x1 <- c("Dec", "Apr", "Jan", "Mar")
x2 <- c("Dec", "Apr", "Jam", "Mar")
sort(x1)
## [1] "Apr" "Dec" "Jan" "Mar"
# Sorting levels
month_levels <- c(
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)
y1 <- factor(x1, levels = month_levels)
Unordered factor levels
# Transform data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_relig
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
Ordered factor levels
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
Moving a single level to the front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relevel("Don't know"))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode
gss_cat %>%
# Rename levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # ℹ 3,119 more rows
# Collapse multiple levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black", "Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # ℹ 5,078 more rows
# Lump small levels into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From strings
"2023-11-07" %>% ymd()
## [1] "2023-11-07"
# From numbers
20231107 %>% ymd()
## [1] "2023-11-07"
"2023-11-07 9-12-46" %>% ymd_hms()
## [1] "2023-11-07 09:12:46 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month,
day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # ℹ 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2023-11-07 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2023-11-07"
date_time <- ymd_hms("2023-11-7 9-55-30")
date_time
## [1] "2023-11-07 09:55:30 UTC"
year(date_time)
## [1] 2023
month(date_time, label = TRUE, abbr = FALSE)
## [1] November
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 311
mday(date_time)
## [1] 7
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Tuesday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt
## # A tibble: 328,063 × 9
## origin dest dep_delay arr_delay dep_time sched_dep_time
## <chr> <chr> <dbl> <dbl> <dttm> <dttm>
## 1 EWR IAH 2 11 2013-01-01 05:17:00 2013-01-01 05:15:00
## 2 LGA IAH 4 20 2013-01-01 05:33:00 2013-01-01 05:29:00
## 3 JFK MIA 2 33 2013-01-01 05:42:00 2013-01-01 05:40:00
## 4 JFK BQN -1 -18 2013-01-01 05:44:00 2013-01-01 05:45:00
## 5 LGA ATL -6 -25 2013-01-01 05:54:00 2013-01-01 06:00:00
## 6 EWR ORD -4 12 2013-01-01 05:54:00 2013-01-01 05:58:00
## 7 EWR FLL -5 19 2013-01-01 05:55:00 2013-01-01 06:00:00
## 8 LGA IAD -3 -14 2013-01-01 05:57:00 2013-01-01 06:00:00
## 9 JFK MCO -3 -8 2013-01-01 05:57:00 2013-01-01 06:00:00
## 10 LGA ORD -2 8 2013-01-01 05:58:00 2013-01-01 06:00:00
## # ℹ 328,053 more rows
## # ℹ 3 more variables: arr_time <dttm>, sched_arr_time <dttm>, air_time <dbl>
# Flights minutes
flights_dt %>%
mutate(minute = minute(dep_time)) %>%
group_by(minute) %>%
summarise(
avg_delay = mean(arr_delay, na.rm = TRUE),
n = n()) %>%
ggplot(aes(minute, avg_delay)) +
geom_line()
# Flights days
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# Floor date for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "day")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-10-31 16:51:00 2013-10-31 00:00:00
## 2 2013-10-26 16:03:00 2013-10-26 00:00:00
## 3 2013-02-28 18:21:00 2013-02-28 00:00:00
## 4 2013-06-03 09:21:00 2013-06-03 00:00:00
## 5 2013-07-17 17:24:00 2013-07-17 00:00:00
## 6 2013-03-27 15:44:00 2013-03-27 00:00:00
## 7 2013-07-06 19:41:00 2013-07-06 00:00:00
## 8 2013-11-24 06:52:00 2013-11-24 00:00:00
## 9 2013-08-03 11:26:00 2013-08-03 00:00:00
## 10 2013-02-01 08:43:00 2013-02-01 00:00:00
# ceiling_date for rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "day")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-03-09 17:21:00 2013-03-10 00:00:00
## 2 2013-08-27 20:54:00 2013-08-28 00:00:00
## 3 2013-02-22 08:52:00 2013-02-23 00:00:00
## 4 2013-01-02 08:11:00 2013-01-03 00:00:00
## 5 2013-09-24 14:53:00 2013-09-25 00:00:00
## 6 2013-04-09 20:47:00 2013-04-10 00:00:00
## 7 2013-03-29 06:29:00 2013-03-30 00:00:00
## 8 2013-02-23 17:53:00 2013-02-24 00:00:00
## 9 2013-01-06 15:26:00 2013-01-07 00:00:00
## 10 2013-01-19 13:29:00 2013-01-20 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-09-18 13:41:00 2013-01-01 13:41:00
## 2 2013-12-18 08:26:00 2013-01-01 08:26:00
## 3 2013-09-15 07:34:00 2013-01-01 07:34:00
## 4 2013-05-29 15:20:00 2013-01-01 15:20:00
## 5 2013-05-20 12:17:00 2013-01-01 12:17:00
## 6 2013-02-07 10:25:00 2013-01-01 10:25:00
## 7 2013-08-31 09:01:00 2013-01-01 09:01:00
## 8 2013-12-11 17:28:00 2013-01-01 17:28:00
## 9 2013-01-08 15:02:00 2013-01-01 15:02:00
## 10 2013-05-01 08:04:00 2013-01-01 08:04:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
ggplot(aes(dep_hour)) +
geom_freqpoly(binwidth = 300)