library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.1.3
library(ca)
## Warning: package 'ca' was built under R version 3.1.3
#create data
lok=sample(c("Cileunyi","UB","Antapani","Dago"),40,replace=TRUE)
jenis=sample(c("Toko","Rumah","Kantor","Ruko"),40,replace=TRUE)
sebab=sample(c("Elektrik","Gas","Kompor","Bom"),40,replace=TRUE)
custid=sample(1:100,40,replace=FALSE)
freq=sample(1:200,40,replace=TRUE)
data1=as.data.frame(cbind(lok,jenis,sebab))
#########caOK##################################
mca41 = mjca(data1,lambda = "indicator", nd = 5)
cats1 = apply(data1, 2, function(x) nlevels(as.factor(x)))
cats1
## lok jenis sebab
## 4 4 4
mca4_vars_df1 = data.frame(mca41$colcoord, Variable = rep(names(cats1),
cats1))
mca41$levelnames <- gsub("lok","",mca41$levelnames)
mca41$levelnames <- gsub("jenis","",mca41$levelnames)
mca41$levelnames <- gsub("sebab","",mca41$levelnames)
rownames(mca4_vars_df1) = mca41$levelnames
# plot of variable categories
ggplot(data = mca4_vars_df1, aes(x = X1, y = X2, label = rownames(mca4_vars_df1))) +
geom_hline(yintercept = 0, colour = "gray70") + geom_vline(xintercept = 0,
colour = "gray70") + geom_text(aes(colour = Variable)) + ggtitle("MCA")+labs(colour="Response")+theme_bw()

###############################################
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 3.1.3
kec=LETTERS[seq( from = 1, to = 26 )]
#create data
x1=sample(1:5,26,replace=TRUE)
x2=sample(1:4,26,replace=TRUE)
x3=sample(1:3,26,replace=TRUE)
data1=as.data.frame(cbind(x1,x2,x3))
data1$x1=as.numeric(data1$x1)
data1$x2=as.numeric(data1$x2)
data1$x3=as.numeric(data1$x3)
rownames(data1)=kec
res.pca <- PCA(data1)


res.hcpc <- HCPC(res.pca, nb.clust=0, conso=0, min=3, max=10)

res.hcpc
## **Results for the Hierarchical Clustering on Principal Components**
## name
## 1 "$data.clust"
## 2 "$desc.var"
## 3 "$desc.var$quanti.var"
## 4 "$desc.var$quanti"
## 5 "$desc.axes"
## 6 "$desc.axes$quanti.var"
## 7 "$desc.axes$quanti"
## 8 "$desc.ind"
## 9 "$desc.ind$para"
## 10 "$desc.ind$dist"
## 11 "$call"
## 12 "$call$t"
## description
## 1 "dataset with the cluster of the individuals"
## 2 "description of the clusters by the variables"
## 3 "description of the cluster var. by the continuous var."
## 4 "description of the clusters by the continuous var."
## 5 "description of the clusters by the dimensions"
## 6 "description of the cluster var. by the axes"
## 7 "description of the clusters by the axes"
## 8 "description of the clusters by the individuals"
## 9 "parangons of each clusters"
## 10 "specific individuals"
## 11 "summary statistics"
## 12 "description of the tree"
Motion=gvisMotionChart(Fruits,
idvar="Fruit",
timevar="Year")
print(Motion,'chart')
#plot(Motion)
#options(op)
#print(sc, 'chart') ## same as cat(sc$html$chart)