knitr::include_graphics("Tugas Praktikum 10.JPG")
knitr::include_graphics("Nomor 1_page-1.JPG")
knitr::include_graphics("Nomor 1_page-2.JPG")
nilai exact dari E(X) adalah 0.710227
a <- 5
b <- 3
Ex <- (b*gamma(1+1/a)*gamma(b))/gamma(1+1/a+b)
Ex
## [1] 0.7102273
Dengan nilai toleransi = 0.0001
fungsi trapezoidal
trapezoid <- function(ftn, a, b, n = 100) {
h <- (b-a)/n
x.vec <- seq(a, b, by = h)
f.vec <- sapply(x.vec, ftn) # ftn(x.vec)
Trap <- h*(f.vec[1]/2 + sum(f.vec[2:n]) + f.vec[n+1]/2)
return(Trap)
}
Mendefinisikan fungsi
E_mt <- function(x){
(15*(x^5))*((1-(x^5))^2)
}
Menghitung nilai ekspektasi
exact_value=0.710227
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
res_trap <- trapezoid(E_mt,0,1,n = n)
err <- abs(res_trap-exact_value)
cat("n=",n,", result=",res_trap,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}
## n=4, result=0.6312869, error=0.07894012
## n=5, result=0.6738123, error=0.03641467
## n=6, result=0.6914928, error=0.01873424
## n=7, result=0.6997126, error=0.01051443
## n=8, result=0.7039057, error=0.006321303
## n=9, result=0.7062116, error=0.004015356
## n=10, result=0.7075597, error=0.002667293
## n=11, result=0.7083885, error=0.001838522
## n=12, result=0.7089199, error=0.001307139
## n=13, result=0.7092729, error=0.0009541148
## n=14, result=0.7095147, error=0.000712349
## n=15, result=0.7096846, error=0.0005423739
## n=16, result=0.7098069, error=0.0004201042
## n=17, result=0.7098966, error=0.0003303616
## n=18, result=0.7099637, error=0.0002633072
## n=19, result=0.7100146, error=0.0002124014
## n=20, result=0.7100538, error=0.0001731994
## n=21, result=0.7100844, error=0.0001426188
## n=22, result=0.7101085, error=0.0001184833
## n=23, result=0.7101278, error=9.923088e-05
Dengan metode Trapezoidal diperoleh nilai E(X) sebesar 0.7101278 pada iterasi ke 23 dengan nlai error = 9.92308e-05
Fungsi Simpson
simpson_n <- function(ftn, a, b, n = 100) {
n <- max(c(2*(n %/% 2), 4))
h <- (b-a)/n
x.vec1 <- seq(a+h, b-h, by = 2*h) # ganjil
x.vec2 <- seq(a+2*h, b-2*h, by = 2*h) # genap
f.vec1 <- sapply(x.vec1, ftn) # ganjil
f.vec2 <- sapply(x.vec2, ftn) # genap
S <- h/3*(ftn(a) + ftn(b) + 4*sum(f.vec1) + 2*sum(f.vec2))
return(S)
}
Mendefinisikan fungsi
E_ms <- function(x){
(15*(x^5))*((1-(x^5))^2)
}
Menghitung nilai ekspektasi
exact_value=0.710227
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
res_simp <- simpson_n(E_ms ,0,1,n = n)
err <- abs(res_simp-exact_value)
cat("n=",n,", result=",res_simp,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}
## n=4, result=0.7683974, error=0.05817036
## n=5, result=0.7683974, error=0.05817036
## n=6, result=0.7497082, error=0.03948124
## n=7, result=0.7497082, error=0.03948124
## n=8, result=0.728112, error=0.01788497
## n=9, result=0.728112, error=0.01788497
## n=10, result=0.7188088, error=0.008581832
## n=11, result=0.7188088, error=0.008581832
## n=12, result=0.7147289, error=0.004501893
## n=13, result=0.7147289, error=0.004501893
## n=14, result=0.712782, error=0.002555012
## n=15, result=0.712782, error=0.002555012
## n=16, result=0.711774, error=0.001546962
## n=17, result=0.711774, error=0.001546962
## n=18, result=0.7112144, error=0.0009873756
## n=19, result=0.7112144, error=0.0009873756
## n=20, result=0.7108852, error=0.0006581651
## n=21, result=0.7108852, error=0.0006581651
## n=22, result=0.7106819, error=0.0004548628
## n=23, result=0.7106819, error=0.0004548628
## n=24, result=0.7105511, error=0.0003240819
## n=25, result=0.7105511, error=0.0003240819
## n=26, result=0.710464, error=0.0002369803
## n=27, result=0.710464, error=0.0002369803
## n=28, result=0.7104042, error=0.0001772138
## n=29, result=0.7104042, error=0.0001772138
## n=30, result=0.7103621, error=0.0001351299
## n=31, result=0.7103621, error=0.0001351299
## n=32, result=0.7103318, error=0.0001048198
## n=33, result=0.7103318, error=0.0001048198
## n=34, result=0.7103096, error=8.255045e-05
Denga metode Simpson diperoleh nilai E(X) sebesar 0.7103096 pada iterasi ke 34 dan nilai error sebesar = 8.255045e-05
library(pracma)
## Warning: package 'pracma' was built under R version 4.2.3
Mencari nilai ekspektasi
E_mfpgq <- function(x){
(15*(x^5))*((1-(x^5))^2)
}
exact_value=0.710227
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
gL <- gaussLegendre(n = n,a = 0,1)
Ci <- gL$w # koefisien
xi <- gL$x # gauss point
res_gl <- sum(Ci * E_mfpgq(xi))
err <- abs(res_gl-exact_value)
cat("n=",n,", result=",res_gl,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}
## n=4, result=0.6792999, error=0.03092708
## n=5, result=0.707375, error=0.002851979
## n=6, result=0.7101422, error=8.477726e-05
Dengan metode Four - Point Gauss Quadrature diperoleh nilai E(X) sebesar 0.7101422 pada iterasi ke 6 dan nilai error sebesar = 8.477726e-05
Membandingkan ketiga metode
Et <- 0.7101278
Es <- 0.7103096
Efpgq <- 0.7101422
errt <- abs(Et-Ex)
errs <- abs(Es-Ex)
errfpgq <- abs(Efpgq-Ex)
Metode <- c("Trapezoidal","Simpson","Four-Point Gauss Quadrature")
Iterasi <- c(23,34,6)
Ekpektasi <- c(Et,Es,Efpgq)
Error <- c(errt,errs,errfpgq)
Perbandingan.metode <- data.frame("Metode"=Metode, "Iterasi"=Iterasi, "E(X)"=Ekpektasi, "Error"=Error)
Perbandingan.metode
## Metode Iterasi E.X. Error
## 1 Trapezoidal 23 0.7101278 9.947273e-05
## 2 Simpson 34 0.7103096 8.232727e-05
## 3 Four-Point Gauss Quadrature 6 0.7101422 8.507273e-05
Berdasarkan ketiga metode di atas, nilai E(X) yang paling mendekati nilai exact nya adalah metode Simpson.
Dengan nilai Toleransi = 0.00001 n = 4 nilai exact = 0.99966
f <- function(x) {1/2*exp(-1/2*x)}
nilai.exact <- integrate(f,lower=0,upper=Inf)
nilai.exact
## 1 with absolute error < 3.4e-05
Mendefinisikan fungsi
f <- function(x) {
2*exp(-2*x)
}
Menghitung cdf
exact_value=0.99966
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
res_trap <- trapezoid(f,0,4,n = n)
err <- abs(res_trap-exact_value)
cat("n=",n,", result=",res_trap,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}
## n=4, result=1.312595, error=0.3129348
## n=5, result=1.204348, error=0.2046884
## n=6, result=1.143553, error=0.1438927
## n=7, result=1.106174, error=0.1065143
## n=8, result=1.081614, error=0.08195374
## n=9, result=1.064635, error=0.06497528
## n=10, result=1.05242, error=0.05275981
## n=11, result=1.043343, error=0.04368329
## n=12, result=1.036418, error=0.03675776
## n=13, result=1.031015, error=0.0313548
## n=14, result=1.026719, error=0.0270594
## n=15, result=1.023249, error=0.02358871
## n=16, result=1.020405, error=0.02074462
## n=17, result=1.018045, error=0.01838505
## n=18, result=1.016066, error=0.016406
## n=19, result=1.01439, error=0.0147299
## n=20, result=1.012958, error=0.01329799
## n=21, result=1.011725, error=0.01206507
## n=22, result=1.010656, error=0.01099592
## n=23, result=1.009723, error=0.01006281
## n=24, result=1.008904, error=0.009243595
## n=25, result=1.00818, error=0.008520485
## n=26, result=1.007539, error=0.00787902
## n=27, result=1.006967, error=0.007307362
## n=28, result=1.006456, error=0.006795742
## n=29, result=1.005996, error=0.006336041
## n=30, result=1.005581, error=0.005921466
## n=31, result=1.005206, error=0.005546302
## n=32, result=1.004866, error=0.005205708
## n=33, result=1.004556, error=0.004895565
## n=34, result=1.004272, error=0.00461235
## n=35, result=1.004013, error=0.004353033
## n=36, result=1.003775, error=0.004115001
## n=37, result=1.003556, error=0.003895987
## n=38, result=1.003354, error=0.003694018
## n=39, result=1.003167, error=0.00350737
## n=40, result=1.002995, error=0.003334533
## n=41, result=1.002834, error=0.003174177
## n=42, result=1.002685, error=0.003025129
## n=43, result=1.002546, error=0.00288635
## n=44, result=1.002417, error=0.002756918
## n=45, result=1.002296, error=0.002636013
## n=46, result=1.002183, error=0.002522902
## n=47, result=1.002077, error=0.002416928
## n=48, result=1.001978, error=0.002317505
## n=49, result=1.001884, error=0.002224103
## n=50, result=1.001796, error=0.002136246
## n=51, result=1.001714, error=0.002053503
## n=52, result=1.001635, error=0.001975485
## n=53, result=1.001562, error=0.001901839
## n=54, result=1.001492, error=0.001832245
## n=55, result=1.001426, error=0.00176641
## n=56, result=1.001364, error=0.001704069
## n=57, result=1.001305, error=0.001644979
## n=58, result=1.001249, error=0.001588917
## n=59, result=1.001196, error=0.001535681
## n=60, result=1.001145, error=0.001485083
## n=61, result=1.001097, error=0.001436952
## n=62, result=1.001051, error=0.001391131
## n=63, result=1.001007, error=0.001347473
## n=64, result=1.000966, error=0.001305845
## n=65, result=1.000926, error=0.001266123
## n=66, result=1.000888, error=0.001228192
## n=67, result=1.000852, error=0.001191946
## n=68, result=1.000817, error=0.001157287
## n=69, result=1.000784, error=0.001124124
## n=70, result=1.000752, error=0.001092371
## n=71, result=1.000722, error=0.00106195
## n=72, result=1.000693, error=0.001032787
## n=73, result=1.000665, error=0.001004815
## n=74, result=1.000638, error=0.000977968
## n=75, result=1.000612, error=0.0009521878
## n=76, result=1.000587, error=0.0009274182
## n=77, result=1.000564, error=0.0009036072
## n=78, result=1.000541, error=0.000880706
## n=79, result=1.000519, error=0.0008586686
## n=80, result=1.000497, error=0.0008374523
## n=81, result=1.000477, error=0.0008170168
## n=82, result=1.000457, error=0.0007973242
## n=83, result=1.000438, error=0.0007783389
## n=84, result=1.00042, error=0.0007600275
## n=85, result=1.000402, error=0.0007423584
## n=86, result=1.000385, error=0.000725302
## n=87, result=1.000369, error=0.0007088303
## n=88, result=1.000353, error=0.0006929168
## n=89, result=1.000338, error=0.0006775365
## n=90, result=1.000323, error=0.000662666
## n=91, result=1.000308, error=0.000648283
## n=92, result=1.000294, error=0.0006343663
## n=93, result=1.000281, error=0.0006208961
## n=94, result=1.000268, error=0.0006078534
## n=95, result=1.000255, error=0.0005952204
## n=96, result=1.000243, error=0.00058298
## n=97, result=1.000231, error=0.0005711162
## n=98, result=1.00022, error=0.0005596136
## n=99, result=1.000208, error=0.0005484578
## n=100, result=1.000198, error=0.0005376349
## n=101, result=1.000187, error=0.0005271319
## n=102, result=1.000177, error=0.0005169362
## n=103, result=1.000167, error=0.000507036
## n=104, result=1.000157, error=0.00049742
## n=105, result=1.000148, error=0.0004880774
## n=106, result=1.000139, error=0.0004789979
## n=107, result=1.00013, error=0.0004701717
## n=108, result=1.000122, error=0.0004615896
## n=109, result=1.000113, error=0.0004532425
## n=110, result=1.000105, error=0.000445122
## n=111, result=1.000097, error=0.00043722
## n=112, result=1.00009, error=0.0004295287
## n=113, result=1.000082, error=0.0004220406
## n=114, result=1.000075, error=0.0004147487
## n=115, result=1.000068, error=0.0004076462
## n=116, result=1.000061, error=0.0004007266
## n=117, result=1.000054, error=0.0003939836
## n=118, result=1.000047, error=0.0003874112
## n=119, result=1.000041, error=0.0003810039
## n=120, result=1.000035, error=0.0003747561
## n=121, result=1.000029, error=0.0003686625
## n=122, result=1.000023, error=0.0003627181
## n=123, result=1.000017, error=0.0003569181
## n=124, result=1.000011, error=0.0003512579
## n=125, result=1.000006, error=0.0003457329
## n=126, result=1, error=0.000340339
## n=127, result=0.9999951, error=0.0003350719
## n=128, result=0.9999899, error=0.0003299278
## n=129, result=0.9999849, error=0.0003249029
## n=130, result=0.99998, error=0.0003199935
## n=131, result=0.9999752, error=0.000315196
## n=132, result=0.9999705, error=0.0003105072
## n=133, result=0.9999659, error=0.0003059237
## n=134, result=0.9999614, error=0.0003014424
## n=135, result=0.9999571, error=0.0002970604
## n=136, result=0.9999528, error=0.0002927747
## n=137, result=0.9999486, error=0.0002885824
## n=138, result=0.9999445, error=0.000284481
## n=139, result=0.9999405, error=0.0002804677
## n=140, result=0.9999365, error=0.0002765401
## n=141, result=0.9999327, error=0.0002726958
## n=142, result=0.9999289, error=0.0002689324
## n=143, result=0.9999252, error=0.0002652477
## n=144, result=0.9999216, error=0.0002616395
## n=145, result=0.9999181, error=0.0002581057
## n=146, result=0.9999146, error=0.0002546442
## n=147, result=0.9999113, error=0.0002512531
## n=148, result=0.9999079, error=0.0002479306
## n=149, result=0.9999047, error=0.0002446747
## n=150, result=0.9999015, error=0.0002414837
## n=151, result=0.9998984, error=0.0002383558
## n=152, result=0.9998953, error=0.0002352895
## n=153, result=0.9998923, error=0.0002322832
## n=154, result=0.9998893, error=0.0002293352
## n=155, result=0.9998864, error=0.000226444
## n=156, result=0.9998836, error=0.0002236083
## n=157, result=0.9998808, error=0.0002208266
## n=158, result=0.9998781, error=0.0002180976
## n=159, result=0.9998754, error=0.0002154198
## n=160, result=0.9998728, error=0.0002127921
## n=161, result=0.9998702, error=0.0002102133
## n=162, result=0.9998677, error=0.000207682
## n=163, result=0.9998652, error=0.0002051972
## n=164, result=0.9998628, error=0.0002027577
## n=165, result=0.9998604, error=0.0002003624
## n=166, result=0.999858, error=0.0001980102
## n=167, result=0.9998557, error=0.0001957002
## n=168, result=0.9998534, error=0.0001934313
## n=169, result=0.9998512, error=0.0001912026
## n=170, result=0.999849, error=0.0001890131
## n=171, result=0.9998469, error=0.0001868618
## n=172, result=0.9998447, error=0.000184748
## n=173, result=0.9998427, error=0.0001826708
## n=174, result=0.9998406, error=0.0001806292
## n=175, result=0.9998386, error=0.0001786225
## n=176, result=0.9998366, error=0.00017665
## n=177, result=0.9998347, error=0.0001747108
## n=178, result=0.9998328, error=0.0001728042
## n=179, result=0.9998309, error=0.0001709294
## n=180, result=0.9998291, error=0.0001690858
## n=181, result=0.9998273, error=0.0001672727
## n=182, result=0.9998255, error=0.0001654893
## n=183, result=0.9998237, error=0.0001637352
## n=184, result=0.999822, error=0.0001620095
## n=185, result=0.9998203, error=0.0001603117
## n=186, result=0.9998186, error=0.0001586413
## n=187, result=0.999817, error=0.0001569976
## n=188, result=0.9998154, error=0.00015538
## n=189, result=0.9998138, error=0.0001537881
## n=190, result=0.9998122, error=0.0001522212
## n=191, result=0.9998107, error=0.0001506789
## n=192, result=0.9998092, error=0.0001491606
## n=193, result=0.9998077, error=0.0001476658
## n=194, result=0.9998062, error=0.0001461941
## n=195, result=0.9998047, error=0.000144745
## n=196, result=0.9998033, error=0.000143318
## n=197, result=0.9998019, error=0.0001419127
## n=198, result=0.9998005, error=0.0001405286
## n=199, result=0.9997992, error=0.0001391653
## n=200, result=0.9997978, error=0.0001378224
## n=201, result=0.9997965, error=0.0001364995
## n=202, result=0.9997952, error=0.0001351962
## n=203, result=0.9997939, error=0.0001339122
## n=204, result=0.9997926, error=0.0001326469
## n=205, result=0.9997914, error=0.0001314002
## n=206, result=0.9997902, error=0.0001301715
## n=207, result=0.999789, error=0.0001289606
## n=208, result=0.9997878, error=0.0001277671
## n=209, result=0.9997866, error=0.0001265908
## n=210, result=0.9997854, error=0.0001254311
## n=211, result=0.9997843, error=0.000124288
## n=212, result=0.9997832, error=0.0001231609
## n=213, result=0.999782, error=0.0001220497
## n=214, result=0.999781, error=0.0001209541
## n=215, result=0.9997799, error=0.0001198737
## n=216, result=0.9997788, error=0.0001188083
## n=217, result=0.9997778, error=0.0001177575
## n=218, result=0.9997767, error=0.0001167212
## n=219, result=0.9997757, error=0.0001156991
## n=220, result=0.9997747, error=0.0001146908
## n=221, result=0.9997737, error=0.0001136962
## n=222, result=0.9997727, error=0.0001127151
## n=223, result=0.9997717, error=0.000111747
## n=224, result=0.9997708, error=0.000110792
## n=225, result=0.9997698, error=0.0001098496
## n=226, result=0.9997689, error=0.0001089197
## n=227, result=0.999768, error=0.0001080021
## n=228, result=0.9997671, error=0.0001070965
## n=229, result=0.9997662, error=0.0001062028
## n=230, result=0.9997653, error=0.0001053207
## n=231, result=0.9997644, error=0.00010445
## n=232, result=0.9997636, error=0.0001035906
## n=233, result=0.9997627, error=0.0001027422
## n=234, result=0.9997619, error=0.0001019046
## n=235, result=0.9997611, error=0.0001010777
## n=236, result=0.9997603, error=0.0001002613
## n=237, result=0.9997595, error=9.945526e-05
Pada metode Trapezoidal diperoleh nilai CDF sebesar 0.9997595 pada iterasi ke 237 dan nilai error sebesar = 9,45526-05
Fungsi metode Simpson
simpson_n <- function(ftn, a, b, n = 100) {
n <- max(c(2*(n %/% 2), 4))
h <- (b-a)/n
x.vec1 <- seq(a+h, b-h, by = 2*h)
x.vec2 <- seq(a+2*h, b-2*h, by = 2*h)
f.vec1 <- sapply(x.vec1, ftn)
f.vec2 <- sapply(x.vec2, ftn)
S <- h/3*(ftn(a) + ftn(b) + 4*sum(f.vec1) + 2*sum(f.vec2))
return(S)
}
Mendefinisikan fungsi
f <- function(x) {
2*exp(-2*x)
}
Menhitung nilai CDF
exact_value=0.99966
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
res_simp <- simpson_n(f,0,4,n = n)
err <- abs(res_simp-exact_value)
cat("n=",n,", result=",res_simp,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}
## n=4, result=1.058815, error=0.05915525
## n=5, result=1.058815, error=0.05915525
## n=6, result=1.014089, error=0.01442885
## n=7, result=1.014089, error=0.01442885
## n=8, result=1.00462, error=0.004960055
## n=9, result=1.00462, error=0.004960055
## n=10, result=1.001777, error=0.002116944
## n=11, result=1.001777, error=0.002116944
## n=12, result=1.000706, error=0.00104611
## n=13, result=1.000706, error=0.00104611
## n=14, result=1.000234, error=0.0005744298
## n=15, result=1.000234, error=0.0005744298
## n=16, result=1.000002, error=0.000341577
## n=17, result=1.000002, error=0.000341577
## n=18, result=0.9998762, error=0.0002162416
## n=19, result=0.9998762, error=0.0002162416
## n=20, result=0.999804, error=0.0001440486
## n=21, result=0.999804, error=0.0001440486
## n=22, result=0.9997601, error=0.0001001368
## n=23, result=0.9997601, error=0.0001001368
## n=24, result=0.9997322, error=7.2205e-05
Dengan metode Simpson diperoleh nilai CDF sebesar 0.9997322 pada iterasi ke 24 dan nilai error sebesar = 7.2205-05
exact_value=0.99966
tol <- 0.0001
err <- 1
n = 4
while(err>tol){
gL <- gaussLegendre(n = n,a = 0,4)
Ci <- gL$w # koefisien
xi <- gL$x # gauss point
res_gl <- sum(Ci * f(xi))
err <- abs(res_gl-exact_value)
cat("n=",n,", result=",res_gl,", error=",err,"\n",sep = "")
n=n+1
if(n==1000){
break
}
}
## n=4, result=0.9976267, error=0.002033306
## n=5, result=0.9995785, error=8.14847e-05
Pada Metode Four - Point Gauss Quadrature diperoleh nilai CDF sebesar 0.9995785 pada iterasi ke 5 dan nilai error sebesar = 8.14847e-05
Fungsi monte carlo
mc_integral <- function(ftn, a, b,m=1000){
#Membangkitkan x berdistribusi U(a,b)
x <- runif(m,a,b)
# Menghitung rata-rata dari output fungsi
Gx <- ftn(x)
Gx_m <- mean(Gx)
theta.hat <- (b-a)*Gx_m
return(theta.hat)
}
Mendefinisikan fungsi
f <- function(x) {
2*exp(-2*x)
}
Menghitung cdf
set.seed(100)
mc_integral(f, a=0, b=4, m=1000)
## [1] 0.9213784
Pada Metode Integral Monte Carlo diperoleh nilai CDF sebesar 0.9213784
cdft <- 0.9997595
cdfs <- 0.9997322
cdffpgq <- 0.9995785
cdfmc <- 0.9213784
nilai.exact <- 0.99966
errt <- abs(cdft-nilai.exact)
errs <- abs(cdfs-nilai.exact)
errfpgq <- abs(cdffpgq-nilai.exact)
errmc <- abs(cdfmc-nilai.exact)
Metode <- c("Trapezoidal","Simpson","Four-Point Gauss Quadrature","Integral Monte Carlo")
Iterasi <- c(237,24,5," ")
cdf <- c(cdft,cdfs,cdffpgq,cdfmc)
Error <- c(errt,errs,errfpgq,errmc)
Perbandingan.metode <- data.frame("Metode"=Metode, "Iterasi"=Iterasi, "CDF"=cdf, "Error"=Error)
Perbandingan.metode
## Metode Iterasi CDF Error
## 1 Trapezoidal 237 0.9997595 0.0000995
## 2 Simpson 24 0.9997322 0.0000722
## 3 Four-Point Gauss Quadrature 5 0.9995785 0.0000815
## 4 Integral Monte Carlo 0.9213784 0.0782816
Berdasarkan perbandingan keempat metode di atas, dapat dilihat bahwa nilai CDF dari distribusi exp(2) yang paling mendekati nilai exact nya atau error terkecil yaitu dengan metode Simpson yaitu 0.9997322 pada iterasi ke 24