.761241 2.611134 1.038668 2.833613 2.833616 1.016729 1.025985 1.017779
## V9 V10 V11 V12 V13 V14 V15 V16
## 1.031055 1.042431 10.709299 3.273919 1.019071 1.027938 1.018189 1.022531
## V17 V18 V19 V20
## 1.030245 1.024175 1.036396 1.025221
Dapat dilihat bahwa terdapat nilai yang tinggi di atas 5 pada V1 dan V11, hal ini menandakan adanya multikolinearitas.
preds_best <- predict(model.regresi.terbaik, data.test)
head(preds_best)
## 2 5 8 9 18 19
## 89.20158 126.47875 68.59583 110.55281 77.61893 119.52129
Melihat akurasi prediksi dengan plot :
plot(data.test$Y, preds_best, col="red")
cor(data.test$Y, preds_best)
## [1] 0.9793237
Pada data bangkitkan sudah ditentukan di awal terdapat 4 peubah penjelas yang berkorelasi kuat. Akan dilihat peubah mana yang berkorelasi menggunakan matriks dan plot korelasi sebagai berikut:
data_korelasi <- data.train[c(2,3,5,6,12,13)]
mk <- cor(data_korelasi)
round(mk,2)
## V1 V2 V4 V5 V11 V12
## V1 1.00 0.60 -0.02 0.00 0.94 0.68
## V2 0.60 1.00 0.01 -0.02 0.61 0.10
## V4 -0.02 0.01 1.00 -0.80 -0.01 -0.03
## V5 0.00 -0.02 -0.80 1.00 -0.01 0.01
## V11 0.94 0.61 -0.01 -0.01 1.00 0.71
## V12 0.68 0.10 -0.03 0.01 0.71 1.00
corrplot(mk, type="lower",
order = "hclust", # mengurutkan berdasarkan hierarchical clustering
tl.col= "black", # warna tulisan
addCoef.col = "black", # tambahkan koefisien korelasi
diag=FALSE, #menyembunyikan koefisien pada diagonal
tl.srt= 45, # kemiringan tulisan 45 derajat
method = "circle") # Bentuk Visualisasi
Dapat dilihat dari matriks korelasi di atas, bahwa terdapat korelasi yang tinggi antara V1-V2, V1-V11, V1-V12, V2-V11, V4-V5, dan V11-V12. Solusi dari masalah ini dapat diselesaikan dengan beberapa cara yaitu dengan menghilangkan peubah yang berkorelasi tinggi atau dengan menggunakan metode penyusutan (shrinkage) peubah seperti regresi gulud, LASSO, dan jaring elastis.
set.seed(123)
model_ridge_mae <- cv.glmnet(Y~.,data=data.train,alpha=0, type.measure="mae",family="gaussian",nfolds=10)
plot(model_ridge_mae)
Pada plot di atas, banyaknya peubah terpilih dilihat dari angka di atas plot, garis putus-putus adalah nilai lambda yang optimum berdasarkan nilai mae terkecil.
info_ridge_mae <- broom::glance(model_ridge_mae)
info_ridge_mae
## # A tibble: 1 × 3
## lambda.min lambda.1se nobs
## <dbl> <dbl> <int>
## 1 2.14 2.83 801
broom::tidy(model_ridge_mae)
## # A tibble: 100 × 6
## lambda estimate std.error conf.low conf.high nzero
## <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 21429. 20.7 0.529 20.2 21.3 100
## 2 19525. 20.7 0.528 20.1 21.2 100
## 3 17791. 20.7 0.527 20.1 21.2 100
## 4 16210. 20.7 0.527 20.1 21.2 100
## 5 14770. 20.6 0.527 20.1 21.2 100
## 6 13458. 20.6 0.527 20.1 21.2 100
## 7 12263. 20.6 0.527 20.1 21.2 100
## 8 11173. 20.6 0.527 20.1 21.2 100
## 9 10181. 20.6 0.527 20.1 21.1 100
## 10 9276. 20.6 0.527 20.1 21.1 100
## # … with 90 more rows
Nilai koefisien terpilih dapat dikeluarkan dengan bantuan package broom di bawah ini:
broom::tidy(model_ridge_mae$glmnet.fit)
## # A tibble: 10,100 × 5
## term step estimate lambda dev.ratio
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 1 101. 21429. 4.71e-36
## 2 (Intercept) 2 101. 19525. 6.10e- 3
## 3 (Intercept) 3 101. 17791. 6.69e- 3
## 4 (Intercept) 4 101. 16210. 7.33e- 3
## 5 (Intercept) 5 101. 14770. 8.04e- 3
## 6 (Intercept) 6 101. 13458. 8.82e- 3
## 7 (Intercept) 7 101. 12263. 9.68e- 3
## 8 (Intercept) 8 101. 11173. 1.06e- 2
## 9 (Intercept) 9 101. 10181. 1.16e- 2
## 10 (Intercept) 10 101. 9276. 1.28e- 2
## # … with 10,090 more rows
ridge_mae_min <- broom::tidy(model_ridge_mae$glmnet.fit) %>% filter(lambda==info_ridge_mae$lambda.min)
ridge_mae_min
## # A tibble: 101 × 5
## term step estimate lambda dev.ratio
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 100 24.8 2.14 0.962
## 2 V1 100 6.09 2.14 0.962
## 3 V2 100 2.85 2.14 0.962
## 4 V3 100 2.18 2.14 0.962
## 5 V4 100 1.56 2.14 0.962
## 6 V5 100 1.47 2.14 0.962
## 7 V6 100 2.49 2.14 0.962
## 8 V7 100 2.10 2.14 0.962
## 9 V8 100 2.00 2.14 0.962
## 10 V9 100 2.43 2.14 0.962
## # … with 91 more rows
Koefisien Regresi Gulud 100 peubah bebas
ridge_model <- glmnet(Y~.,data=data.train, lambda = model_ridge_mae$lambda.min , alpha = 0)
coef(ridge_model)
## 101 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) 24.7750652933
## V1 6.0902941043
## V2 2.8504647309
## V3 2.1834601417
## V4 1.5604453134
## V5 1.4725077477
## V6 2.4909738040
## V7 2.1035022367
## V8 2.0036750679
## V9 2.4340437526
## V10 2.4965383544
## V11 4.5781186160
## V12 5.4579345751
## V13 4.8194969934
## V14 4.5889824379
## V15 4.2684329898
## V16 2.6254067880
## V17 2.0788605870
## V18 2.0221560846
## V19 2.1879800249
## V20 2.2350270273
## V21 0.0955820852
## V22 0.3072644731
## V23 0.1268410575
## V24 0.1938285169
## V25 -0.1174629058
## V26 -0.2175829566
## V27 -0.0659545429
## V28 0.2724447788
## V29 0.1776463457
## V30 -0.2405335676
## V31 0.2046058812
## V32 -0.2333273341
## V33 0.0145762422
## V34 -0.1033452180
## V35 0.0056817506
## V36 0.1356507634
## V37 -0.1450060532
## V38 0.1988981618
## V39 0.1965531495
## V40 -0.0410273988
## V41 -0.2541430368
## V42 -0.0379625182
## V43 0.0161586591
## V44 0.0281705100
## V45 -0.0047549688
## V46 -0.1584863448
## V47 -0.2361323603
## V48 -0.1993707278
## V49 0.0967776534
## V50 -0.0260815812
## V51 -0.0006605362
## V52 -0.3115927631
## V53 -0.0614642395
## V54 -0.1760912228
## V55 0.1357329284
## V56 -0.2386363968
## V57 0.1647999632
## V58 -0.0496368006
## V59 -0.0502566624
## V60 0.0146863113
## V61 -0.1008597272
## V62 -0.1500305272
## V63 0.1797946299
## V64 -0.2328955923
## V65 0.2399883968
## V66 -0.1845368015
## V67 -0.3245129597
## V68 -0.0868339106
## V69 0.1398095569
## V70 0.1039560217
## V71 0.2637619527
## V72 -0.2311090872
## V73 0.0937568624
## V74 0.0648291665
## V75 -0.2253608734
## V76 -0.0889487324
## V77 0.0083857088
## V78 -0.0057006735
## V79 -0.1036971709
## V80 -0.1137633399
## V81 0.0911181008
## V82 -0.0226351738
## V83 0.0581261846
## V84 0.0480224579
## V85 -0.1019267193
## V86 -0.2390677117
## V87 -0.0088706719
## V88 0.2620332957
## V89 0.2256242723
## V90 0.0406777645
## V91 0.0878523779
## V92 -0.1024489259
## V93 0.0084632793
## V94 -0.2971656241
## V95 -0.1814240404
## V96 0.2922719728
## V97 -0.1923526069
## V98 0.2466244966
## V99 0.1714133004
## V100 -0.0854004578
Dapat dilihat bahwa Regresi Gulud menyusutkan koefisien regresi mendekati angka nol namun tidak tepat angka nol.
preds_ridge <- predict(ridge_model, data.test)
head(preds_ridge)
## s0
## [1,] 88.45845
## [2,] 125.01836
## [3,] 64.18933
## [4,] 109.33488
## [5,] 76.54012
## [6,] 119.56958
plot(data.test$Y, preds_ridge, col = "red")
cor(data.test$Y, preds_ridge)
## s0
## [1,] 0.9767666
set.seed(123)
model_lasso_mae <- cv.glmnet(Y~.,data=data.train,alpha = 1,
type.measure="mae",
family="gaussian",
nfolds=10)
plot(model_lasso_mae)
Pada plot di atas, banyaknya peubah terpilih dilihat dari angka di atas plot, garis putus-putus adalah nilai lambda yang optimum berdasarkan nilai mae terkecil.
info_lasso_mae <- broom::glance(model_lasso_mae)
info_lasso_mae
## # A tibble: 1 × 3
## lambda.min lambda.1se nobs
## <dbl> <dbl> <int>
## 1 0.117 0.326 801
broom::tidy(model_lasso_mae)
## # A tibble: 78 × 6
## lambda estimate std.error conf.low conf.high nzero
## <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 21.4 20.7 0.546 20.1 21.2 0
## 2 19.5 19.5 0.542 18.9 20.0 1
## 3 17.8 18.4 0.519 17.8 18.9 1
## 4 16.2 17.4 0.495 16.9 17.9 1
## 5 14.8 16.5 0.468 16.0 17.0 1
## 6 13.5 15.7 0.444 15.3 16.2 1
## 7 12.3 15.1 0.418 14.6 15.5 1
## 8 11.2 14.5 0.395 14.1 14.9 1
## 9 10.2 14.0 0.377 13.6 14.3 2
## 10 9.28 13.5 0.361 13.1 13.9 2
## # … with 68 more rows
Nilai koefisien terpilih dapat dikeluarkan dengan bantuan package broom di bawah ini:
broom::tidy(model_lasso_mae$glmnet.fit)
## # A tibble: 2,807 × 5
## term step estimate lambda dev.ratio
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 1 101. 21.4 0
## 2 (Intercept) 2 99.6 19.5 0.118
## 3 (Intercept) 3 98.0 17.8 0.217
## 4 (Intercept) 4 96.6 16.2 0.298
## 5 (Intercept) 5 95.3 14.8 0.366
## 6 (Intercept) 6 94.2 13.5 0.422
## 7 (Intercept) 7 93.1 12.3 0.469
## 8 (Intercept) 8 92.1 11.2 0.508
## 9 (Intercept) 9 91.2 10.2 0.540
## 10 (Intercept) 10 90.1 9.28 0.568
## # … with 2,797 more rows
coef_mae_min <- broom::tidy(model_lasso_mae$glmnet.fit) %>% filter(lambda==info_lasso_mae$lambda.min)
coef_mae_min
## # A tibble: 61 × 5
## term step estimate lambda dev.ratio
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 57 20.0 0.117 0.965
## 2 V1 57 4.12 0.117 0.965
## 3 V2 57 1.44 0.117 0.965
## 4 V3 57 2.29 0.117 0.965
## 5 V4 57 1.58 0.117 0.965
## 6 V5 57 1.60 0.117 0.965
## 7 V6 57 2.57 0.117 0.965
## 8 V7 57 2.17 0.117 0.965
## 9 V8 57 2.17 0.117 0.965
## 10 V9 57 2.48 0.117 0.965
## # … with 51 more rows
Membangun model regresi LASSO berdasarkan lambda minimum.
lasso_model <- glmnet(Y~.,data=data.train, lambda = model_lasso_mae$lambda.min , alpha = 1)
coef(lasso_model)
## 101 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) 19.97380798
## V1 4.19308071
## V2 1.44729181
## V3 2.29527815
## V4 1.58935373
## V5 1.60766628
## V6 2.57364065
## V7 2.16566532
## V8 2.16897237
## V9 2.48035475
## V10 2.53030923
## V11 6.64440111
## V12 3.29464141
## V13 5.15525710
## V14 4.85843103
## V15 4.65778779
## V16 2.77238931
## V17 2.13815791
## V18 2.19189022
## V19 2.40158290
## V20 2.33382974
## V21 0.07293040
## V22 0.17979096
## V23 .
## V24 0.08059796
## V25 .
## V26 -0.02756608
## V27 -0.05351490
## V28 0.09628456
## V29 .
## V30 -0.12492904
## V31 0.10266443
## V32 -0.10248795
## V33 .
## V34 .
## V35 0.04812559
## V36 .
## V37 -0.03242592
## V38 0.06488556
## V39 0.02120486
## V40 .
## V41 -0.18273385
## V42 .
## V43 .
## V44 .
## V45 .
## V46 .
## V47 -0.06845487
## V48 -0.07747962
## V49 .
## V50 .
## V51 .
## V52 -0.18926730
## V53 .
## V54 .
## V55 0.01878968
## V56 -0.05274571
## V57 0.02900460
## V58 .
## V59 .
## V60 .
## V61 .
## V62 -0.07513937
## V63 0.05633126
## V64 -0.18135314
## V65 0.18556755
## V66 -0.02420491
## V67 -0.19144768
## V68 .
## V69 .
## V70 0.03788197
## V71 0.04872358
## V72 -0.03432072
## V73 .
## V74 .
## V75 -0.18040039
## V76 -0.09617952
## V77 .
## V78 .
## V79 .
## V80 .
## V81 .
## V82 .
## V83 .
## V84 .
## V85 .
## V86 -0.17540473
## V87 .
## V88 0.12283703
## V89 0.05446312
## V90 .
## V91 .
## V92 .
## V93 .
## V94 -0.22476610
## V95 -0.11947994
## V96 0.17795424
## V97 -0.11709762
## V98 0.17578021
## V99 0.04886036
## V100 .
Pada output di atas dapat dilihat bahwa Regresi LASSO mampu menyusutkan koefisien regresi hingga tepat angka nol, hal ini lah yang membuat regresi lasso mampu melakukan penyusutan koefisien regresi dan juga melakukan seleksi peubah.
preds_lasso <- predict(lasso_model, data.test)
head(preds_lasso)
## s0
## [1,] 87.84042
## [2,] 123.99615
## [3,] 68.81116
## [4,] 108.82186
## [5,] 75.99800
## [6,] 120.26121
Melihat akurasi prediksi menggunakan plot
plot(data.test$Y, preds_lasso, col = "red")
cor(data.test$Y, preds_lasso)
## s0
## [1,] 0.9790778
set.seed(123)
model_elastic_mae <- cv.glmnet(Y~.,data=data.train,alpha = 0.5,
type.measure="mae",
family="gaussian",
nfolds=10)
plot(model_elastic_mae)
Pada plot di atas, banyaknya peubah terpilih dilihat dari angka di atas plot, garis putus-putus adalah nilai lambda yang optimum berdasarkan nilai mae terkecil.
info_elastic_mae <- broom::glance(model_elastic_mae)
info_elastic_mae
## # A tibble: 1 × 3
## lambda.min lambda.1se nobs
## <dbl> <dbl> <int>
## 1 0.213 0.594 801
broom::tidy(model_elastic_mae)
## # A tibble: 79 × 6
## lambda estimate std.error conf.low conf.high nzero
## <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 42.9 20.7 0.539 20.2 21.2 0
## 2 39.1 20.0 0.539 19.4 20.5 2
## 3 35.6 19.1 0.521 18.6 19.6 2
## 4 32.4 18.3 0.502 17.8 18.8 2
## 5 29.5 17.5 0.484 17.0 18.0 2
## 6 26.9 16.8 0.465 16.3 17.2 2
## 7 24.5 16.1 0.441 15.7 16.5 2
## 8 22.3 15.5 0.418 15.1 15.9 2
## 9 20.4 15.0 0.399 14.6 15.3 2
## 10 18.6 14.5 0.383 14.1 14.8 2
## # … with 69 more rows
Nilai koefisien terpilih dapat dikeluarkan dengan bantuan package broom di bawah ini:
broom::tidy(model_elastic_mae$glmnet.fit)
## # A tibble: 2,923 × 5
## term step estimate lambda dev.ratio
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 1 101. 42.9 0
## 2 (Intercept) 2 100. 39.1 0.0729
## 3 (Intercept) 3 98.6 35.6 0.152
## 4 (Intercept) 4 97.1 32.4 0.223
## 5 (Intercept) 5 95.7 29.5 0.286
## 6 (Intercept) 6 94.4 26.9 0.342
## 7 (Intercept) 7 93.1 24.5 0.391
## 8 (Intercept) 8 91.9 22.3 0.434
## 9 (Intercept) 9 90.8 20.4 0.471
## 10 (Intercept) 10 89.8 18.6 0.504
## # … with 2,913 more rows
elastic_mae_min <- broom::tidy(model_elastic_mae$glmnet.fit) %>% filter(lambda==info_elastic_mae$lambda.min)
elastic_mae_min
## # A tibble: 66 × 5
## term step estimate lambda dev.ratio
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 58 20.1 0.213 0.965
## 2 V1 58 4.44 0.213 0.965
## 3 V2 58 1.58 0.213 0.965
## 4 V3 58 2.30 0.213 0.965
## 5 V4 58 1.61 0.213 0.965
## 6 V5 58 1.62 0.213 0.965
## 7 V6 58 2.57 0.213 0.965
## 8 V7 58 2.17 0.213 0.965
## 9 V8 58 2.16 0.213 0.965
## 10 V9 58 2.48 0.213 0.965
## # … with 56 more rows
Menghitung nilai MAE pada model jaring elastis dengan memasukkan semua nilai aplha yang mungkin.
for (i in 0:10) {
assign(paste("fit", i, sep=""), cv.glmnet(Y~.,data=data.train, type.measure="mae", alpha=i/10))
}
yhat0 <- predict(fit0, s=fit0$lambda.1se, data.test)
yhat1 <- predict(fit1, s=fit1$lambda.1se, data.test)
yhat2 <- predict(fit2, s=fit2$lambda.1se, data.test)
yhat3 <- predict(fit3, s=fit3$lambda.1se, data.test)
yhat4 <- predict(fit4, s=fit4$lambda.1se, data.test)
yhat5 <- predict(fit5, s=fit5$lambda.1se, data.test)
yhat6 <- predict(fit6, s=fit6$lambda.1se, data.test)
yhat7 <- predict(fit7, s=fit7$lambda.1se, data.test)
yhat8 <- predict(fit8, s=fit8$lambda.1se, data.test)
yhat9 <- predict(fit9, s=fit9$lambda.1se, data.test)
yhat10 <- predict(fit10, s=fit10$lambda.1se, data.test)
mae0 <- mean(abs(data.test$Y-yhat0))
mae1 <- mean(abs(data.test$Y-yhat1))
mae2 <- mean(abs(data.test$Y-yhat2))
mae3 <- mean(abs(data.test$Y-yhat3))
mae4 <- mean(abs(data.test$Y-yhat4))
mae5 <- mean(abs(data.test$Y-yhat5))
mae6 <- mean(abs(data.test$Y-yhat6))
mae7 <- mean(abs(data.test$Y-yhat7))
mae8 <- mean(abs(data.test$Y-yhat8))
mae9 <- mean(abs(data.test$Y-yhat9))
mae10 <- mean(abs(data.test$Y-yhat10))
alpha<-seq(0,1,by=0.1)
mae<-c(mae0,mae1,mae2,mae3,mae4,mae5,mae6,mae7,mae8,mae9,mae10)
cbind(alpha,mae)
## alpha mae
## [1,] 0.0 4.467550
## [2,] 0.1 4.282022
## [3,] 0.2 4.239542
## [4,] 0.3 4.209632
## [5,] 0.4 4.197505
## [6,] 0.5 4.183044
## [7,] 0.6 4.175569
## [8,] 0.7 4.169099
## [9,] 0.8 4.164666
## [10,] 0.9 4.161968
## [11,] 1.0 4.167746
Pada output di atas dapat dilihat bahwa nilai MAE terkecil saat alpha = 0.9
Membangun model regresi jaring elastis berdasarkan lambda minimum dan alpha = 0.9.
elastic_model <- glmnet(Y~.,data=data.train, lambda = model_elastic_mae$lambda.min , alpha = 0.9)
coef(elastic_model)
## 101 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) 21.284625617
## V1 4.147311429
## V2 1.375840488
## V3 2.206238490
## V4 1.250076947
## V5 1.260777178
## V6 2.497562155
## V7 2.104851706
## V8 2.117571067
## V9 2.406053177
## V10 2.467747130
## V11 6.663669372
## V12 3.210963970
## V13 5.058775410
## V14 4.767515293
## V15 4.593094070
## V16 2.724387641
## V17 2.075008825
## V18 2.095395170
## V19 2.354805141
## V20 2.249698572
## V21 0.028535003
## V22 0.093376963
## V23 .
## V24 .
## V25 .
## V26 .
## V27 -0.011289843
## V28 0.012420428
## V29 .
## V30 -0.060751167
## V31 0.029754649
## V32 -0.032706152
## V33 .
## V34 .
## V35 .
## V36 .
## V37 .
## V38 .
## V39 .
## V40 .
## V41 -0.131624043
## V42 .
## V43 .
## V44 .
## V45 .
## V46 .
## V47 .
## V48 -0.022493227
## V49 .
## V50 .
## V51 .
## V52 -0.129234224
## V53 .
## V54 .
## V55 .
## V56 .
## V57 .
## V58 .
## V59 .
## V60 .
## V61 .
## V62 -0.002478461
## V63 0.013349235
## V64 -0.098558786
## V65 0.130155502
## V66 .
## V67 -0.117740561
## V68 .
## V69 .
## V70 .
## V71 .
## V72 .
## V73 .
## V74 .
## V75 -0.117341232
## V76 -0.009892407
## V77 .
## V78 .
## V79 .
## V80 .
## V81 .
## V82 .
## V83 .
## V84 .
## V85 .
## V86 -0.105454748
## V87 .
## V88 0.055079397
## V89 .
## V90 .
## V91 .
## V92 .
## V93 .
## V94 -0.136413385
## V95 -0.034605972
## V96 0.107398797
## V97 -0.054747066
## V98 0.116169843
## V99 .
## V100 .
Pada output di atas dapat dilihat bahwa Regresi LASSO mampu menyusutkan koefisien regresi hingga tepat angka nol, hal ini lah yang membuat regresi lasso mampu melakukan penyusutan koefisien regresi dan juga melakukan seleksi peubah.
preds_elastic <- predict(elastic_model, data.test)
head(preds_elastic)
## s0
## [1,] 88.43970
## [2,] 123.68908
## [3,] 70.09376
## [4,] 108.67442
## [5,] 76.28918
## [6,] 119.98140
Melihat akurasi prediksi menggunakan plot
plot(data.test$Y, preds_elastic, col = "red")
cor(data.test$Y, preds_elastic)
## s0
## [1,] 0.9794699
Evaluasi model dilakukan dengan membandingkan nilai MAE antara kelima model yang sudah dibangun.
Membuat fungsi untuk menghitung nilai MAE :
mae <- function(response,pred){
mean(abs(response-pred),na.rm = TRUE)
}
Tabel perbandingan model
mae_regresi_linear <- mae(data.test$Y, preds_linear)
mae_best_subset <- mae(data.test$Y,preds_best)
mae_ridge_fnl <- mae(data.test$Y,preds_ridge)
mae_lasso_fnl <- mae(data.test$Y,preds_lasso)
mae_elastic_fnl <- mae(data.test$Y,preds_elastic)
komparasi_mae <- as.data.frame(c(mae_regresi_linear,mae_best_subset,mae_ridge_fnl,mae_lasso_fnl,mae_elastic_fnl))
colnames(komparasi_mae)
## [1] "c(mae_regresi_linear, mae_best_subset, mae_ridge_fnl, mae_lasso_fnl, mae_elastic_fnl)"
names(komparasi_mae)[names(komparasi_mae) == "c(mae_regresi_linear, mae_best_subset,mae_ridge_fnl, mae_lasso_fnl, mae_elastic_fnl)"] <- "Nilai MAE"
Model<-c("Linear","Best-Subset","Ridge", "Lasso", "Elastic-Net (0.9)")
komparasi_mae<- cbind(Model, komparasi_mae)
komparasi_mae
## Model
## 1 Linear
## 2 Best-Subset
## 3 Ridge
## 4 Lasso
## 5 Elastic-Net (0.9)
## c(mae_regresi_linear, mae_best_subset, mae_ridge_fnl, mae_lasso_fnl, mae_elastic_fnl)
## 1 4.486339
## 2 4.307232
## 3 4.422310
## 4 4.264795
## 5 4.190336