Datos censales INE
Descripción del procedimiento para la gestión de las tablas xlsx
provenientes del INE con los datos sobre la cantidad de personas por
edades simples, sexo y departamento para los años censales 2002, 2012 y
2022.
Librerias de R
necesarias
library("readxl")
library("ggplot2")
library("dplyr")
library("tidyverse")
Encabezados para el
año 2002
Leer los
encabezados de los datos censales para el año 2002
# Crear una lista para almacenar los datos
data_list <- list()
# ENCABEZADOS
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2002", range = "A3:T3", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = "year", data)
data <- cbind(sexo = "sexo", data)
data_list[[1]] <- data
Datos censales para
hombres en 2002
Leer los datos
censales para hombres en el año 2002
# 2002
# Hombres
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2002", range = "A123:T239", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = 2002, data)
data$year<-2002
data <- cbind(sexo = "sexo", data)
data$sexo="Hombres"
data_list[[2]] <- data
Datos censales para
mujeres en 2002
Leer los datos
censales para mujeres en el año 2002
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2002", range = "A241:T357", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = 2002, data)
data$year<-2002
data <- cbind(sexo = "sexo", data)
data$sexo="Mujeres"
data_list[[3]] <- data
Datos censales para
hombres en 2012
Leer los datos
censales para hombres en el año 2012
# 2012
# Hombres
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2012", range = "A126:T245", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = 2012, data)
data$year<-2012
data <- cbind(sexo = "sexo", data)
data$sexo="Hombres"
data_list[[4]] <- data
Datos censales para
mujeres en 2012
Leer los datos
censales para mujeres en el año 2012
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2012", range = "A247:T366", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = 2012, data)
data$year<-2012
data <- cbind(sexo = "sexo", data)
data$sexo="Mujeres"
data_list[[5]] <- data
Datos censales para
hombres en 2022
Leer los datos
censales para hombres en el año 2022
# 2022
# Hombres
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2022", range = "A127:T247", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = 2022, data)
data$year<-2022
data <- cbind(sexo = "sexo", data)
data$sexo="Hombres"
data_list[[6]] <- data
Datos censales para
mujeres en 2022
Leer los datos
censales para mujeres en el año 2022
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2022", range = "A249:T369", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = 2022, data)
data$year<-2022
data <- cbind(sexo = "sexo", data)
data$sexo="Mujeres"
data_list[[7]] <- data
Datos censales para
“Sexo no reportado” en 2022
Leer los datos
censales para “Sexo no reportado” en el año 2022
# Sexo no reportado
data <- readxl::read_excel("D:/OneDrive/INE_Py/01.02.03 Poblacion por Departamento segun sexo y edades simples sin imputación. CNPV 2002-2012-2022_ORIGINAL.xlsx", sheet = "2022", range = "A371:T491", col_names = FALSE)
## New names:
## • `` -> `...1`
## • `` -> `...2`
## • `` -> `...3`
## • `` -> `...4`
## • `` -> `...5`
## • `` -> `...6`
## • `` -> `...7`
## • `` -> `...8`
## • `` -> `...9`
## • `` -> `...10`
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## • `` -> `...15`
## • `` -> `...16`
## • `` -> `...17`
## • `` -> `...18`
## • `` -> `...19`
## • `` -> `...20`
data <- cbind(year = 2022, data)
data$year<-2022
data <- cbind(sexo = "sexo", data)
data$sexo<-"NA"
data_list[[8]] <- data
Combinar todos los
datos en un único dataframe
# Combinar todos los datos en un único dataframe
combined_data <- do.call(rbind, data_list)
Crear un nuevo
archivo de texto con todos los datos
archivo_salida <- "D:/OneDrive/INE_Py/valores_completos.txt"
con <- file(archivo_salida, "w")
write.table(combined_data, con, sep = "\t", col.names = FALSE, row.names = FALSE)
close(con)
# Mensaje de confirmación
cat("Valores escritos en", archivo_salida, "\n")
## Valores escritos en D:/OneDrive/INE_Py/valores_completos.txt
Cargar las
bibliotecas necesarias
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library("tidyverse")
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ lubridate 1.9.2 ✔ tibble 3.2.1
## ✔ purrr 1.0.2 ✔ tidyr 1.3.0
## ✔ readr 2.1.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Leer el archivo de
datos
base <- read.delim("D:/OneDrive/INE_Py/valores_completos.txt", header=TRUE)
Renombrar las
columnas para mayor claridad
new_colnames <- c("sexo","year","edad","TOTAL","dpto0", "dpto1", "dpto2", "dpto3", "dpto4", "dpto5", "dpto6", "dpto7", "dpto8", "dpto9", "dpto10", "dpto11", "dpto12", "dpto13", "dpto14", "dpto15", "dpto16", "dpto17")
colnames(base) <- new_colnames
Eliminar la columna
“TOTAL”
base <- base %>%
select(-TOTAL)
names(base)
## [1] "sexo" "year" "edad" "dpto0" "dpto1" "dpto2" "dpto3" "dpto4"
## [9] "dpto5" "dpto6" "dpto7" "dpto8" "dpto9" "dpto10" "dpto11" "dpto12"
## [17] "dpto13" "dpto14" "dpto15" "dpto16" "dpto17"
Utilizar
pivot_longer para reorganizar las columnas
base_long <- base %>%
pivot_longer(
cols = starts_with("dpto"),
names_to = "departamento",
values_to = "valor"
)
# Visualizar la nueva estructura de la base
head(base_long)
Hombres |
2002 |
0 |
dpto0 |
4587 |
Hombres |
2002 |
0 |
dpto1 |
2250 |
Hombres |
2002 |
0 |
dpto2 |
3941 |
Hombres |
2002 |
0 |
dpto3 |
2457 |
Hombres |
2002 |
0 |
dpto4 |
1825 |
Hombres |
2002 |
0 |
dpto5 |
5256 |
Reemplazar los
códigos de departamento con nombres
# Reemplazar los valores en el campo "departamento"
base_long <- base_long %>%
mutate(departamento = recode(departamento,
"dpto0" = "ASUNCION",
"dpto1" = "CONCEPCION",
"dpto2" = "SAN.PEDRO",
"dpto3" = "CORDILLERA",
"dpto4" = "GUAIRA",
"dpto5" = "CAAGUAZU",
"dpto6" = "CAAZAPA",
"dpto7" = "ITAPUA",
"dpto8" = "MISIONES",
"dpto9" = "PARAGUARI",
"dpto10" = "ALTO.PARANA",
"dpto11" = "CENTRAL",
"dpto12" = "ÑEEMBUCU",
"dpto13" = "AMAMBAY",
"dpto14" = "CANINDEYU",
"dpto15" = "PRESIDENTE.HAYES",
"dpto16" = "BOQUERON",
"dpto17" = "ALTO.PARAGUAY"
))
# Visualizar la base de datos con los valores reemplazados
head(base_long)
Hombres |
2002 |
0 |
ASUNCION |
4587 |
Hombres |
2002 |
0 |
CONCEPCION |
2250 |
Hombres |
2002 |
0 |
SAN.PEDRO |
3941 |
Hombres |
2002 |
0 |
CORDILLERA |
2457 |
Hombres |
2002 |
0 |
GUAIRA |
1825 |
Hombres |
2002 |
0 |
CAAGUAZU |
5256 |
Leer la base de
datos y crear un nuevo campo “quinquenio” basado en la edad
base_long <- base_long %>%
mutate(departamento = case_when(
departamento == "ASUNCION" ~ "(00)Asunción",
departamento == "CONCEPCION" ~ "(01)Concepción",
departamento == "SAN.PEDRO" ~ "(02)San Pedro",
departamento == "CORDILLERA" ~ "(03)Cordillera",
departamento == "GUAIRA" ~ "(04)Guairá",
departamento == "CAAGUAZU" ~ "(05)Caaguazú",
departamento == "CAAZAPA" ~ "(06)Caazapá",
departamento == "ITAPUA" ~ "(07)Itapúa",
departamento == "MISIONES" ~ "(08)Misiones",
departamento == "PARAGUARI" ~ "(09)Paraguarí",
departamento == "ALTO.PARANA" ~ "(10)Alto Paraná",
departamento == "CENTRAL" ~ "(11)Central",
departamento == "ÑEEMBUCU" ~ "(12)Ñeembucú",
departamento == "AMAMBAY" ~ "(13)Amambay",
departamento == "CANINDEYU" ~ "(14)Canindeyú",
departamento == "PRESIDENTE.HAYES" ~ "(15)Presidente Hayes",
departamento == "BOQUERON" ~ "(16)Boquerón",
departamento == "ALTO.PARAGUAY" ~ "(17)Alto Paraguay",
TRUE ~ departamento # Mantener cualquier otro valor sin cambios
))
Crear la gráfica de
pirámide poblacional
# Leer la base de datos
# Crear la gráfica de pirámide poblacional con base_long
p <- ggplot(base_long, aes(x = edad, y = valor, fill = sexo)) +
geom_bar(stat = "identity", position = "dodge") +
facet_wrap(~year, scales = "free_x", ncol = 1) +
labs(title = "Pirámide Poblacional por Sexo y Año",
x = "Edad",
y = "Población Total",
fill = "Sexo") +
theme_minimal() +
theme(legend.position = "bottom")
# Mostrar la gráfica
print(p)

Definir los límites
de los quinquenios
# Definir los límites de los quinquenios
quinquenioscod <- c(0, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, Inf)
base_long$edad <- as.numeric(base_long$edad)
## Warning: NAs introducidos por coerción
summary(base_long$edad)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 29.00 59.00 58.88 88.00 120.00 126
Crear un nuevo campo
“nuevo_valor” basado en el sexo
# Crear el nuevo campo "nuevo_valor" basado en el sexo
base_long <- base_long %>%
mutate(nuevo_valor = ifelse(sexo == "Hombres", valor, -1 * valor))
Crear un nuevo campo
“quinquenio” basado en la edad
# Crear un nuevo campo "quinquenio" basado en la edad
base_long$codquinquenio<-floor(base_long$edad/5)
table(base_long$codquinquenio)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
## 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630
## 20 21 22 23 24
## 630 630 432 522 126
base_long$codquinquenio<-ifelse(base_long$codquinquenio>17,17,base_long$codquinquenio)
table(base_long$codquinquenio)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630 630
## 16 17
## 630 4230
base_long$quinquenio <- factor(base_long$codquinquenio, labels = c("Menor de 5 años", "5 a 9 años", "10 a 14 años", "15 a 19 años", "20 a 24 años", "25 a 29 años", "30 a 34 años", "35 a 39 años", "40 a 44 años", "45 a 49 años", "50 a 54 años", "55 a 59 años", "60 a 64 años", "65 a 69 años", "70 a 74 años", "75 a 79 años", "80 a 84 años", "85 años y más"))
table(base_long$quinquenio)
##
## Menor de 5 años 5 a 9 años 10 a 14 años 15 a 19 años 20 a 24 años
## 630 630 630 630 630
## 25 a 29 años 30 a 34 años 35 a 39 años 40 a 44 años 45 a 49 años
## 630 630 630 630 630
## 50 a 54 años 55 a 59 años 60 a 64 años 65 a 69 años 70 a 74 años
## 630 630 630 630 630
## 75 a 79 años 80 a 84 años 85 años y más
## 630 630 4230
base_long$tipo<-"Dato censal"
# Generar la variable de llave
base_long$llave <- paste(base_long$edad, base_long$year, base_long$departamento,base_long$sexo, sep = "-")
Exportar la base de
datos a un archivo Excel
library(writexl)
# Exportar la base de datos a un archivo Excel
write.csv2(base_long, "D:/OneDrive/INE_Py/base_long_datoscensales_INE.csv")
base<-read.csv2("D:/OneDrive/INE_Py/base_long_datoscensales_INE.csv")
names(base)
## [1] "X" "sexo" "year" "edad"
## [5] "departamento" "valor" "nuevo_valor" "codquinquenio"
## [9] "quinquenio" "tipo" "llave"
Resultados
# Cargar la librería ggplot2 si no está cargada
library(readr)
base<-read.csv2("D:/OneDrive/INE_Py/base_long_datoscensales_INE.csv")
table(base$sexo)
##
## Hombres Mujeres
## 6444 6444
library(ggplot2)
# Reordenar el factor "sexo" para que los hombres aparezcan primero
base$sexo <- factor(base$sexo,levels=c("Hombres","Mujeres"))
table(base$sexo)
##
## Hombres Mujeres
## 6444 6444
# Filtrar las filas con valores no NA
base <- base[!is.na(base$quinquenio), ]
# Crear la pirámide poblacional con barras de hombres al lado y barras reordenadas
p <- ggplot(base, aes(y = reorder(quinquenio, as.numeric(codquinquenio)), x = nuevo_valor, fill = sexo)) +
geom_bar(stat = "identity", position = position_dodge(width = 0)) +
labs(title = "Pirámide Poblacional por Sexo",
x = "Valor",
y = "Quinquenio") +
scale_fill_manual(values = c("Hombres" = "blue", "Mujeres" = "pink")) +
theme_minimal() +
theme(legend.title = element_blank())+
facet_wrap(~ year, scales = "free_x")
# Mostrar la pirámide poblacional
print(p)
## Warning: Removed 2160 rows containing missing values (`geom_bar()`).

# Crear la pirámide poblacional con barras de hombres al lado y barras reordenadas
p <- ggplot(base, aes(y = reorder(quinquenio, as.numeric(codquinquenio)), x = nuevo_valor, fill = sexo)) +
geom_bar(stat = "identity", position = position_dodge(width = 0)) +
labs(title = "Pirámide Poblacional por Sexo",
x = "Valor",
y = "Quinquenio") +
scale_fill_manual(values = c("Hombres" = "blue", "Mujeres" = "pink")) +
theme_minimal() +
theme(legend.title = element_blank())+
facet_grid(~ year)
# Mostrar la pirámide poblacional
print(p)
## Warning: Removed 2160 rows containing missing values (`geom_bar()`).

GESTION DE VALORES
PROYECTADOS 2000 AL 2025
Exportar la base de
datos a un archivo Excel Leer el archivo Excel
library(readxl)
library(dplyr)
dataproy <- readxl::read_excel("D:/OneDrive/INE_Py/06.a. Paraguay. Población total, estimada y proyectada, según departamento, sexo y edad, 2000-2025.xlsx", col_names = TRUE)
#View(dataproy)
# Renombrar las columnas
colnames(dataproy) <- c("edad", paste0("year_", 2000:2025))
# Verificar los nuevos nombres de las columnas
print(colnames(dataproy))
## [1] "edad" "year_2000" "year_2001" "year_2002" "year_2003" "year_2004"
## [7] "year_2005" "year_2006" "year_2007" "year_2008" "year_2009" "year_2010"
## [13] "year_2011" "year_2012" "year_2013" "year_2014" "year_2015" "year_2016"
## [19] "year_2017" "year_2018" "year_2019" "year_2020" "year_2021" "year_2022"
## [25] "year_2023" "year_2024" "year_2025"
Crear un vector con
los textos de interés
textos_de_interes <- c(
"Asunción",
"Dpto. Alto Paraná",
"Dpto. Amambay",
"Dpto. Caaguazú",
"Dpto. Caazapá",
"Dpto. Canindeyú",
"Dpto. Central",
"Dpto. Concepción",
"Dpto. Cordillera",
"Dpto. Guairá",
"Dpto. Itapúa",
"Dpto. Misiones",
"Dpto. Ñeembucú",
"Dpto. Presidente Hayes",
"Dpto. San Pedro",
"Dpto.Paraguarí",
"Sin departamento 1",
"Sin departamento 2"
)
# Crear la nueva variable
dataproy$nueva_variable <- ifelse(dataproy$edad %in% textos_de_interes, dataproy$edad, NA)
Rellenar los valores
NA con el texto anterior
for (i in 2:length(dataproy$nueva_variable)) {
if (is.na(dataproy$nueva_variable[i])) {
dataproy$nueva_variable[i] <- dataproy$nueva_variable[i - 1]
}
}
Crear la nueva
variable basada en la palabra “Hombres” y “Mujeres”
dataproy$genero_variable <- ifelse(grepl("Hombres", dataproy$edad, fixed = TRUE), "Hombres",
ifelse(grepl("Mujeres", dataproy$edad, fixed = TRUE), "Mujeres",
ifelse(grepl("Total", dataproy$edad, fixed = TRUE), "Total",NA)))
Rellenar los valores
NA con el texto anterior
for (i in 2:length(dataproy$genero_variable)) {
if (is.na(dataproy$genero_variable[i])) {
dataproy$genero_variable[i] <- dataproy$genero_variable[i - 1]
}
}
Eliminar las filas
donde la variable “edad” es igual a “Hombres”, “Mujeres” o “Total”
dataproy <- dataproy[!(dataproy$edad %in% c("Hombres", "Mujeres", "Total")), ]
# Eliminar las filas donde la variable "año2000" es NA
dataproy <- dataproy[!is.na(dataproy$year_2000), ]
Renombrar las
variables
dataproy <- dataproy %>%
rename(departamento = nueva_variable, sexo = genero_variable)
textos_de_interes <- c(
"Asunción",
"Dpto. Concepción",
"Dpto. San Pedro",
"Dpto. Cordillera",
"Dpto. Guairá",
"Dpto. Caaguazú",
"Dpto. Caazapá",
"Dpto. Itapúa",
"Dpto. Misiones",
"Dpto.Paraguarí",
"Dpto. Alto Paraná",
"Dpto. Central",
"Dpto. Ñeembucú",
"Dpto. Amambay",
"Dpto. Canindeyú",
"Dpto. Presidente Hayes",
"Sin departamento 1",
"Sin departamento 2"
)
# Crear un vector con las palabras de reemplazo
palabras_de_reemplazo <- c("(00)Asunción", "(01)Concepción", "(02)San Pedro", "(03)Cordillera", "(04)Guairá",
"(05)Caaguazú", "(06)Caazapá", "(07)Itapúa", "(08)Misiones", "(09)Paraguarí",
"(10)Alto Paraná", "(11)Central", "(12)Ñeembucú", "(13)Amambay", "(14)Canindeyú",
"(15)Presidente Hayes", "(16)Boquerón", "(17)Alto Paraguay")
# Reemplazar las palabras en la variable "departamento"
dataproy$departamento <- ifelse(dataproy$departamento %in% textos_de_interes, palabras_de_reemplazo[match(dataproy$departamento, textos_de_interes)], dataproy$departamento)
tabla <- table(dataproy$departamento)
tabla
##
## (00)Asunción (01)Concepción (02)San Pedro
## 162 162 162
## (03)Cordillera (04)Guairá (05)Caaguazú
## 162 163 162
## (06)Caazapá (07)Itapúa (08)Misiones
## 162 162 162
## (09)Paraguarí (10)Alto Paraná (11)Central
## 162 162 162
## (12)Ñeembucú (13)Amambay (14)Canindeyú
## 162 162 162
## (15)Presidente Hayes (16)Boquerón (17)Alto Paraguay
## 162 163 163
Eliminar las filas
donde la variable “año2000” es NA
dataproy <- dataproy[!is.na(dataproy$year_2000), ]
# Convertir las columnas a tipo número entero
dataproy <- dataproy %>%
mutate(across(starts_with("year_"), as.numeric))
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `across(starts_with("year_"), as.numeric)`.
## Caused by warning:
## ! NAs introducidos por coerción
# Utilizar pivot_longer para reorganizar las columnas
dataproylong <- dataproy %>%
pivot_longer(
cols = starts_with("year_"),
names_to = "year",
values_to = "valor"
)
# Visualizar la nueva estructura de la base
head(base_long)
Hombres |
2002 |
0 |
(00)Asunción |
4587 |
4587 |
0 |
Menor de 5 años |
Dato censal |
0-2002-(00)Asunción-Hombres |
Hombres |
2002 |
0 |
(01)Concepción |
2250 |
2250 |
0 |
Menor de 5 años |
Dato censal |
0-2002-(01)Concepción-Hombres |
Hombres |
2002 |
0 |
(02)San Pedro |
3941 |
3941 |
0 |
Menor de 5 años |
Dato censal |
0-2002-(02)San Pedro-Hombres |
Hombres |
2002 |
0 |
(03)Cordillera |
2457 |
2457 |
0 |
Menor de 5 años |
Dato censal |
0-2002-(03)Cordillera-Hombres |
Hombres |
2002 |
0 |
(04)Guairá |
1825 |
1825 |
0 |
Menor de 5 años |
Dato censal |
0-2002-(04)Guairá-Hombres |
Hombres |
2002 |
0 |
(05)Caaguazú |
5256 |
5256 |
0 |
Menor de 5 años |
Dato censal |
0-2002-(05)Caaguazú-Hombres |
Eliminar filas donde
la columna “sexo” es igual a “Total”
dataproy <- dataproy %>%
filter(sexo != "Total")
Reemplazar “year_”
por nada en la columna “edad”
dataproylong$year <- str_replace_all(dataproylong$year, "year_", "")
Reemplazar “80 y
más” por “80” en la columna “edad”
dataproylong$edad <- gsub("80 y más", "80", dataproylong$edad)
# Eliminar "Dpto." de los nombres de las variables
dataproy$departamento <- gsub("Dpto. ", "", dataproy$departamento)
Convertir la columna
“edad” a tipo numérico
dataproylong$edad <- as.numeric(dataproylong$edad)
## Warning: NAs introducidos por coerción
str(dataproylong)
## tibble [75,894 × 5] (S3: tbl_df/tbl/data.frame)
## $ edad : num [1:75894] 0 0 0 0 0 0 0 0 0 0 ...
## $ departamento: chr [1:75894] "(00)Asunción" "(00)Asunción" "(00)Asunción" "(00)Asunción" ...
## $ sexo : chr [1:75894] "Hombres" "Hombres" "Hombres" "Hombres" ...
## $ year : chr [1:75894] "2000" "2001" "2002" "2003" ...
## $ valor : num [1:75894] 5205 5331 5315 5305 5282 ...
tabla=xtabs(valor~edad+year ,dataproylong)
tabla
## year
## edad 2000 2001 2002 2003 2004 2005
## 0 137773.498 137760.264 137702.510 137760.892 138009.524 138199.298
## 1 137582.201 136863.716 136877.773 136848.745 136934.521 137208.863
## 2 137209.095 137256.054 136549.885 136573.298 136554.070 136649.136
## 3 136701.493 137002.104 137055.354 136356.635 136385.883 136372.631
## 4 136106.712 136545.018 136849.962 136907.806 136214.497 136248.049
## 5 135476.477 136063.743 136501.548 136806.393 136864.616 136172.539
## 6 134858.104 135505.171 136088.374 136522.834 136825.012 136881.343
## 7 134285.672 134897.921 135540.583 136120.031 136551.413 136851.195
## 8 133771.203 134332.622 134940.294 135578.966 136155.046 136583.749
## 9 133260.543 133822.525 134379.274 134982.855 135617.998 136191.188
## 10 132628.949 133283.344 133839.273 134390.704 134989.709 135621.006
## 11 131689.918 132620.934 133267.896 133817.310 134363.188 134957.508
## 12 130230.473 131678.764 132602.230 133242.692 133786.628 134327.925
## 13 128112.638 130217.757 131658.171 132574.997 133209.975 133749.383
## 14 125419.022 128085.191 130182.096 131615.750 132527.217 133157.949
## 15 122628.027 124929.712 127589.201 129681.403 131112.223 132022.618
## 16 119641.872 121672.749 123970.122 126626.804 128718.355 130150.947
## 17 115886.960 118662.933 120689.878 122984.868 125640.224 127732.940
## 18 111210.584 114885.520 117656.357 119681.342 121975.491 124631.230
## 19 105931.557 110191.084 113858.967 116626.496 118651.100 120946.170
## 20 100308.723 104840.449 109095.181 112761.569 115531.034 117560.734
## 21 94979.972 99152.804 103682.501 107937.855 111607.800 114384.453
## 22 90505.670 93823.806 97994.937 102524.118 106781.275 110456.167
## 23 87272.076 89352.023 92670.166 96841.193 101371.090 105631.450
## 24 84995.559 86121.484 88204.357 91524.146 95696.358 100228.416
## 25 83006.603 84210.883 85334.635 87414.473 90729.725 94897.050
## 26 80934.662 82587.847 83782.243 84897.744 86968.473 90273.096
## 27 79007.849 80521.248 82163.220 83349.071 84457.727 86520.640
## 28 77143.318 78599.752 80102.118 81734.240 82912.943 84015.963
## 29 75337.568 76740.238 78185.594 79678.273 81301.972 82474.737
## 30 73705.435 75037.276 76428.483 77863.641 79347.503 80963.374
## 31 72197.222 73506.389 74826.454 76206.974 77632.738 79108.292
## 32 70617.001 71999.910 73297.214 74606.619 75977.720 77395.149
## 33 68891.758 70420.507 71791.213 73077.773 74377.789 75740.535
## 34 67073.584 68695.330 70211.322 71570.947 72848.039 74139.733
## 35 65236.311 66878.288 68487.296 69992.084 71342.263 72611.297
## 36 63487.404 65041.124 66670.548 68268.335 69763.472 71105.597
## 37 61874.710 63289.113 64830.334 66448.252 68035.931 69522.444
## 38 60444.508 61671.894 63074.053 64603.817 66211.335 67789.919
## 39 59135.067 60235.592 61451.198 62842.158 64361.567 65959.687
## 40 57855.472 58932.367 60022.877 61229.043 62611.017 64122.000
## 41 56504.284 57657.910 58726.199 59808.856 61007.627 62382.367
## 42 55042.330 56297.651 57442.186 58502.566 59578.145 60770.178
## 43 53419.452 54826.353 56071.898 57208.020 58261.263 59330.430
## 44 51659.462 53194.258 54590.355 55826.772 56955.229 58001.996
## 45 49914.654 51421.250 52945.663 54332.911 55562.146 56684.698
## 46 48151.648 49663.039 51160.384 52676.188 54056.340 55279.992
## 47 46181.908 47890.456 49392.067 50880.444 52387.974 53761.334
## 48 43953.008 45912.254 47609.230 49101.314 50581.033 52080.527
## 49 41562.782 43676.728 45621.991 47307.554 48790.385 50261.657
## 50 39090.486 41285.015 43382.688 45313.785 46987.893 48461.419
## 51 36735.220 38812.666 40988.914 43070.016 44986.777 46649.265
## 52 34670.830 36454.016 38512.805 40670.591 42735.056 44637.390
## 53 33016.308 34384.816 36150.604 38190.534 40329.694 42377.310
## 54 31678.156 32722.534 34076.388 35824.641 37845.528 39965.746
## 55 30462.183 31371.255 32404.557 33744.899 35476.540 37479.023
## 56 29230.436 30141.072 31041.007 32064.393 33392.167 35107.816
## 57 28012.346 28898.113 29798.873 30689.652 31703.039 33017.969
## 58 26764.436 27668.949 28544.335 29435.158 30316.730 31319.967
## 59 25508.599 26410.805 27303.781 28168.696 29049.489 29921.735
## 60 24301.261 25145.799 26036.197 26918.110 27773.012 28644.136
## 61 23175.226 23929.276 24762.545 25641.479 26512.667 27357.813
## 62 22108.115 22793.100 23536.411 24358.059 25225.193 26085.268
## 63 21104.194 21715.460 22390.036 23122.277 23931.961 24786.856
## 64 20154.204 20700.414 21301.852 21965.703 22686.558 23483.832
## 65 19248.105 19735.496 20272.135 20863.192 21515.759 22224.563
## 66 18369.430 18814.229 19292.267 19818.832 20398.990 21039.649
## 67 17506.529 17923.691 18359.322 18827.803 19344.062 19912.985
## 68 16649.782 17049.340 17457.207 17883.473 18342.187 18847.832
## 69 15804.154 16181.950 16571.816 16970.191 17386.890 17835.553
## 70 14979.570 15320.801 15689.864 16070.996 16460.770 16868.657
## 71 14184.203 14481.536 14815.504 15176.646 15549.779 15931.569
## 72 13422.144 13677.401 13968.146 14294.446 14647.231 15011.876
## 73 12692.816 12906.846 13156.279 13440.053 13758.262 14102.198
## 74 11991.266 12169.307 12378.424 12621.671 12898.074 13207.718
## 75 11311.083 11459.733 11633.408 11836.964 12073.346 12341.635
## 76 10644.981 10772.386 10917.074 11085.786 11283.153 11511.985
## 77 9985.383 10100.762 10224.627 10365.086 10528.534 10719.359
## 78 9325.002 9437.602 9549.437 9669.500 9805.445 9963.300
## 79 8656.551 8776.371 8884.878 8992.910 9108.897 9240.015
## 80 52892.000 55285.718 57543.011 59670.395 61683.713 63604.768
## year
## edad 2006 2007 2008 2009 2010 2011
## 0 138480.525 138846.564 139138.663 139485.717 139869.190 140195.088
## 1 137424.192 137730.009 138119.864 138435.303 138803.368 139205.596
## 2 136932.233 137156.244 137470.520 137868.353 138191.299 138565.997
## 3 136473.400 136761.850 136991.246 137310.625 137713.074 138040.280
## 4 136239.174 136344.106 136636.520 136869.792 137192.692 137598.268
## 5 136206.925 136199.189 136305.487 136599.314 136834.486 137159.572
## 6 136188.518 136222.085 136214.227 136320.762 136615.788 136853.082
## 7 136905.887 136212.447 136245.554 136237.711 136345.293 136642.169
## 8 136881.532 136934.918 136241.260 136274.178 136267.273 136376.655
## 9 136617.695 136913.908 136966.520 136272.945 136306.692 136301.551
## 10 136191.166 136615.390 136910.257 136962.210 136269.936 136305.939
## 11 135585.049 136152.259 136574.688 136868.491 136921.545 136232.410
## 12 134918.580 135543.204 136108.611 136529.990 136824.852 136880.757
## 13 134287.098 134874.906 135497.741 136062.066 136484.488 136782.132
## 14 133694.124 134229.364 134815.738 135437.775 136003.372 136428.814
## 15 132653.806 133191.655 133729.939 134320.352 134955.726 135542.036
## 16 131065.303 131702.269 132247.660 132794.897 133410.824 134084.671
## 17 129169.220 130089.464 130734.340 131289.143 131862.376 132517.198
## 18 126726.915 128168.725 129096.958 129751.594 130332.843 130945.445
## 19 123604.001 125704.377 127153.730 128091.726 128773.100 129394.119
## 20 119862.057 122527.128 124637.614 126099.512 127066.825 127790.479
## 21 116424.442 118737.104 121414.737 123540.033 125033.219 126044.883
## 22 113241.417 115293.175 117618.977 120310.276 122465.664 124002.360
## 23 109312.662 112107.925 114173.216 116513.224 119233.401 121431.004
## 24 104493.375 108182.314 110989.318 113069.155 115438.534 118199.660
## 25 99425.197 103688.628 107379.392 110191.579 112288.949 114684.035
## 26 94429.580 98947.745 103203.771 106889.995 109705.873 111813.602
## 27 89816.175 93963.246 98473.136 102723.081 106410.887 109235.448
## 28 86072.504 89360.320 93499.656 98002.622 102252.662 105947.111
## 29 83573.489 85624.934 88906.637 93039.565 97541.816 101797.070
## 30 82130.859 83225.775 85272.620 88548.503 92678.516 97181.110
## 31 80716.973 81879.575 82970.871 85013.397 88285.211 92411.998
## 32 78863.678 80466.307 81625.028 82713.971 84754.868 88024.981
## 33 77150.915 78613.556 80211.154 81367.273 82456.546 84498.163
## 34 75495.413 76899.887 78357.660 79951.519 81107.745 82199.707
## 35 73896.229 75246.183 76646.018 78100.324 79692.828 80850.835
## 36 72368.060 73647.502 74993.052 76389.511 77842.306 79434.775
## 37 70857.662 72114.563 73389.645 74731.811 76126.761 77579.726
## 38 69268.944 70598.255 71850.726 73122.471 74463.135 75858.273
## 39 67530.296 69002.817 70327.345 71576.406 72846.712 74187.582
## 40 65712.566 67276.758 68744.276 70065.262 71312.698 72582.836
## 41 63886.567 65470.974 67030.037 68493.600 69812.473 71059.240
## 42 62138.399 63636.474 65215.400 66769.953 68230.740 69548.572
## 43 60516.460 61878.826 63371.448 64945.492 66496.697 67955.760
## 44 59065.498 60246.205 61603.397 63091.160 64661.472 66210.360
## 45 57726.749 58786.135 59962.990 61316.232 62800.772 64368.717
## 46 56398.251 57436.957 58493.616 59667.715 61018.512 62501.064
## 47 54979.846 56094.128 57130.013 58184.281 59356.537 60705.666
## 48 53447.468 54661.105 55771.898 56805.284 57858.099 59029.327
## 49 51753.418 53114.132 54323.328 55430.907 56462.733 57514.938
## 50 49924.281 51408.193 52762.833 53967.548 55072.503 56103.226
## 51 48113.477 49567.791 51043.953 52392.343 53593.055 54695.745
## 52 46288.357 47743.309 49189.372 50657.722 52000.514 53197.846
## 53 44265.167 45904.546 47350.490 48788.202 50249.310 51587.043
## 54 41996.336 43869.489 45497.402 46934.187 48364.092 49818.414
## 55 39580.900 41594.908 43454.009 45070.803 46499.347 47922.090
## 56 37092.364 39176.134 41173.946 43019.090 44625.313 46046.022
## 57 34717.195 36683.134 38748.253 40729.114 42560.035 44155.544
## 58 32621.778 34303.984 36250.744 38296.333 40259.830 42076.199
## 59 30914.677 32202.938 33867.636 35794.319 37819.841 39765.490
## 60 29507.425 30490.214 31764.998 33411.704 35318.021 37323.070
## 61 28219.528 29073.985 30046.777 31307.714 32936.180 34821.646
## 62 26920.358 27772.261 28617.643 29579.833 30826.556 32436.140
## 63 25635.451 26460.047 27301.842 28137.586 29088.976 30321.054
## 64 24326.071 25162.678 25976.448 26807.520 27633.482 28573.815
## 65 23008.768 23837.573 24661.598 25463.695 26283.626 27099.351
## 66 21735.789 22506.169 23320.922 24131.453 24921.407 25729.682
## 67 20541.388 21224.380 21980.536 22780.474 23577.176 24354.679
## 68 19405.205 20020.894 20690.374 21431.547 22216.296 22998.803
## 69 18330.298 18875.698 19478.333 20133.586 20859.417 21628.571
## 70 17307.969 17792.313 18326.286 18915.943 19557.362 20268.107
## 71 16331.224 16761.583 17236.008 17758.530 18335.540 18963.340
## 72 15385.231 15776.105 16197.127 16660.793 17171.484 17735.396
## 73 14457.899 14822.272 15203.991 15614.868 16067.434 16565.886
## 74 13542.350 13888.556 14243.578 14615.356 15015.782 15456.879
## 75 12641.992 12966.494 13302.514 13647.145 14008.457 14397.876
## 76 11771.501 12061.796 12375.476 12700.365 13034.139 13384.492
## 77 10940.309 11190.601 11470.459 11772.720 12086.294 12408.979
## 78 10147.280 10359.934 10600.664 10869.531 11160.215 11462.261
## 79 9391.998 9568.753 9772.810 10003.476 10261.232 10540.156
## 80 65459.937 67277.618 69087.431 70916.925 72792.375 74737.624
## year
## edad 2012 2013 2014 2015 2016 2017
## 0 140626.378 140875.808 141084.179 141359.163 141537.206 141756.583
## 1 139550.049 139999.365 140266.962 140493.533 140785.947 140981.579
## 2 138974.749 139325.684 139781.304 140055.249 140288.141 140586.688
## 3 138419.061 138831.833 139186.774 139646.261 139924.108 140160.918
## 4 137928.597 138310.399 138726.135 139084.025 139546.335 139827.081
## 5 137567.465 137900.435 138285.093 138703.961 139065.267 139531.217
## 6 137180.647 137591.562 137928.135 138316.979 138740.570 139107.197
## 7 136881.761 137212.172 137626.430 137967.004 138360.380 138789.055
## 8 136675.649 136917.987 137251.640 137669.724 138014.720 138413.065
## 9 136413.055 136714.675 136960.210 137297.638 137720.025 138069.928
## 10 136303.501 136418.357 136723.967 136974.251 137317.139 137745.662
## 11 136271.701 136273.354 136393.155 136704.465 136961.416 137311.776
## 12 136195.333 136238.800 136245.525 136371.178 136689.190 136953.712
## 13 136841.432 136160.587 136209.188 136221.870 136354.358 136679.956
## 14 136730.046 136793.891 136118.926 136173.812 136193.698 136334.157
## 15 135987.061 136309.174 136395.253 135744.197 135823.821 135869.466
## 16 134706.535 135188.844 135549.822 135676.478 135068.322 135191.478
## 17 133226.912 133886.309 134407.770 134809.540 134978.934 134415.435
## 18 131636.560 132384.112 133082.888 133645.414 134090.102 134303.896
## 19 130043.468 130772.831 131560.034 132300.058 132905.730 133394.947
## 20 128451.016 129141.384 129913.054 130743.907 131529.262 132181.705
## 21 126810.580 127514.755 128250.050 129067.842 129946.223 130780.439
## 22 125055.724 125865.065 126614.332 127395.989 128261.502 129188.776
## 23 123008.463 124105.029 124959.369 125755.067 126584.592 127499.103
## 24 120436.674 122056.327 123197.370 124097.966 124941.515 125820.105
## 25 117468.911 119732.311 121381.017 122553.360 123487.075 124365.212
## 26 114218.571 117014.213 119290.988 120955.625 122146.058 123099.755
## 27 111353.388 113769.613 116577.454 118868.876 120550.616 121760.487
## 28 108780.249 110909.759 113338.658 116159.996 118467.266 120167.476
## 29 105498.110 108341.227 110483.715 112926.571 115762.639 118087.156
## 30 101437.833 105143.119 107993.744 110146.507 112600.481 115448.528
## 31 96911.584 101167.394 104874.384 107729.805 109889.944 112352.182
## 32 92149.241 96647.138 100903.285 104613.202 107474.522 109643.240
## 33 87767.230 91890.242 96387.672 100645.365 104359.315 107227.745
## 34 84242.673 87511.939 91634.882 96133.016 100393.339 104112.518
## 35 81945.491 83990.328 87260.192 91383.382 95882.407 100145.616
## 36 80594.651 81692.462 83739.542 87010.242 91133.795 95633.875
## 37 79172.935 80335.770 81437.852 83488.191 86760.660 90885.565
## 38 77312.184 78907.196 80074.103 81181.518 83236.093 86511.324
## 39 75583.682 77039.607 78637.499 79809.533 80923.318 82983.183
## 40 73924.102 75321.493 76779.579 78380.267 79557.181 80677.010
## 41 72329.274 73671.114 75069.752 76529.765 78132.772 79314.065
## 42 70795.180 72065.871 73408.976 74809.554 76272.114 77878.160
## 43 69273.039 70520.242 71792.280 73137.336 74540.469 76006.301
## 44 67668.147 68985.604 70234.084 71508.152 72855.769 74262.176
## 45 65915.947 67373.244 68691.523 69941.810 71218.274 72568.798
## 46 64067.172 65613.340 67070.638 68390.106 69642.457 70921.534
## 47 62186.408 63750.995 65296.450 66754.071 68075.091 69329.950
## 48 60376.974 61856.213 63419.595 64964.609 66422.859 67745.836
## 49 58685.347 60031.827 61509.869 63072.279 64617.104 66076.325
## 50 57154.674 58324.236 59669.496 61146.173 62707.428 64251.957
## 51 55725.224 56775.899 57944.597 59288.455 60763.573 62323.526
## 52 54298.459 55327.025 56377.294 57545.340 58888.000 60361.789
## 53 52781.108 53879.917 54907.918 55958.003 57125.627 58467.326
## 54 51151.096 52342.086 53439.373 54467.005 55517.149 56684.619
## 55 49369.703 50697.515 51885.631 52981.468 54008.804 55059.048
## 56 47461.598 48902.491 50225.414 51410.577 52504.875 53531.836
## 57 45568.136 46976.307 48410.236 49728.056 50910.131 52002.871
## 58 43660.549 45064.722 46465.193 47891.813 49204.256 50383.117
## 59 41566.655 43139.369 44534.762 45927.132 47346.030 48652.824
## 60 39250.209 41035.585 42596.183 43982.325 45366.082 46776.740
## 61 36805.375 38713.185 40482.012 42029.772 43406.035 44780.546
## 62 34299.683 36260.962 38148.383 39899.637 41433.729 42799.442
## 63 31910.790 33751.257 35688.874 37554.688 39287.287 40806.830
## 64 29790.493 31359.341 33175.504 35088.085 36931.007 38643.810
## 65 28027.803 29228.044 30774.686 32564.961 34450.879 36269.385
## 66 26534.412 27450.149 28632.884 30155.886 31918.647 33776.231
## 67 25150.739 25943.928 26846.287 28010.536 29508.609 31242.364
## 68 23763.261 24546.506 25327.543 26215.740 27360.473 28832.276
## 69 22396.223 23147.005 23916.770 24684.931 25558.142 26682.289
## 70 21021.540 21774.151 22511.003 23266.889 24021.715 24879.323
## 71 19658.778 20396.166 21133.326 21855.738 22597.152 23338.014
## 72 18348.755 19028.002 19748.391 20469.094 21176.079 21902.040
## 73 17115.915 17714.001 18376.124 19078.482 19781.692 20472.253
## 74 15942.352 16477.706 17059.647 17703.646 18386.918 19071.598
## 75 14826.579 15298.113 15817.763 16382.427 17007.098 17670.056
## 76 13762.029 14177.451 14634.100 15136.992 15683.273 16287.464
## 77 12747.754 13112.795 13514.257 13955.238 14440.535 14967.563
## 78 11773.270 12099.891 12451.811 12838.592 13263.142 13730.047
## 79 10830.119 11128.913 11442.805 11780.943 12152.350 12559.750
## 80 76766.846 78883.417 81088.441 83388.661 85798.916 88341.156
## year
## edad 2018 2019 2020 2021 2022 2023
## 0 141841.172 142051.706 142103.850 142274.179 142312.211 142485.451
## 1 141218.178 141319.917 141546.961 141615.948 141802.232 141856.434
## 2 140788.431 141031.064 141138.808 141371.636 141446.497 141638.385
## 3 140463.226 140668.748 140915.090 141026.547 141262.924 141341.406
## 4 140066.761 140371.845 140580.155 140829.226 140943.411 141182.408
## 5 139815.963 140059.936 140369.546 140582.722 140836.908 140956.518
## 6 139579.015 139870.292 140121.381 140438.700 140660.199 140923.244
## 7 139161.399 139639.465 139937.640 140196.271 140521.683 140751.867
## 8 138847.301 139225.812 139710.572 140016.149 140282.774 140616.714
## 9 138473.771 138914.068 139299.240 139791.250 140104.733 140379.834
## 10 138102.476 138513.990 138962.620 139356.940 139858.803 140182.913
## 11 137748.614 138114.749 138536.347 138995.994 139402.266 139916.883
## 12 137312.473 137758.654 138134.942 138567.626 139039.250 139458.367
## 13 136952.960 137321.135 137777.475 138164.901 138609.613 139094.092
## 14 136668.486 136951.216 137329.840 137797.536 138197.256 138655.077
## 15 136036.937 136399.341 136711.391 137120.484 137619.914 138052.415
## 16 135282.450 135496.548 135907.093 136268.785 136729.169 137281.017
## 17 134584.358 134722.461 134985.225 135445.730 135859.127 136372.318
## 18 133787.378 134003.886 134191.178 134504.454 135016.972 135483.606
## 19 133655.336 133187.668 133453.807 133692.128 134057.967 134624.005
## 20 132719.471 133029.977 132614.971 132934.183 133227.088 133648.440
## 21 131483.406 132073.030 132437.263 132078.202 132453.871 132804.160
## 22 130073.434 130828.229 131471.417 131890.758 131589.321 132022.615
## 23 128476.761 129413.069 130221.303 130919.338 131395.331 131152.611
## 24 126785.027 127814.196 128803.685 129666.564 130420.900 130954.544
## 25 125279.752 126281.770 127349.396 128378.801 129283.215 130080.397
## 26 123999.325 124936.602 125962.537 127055.487 128111.629 129044.241
## 27 122735.390 123657.619 124618.811 125670.032 126789.522 127873.547
## 28 121398.014 122395.346 123341.404 124327.869 125405.582 126552.753
## 29 119807.093 121059.537 122080.474 123051.720 124064.667 125170.013
## 30 117787.336 119523.919 120795.061 121836.441 122829.499 123865.404
## 31 115209.227 117559.192 119309.203 120595.788 121654.209 122665.509
## 32 112114.931 114982.098 117344.372 119108.980 120412.163 121488.663
## 33 109406.230 111888.491 114766.937 117142.698 118923.078 120243.909
## 34 106989.241 109178.610 111672.593 114563.489 116953.918 118751.126
## 35 103870.205 106755.329 108955.646 111461.402 114364.738 116769.671
## 36 99900.035 103630.078 106523.547 108734.837 111252.297 114167.857
## 37 95387.610 99657.675 103394.049 106296.930 108520.243 111050.371
## 38 90638.462 95143.364 99418.141 103161.837 106075.129 108311.429
## 39 86262.075 90392.313 94900.809 99181.205 102933.134 105857.733
## 40 82741.510 86023.146 90155.235 94666.007 98950.506 102708.964
## 41 80439.200 82507.337 85790.364 89922.786 94434.065 98720.718
## 42 79064.531 80195.697 82268.039 85552.949 89686.076 94198.164
## 43 77616.013 78808.174 79946.047 82023.209 85310.432 89444.549
## 44 75731.909 77345.923 78544.530 79689.843 81772.394 85062.281
## 45 73978.596 75452.272 77070.417 78275.334 79427.812 81515.160
## 46 72274.938 73688.069 75165.385 76787.327 77998.130 79157.213
## 47 70611.975 71968.694 73385.442 74866.806 76492.863 77709.943
## 48 69003.518 70288.919 71649.227 73069.985 74555.716 76186.165
## 49 67401.533 68662.448 69951.488 71315.760 72740.834 74231.212
## 50 65711.957 67039.352 68303.329 69595.962 70964.060 72393.287
## 51 63867.503 65328.159 66657.515 67924.486 69220.547 70592.297
## 52 61920.526 63464.154 64925.563 66257.167 67527.353 68827.083
## 53 59939.857 61497.526 63040.828 64503.189 65837.199 67110.809
## 54 58025.433 59496.836 61053.401 62596.493 64059.868 65396.427
## 55 56226.157 57565.822 59035.570 60590.523 62132.739 63596.444
## 56 54581.913 55748.347 57086.279 58553.761 60106.298 61646.789
## 57 53029.395 54079.313 55244.923 56580.986 58045.933 59595.771
## 58 51474.149 52500.207 53549.826 54714.508 56048.438 57510.541
## 59 49828.205 50917.407 51942.817 52992.044 54155.568 55487.059
## 60 48077.318 49248.769 50335.618 51359.938 52408.200 53569.888
## 61 46182.202 47475.893 48642.732 49726.619 50749.197 51795.773
## 62 44163.979 45555.943 46842.094 48003.816 49084.280 50104.692
## 63 42161.183 43514.989 44896.436 46174.359 47330.356 48406.852
## 64 40147.773 41489.922 42832.104 44202.166 45471.060 46620.634
## 65 37960.931 39448.091 40776.915 42106.408 43463.979 44722.838
## 66 35568.666 37237.461 38706.475 40020.837 41336.469 42680.364
## 67 33069.974 34834.787 36479.355 37928.984 39227.743 40528.374
## 68 30535.389 32331.314 34066.811 35685.620 37114.477 38396.399
## 69 28126.348 29797.117 31559.508 33263.938 34855.305 36261.903
## 70 25981.865 27396.757 29033.389 30760.310 32431.675 33993.646
## 71 24179.146 25258.883 26642.938 28243.461 29932.707 31568.781
## 72 22627.898 23451.418 24506.892 25858.304 27420.592 29069.904
## 73 21181.683 21891.482 22696.175 23725.904 25042.770 26564.626
## 74 19744.653 20436.468 21129.078 21913.714 22916.135 24196.496
## 75 18334.916 18989.219 19662.103 20336.234 21099.365 22072.729
## 76 16928.844 17572.651 18206.914 18859.594 19513.924 20254.092
## 77 15550.259 16169.032 16790.670 17403.821 18035.139 18668.476
## 78 14236.908 14797.164 15392.255 15990.671 16581.603 17190.392
## 79 13007.439 13493.296 14030.134 14600.552 15174.685 15742.298
## 80 91037.305 93911.327 96982.368 100280.068 103814.850 107567.919
## year
## edad 2024 2025
## 0 142500.170 142815.350
## 1 142044.757 142071.904
## 2 141698.048 141890.572
## 3 141536.620 141598.993
## 4 141263.459 141460.642
## 5 141201.106 141287.729
## 6 141052.301 141306.490
## 7 141024.128 141162.691
## 8 140856.015 141137.642
## 9 140722.787 140971.415
## 10 140469.363 140824.106
## 11 140254.684 140555.466
## 12 139986.652 140338.810
## 13 139526.950 140069.545
## 14 139153.498 139600.890
## 15 138544.465 139077.656
## 16 137768.080 138315.212
## 17 136978.990 137521.436
## 18 136052.008 136714.269
## 19 135146.260 135770.575
## 20 134271.682 134851.460
## 21 133284.529 133966.682
## 22 132432.235 132971.870
## 23 131645.380 132114.487
## 24 130772.311 131324.638
## 25 130658.787 130522.678
## 26 129871.163 130480.201
## 27 128835.634 129692.833
## 28 127665.941 128658.071
## 29 126346.154 127489.110
## 30 124994.885 126195.778
## 31 123720.775 124870.157
## 32 122519.295 123594.504
## 33 121339.596 122390.156
## 34 120090.727 121206.203
## 35 118583.531 119941.188
## 36 116587.018 118416.786
## 37 113979.063 116412.965
## 38 110855.142 113797.425
## 39 108107.946 110665.703
## 40 105643.043 107904.765
## 41 102483.592 105424.477
## 42 98487.241 102254.402
## 43 93957.631 98248.890
## 44 89197.570 93711.318
## 45 84806.750 88941.570
## 46 81248.451 84540.119
## 47 78875.977 80970.907
## 48 77409.836 78582.808
## 49 75866.239 77096.465
## 50 73888.075 75527.080
## 51 72025.425 73524.029
## 52 70202.634 71639.497
## 53 68414.341 69793.536
## 54 66673.562 67980.754
## 55 64934.770 66214.401
## 56 63109.860 64448.822
## 57 61134.202 62596.244
## 58 59057.274 60593.188
## 59 56945.889 58489.028
## 60 54898.078 56352.662
## 61 52954.785 54278.709
## 62 51149.170 52305.083
## 63 49424.642 50466.669
## 64 47692.588 48707.413
## 65 45865.177 46932.095
## 66 43928.191 45062.711
## 67 41857.515 43093.672
## 68 39680.893 40994.506
## 69 37525.776 38793.356
## 70 35376.299 36621.019
## 71 33099.333 34456.696
## 72 30668.645 32166.440
## 73 28171.858 29731.788
## 74 25675.865 27239.479
## 75 23314.662 24750.009
## 76 21196.871 22399.152
## 77 19384.591 20296.082
## 78 17801.789 18493.449
## 79 16327.668 16916.878
## 80 111516.217 115668.085
Crear la tabla de
frecuencias
tabla <- xtabs(valor ~ departamento + year, dataproylong)
tabla
## year
## departamento 2000 2001 2002 2003 2004
## (00)Asunción 527712.00 528865.42 529802.85 530565.21 531153.42
## (01)Concepción 189927.00 192799.47 195669.30 198552.80 201461.80
## (02)San Pedro 333882.00 339171.47 344338.61 349425.00 354445.87
## (03)Cordillera 242141.00 244883.13 247657.53 250487.03 253389.03
## (04)Guairá 147592.00 149471.00 151356.61 153259.72 155195.13
## (05)Caaguazú 468519.00 476522.53 484326.45 491964.12 499422.67
## (06)Caazapá 105288.00 106092.74 106897.14 107714.89 108555.01
## (07)Itapúa 235283.00 236443.09 237543.01 238610.64 239653.04
## (08)Misiones 568074.00 583983.82 599540.65 614730.26 629584.31
## (09)Paraguarí 1342589.00 1384522.33 1426611.32 1468812.09 1511201.32
## (10)Alto Paraná 79925.00 80457.68 80980.77 81501.64 82017.47
## (11)Central 119660.00 122300.40 124942.46 127584.72 130233.78
## (12)Ñeembucú 141575.00 146476.72 151361.24 156223.85 161068.82
## (13)Amambay 84408.00 86454.61 88508.44 90570.49 92648.43
## (14)Canindeyú 41127.00 42323.16 43537.80 44771.95 46020.92
## (15)Presidente Hayes 12612.00 12841.24 13075.13 13312.70 13555.48
## (16)Boquerón 187724.00 189461.72 191192.81 192922.18 194668.06
## (17)Alto Paraguay 456442.00 461931.29 467267.94 472474.40 477597.43
## year
## departamento 2005 2006 2007 2008 2009
## (00)Asunción 531561.06 531780.92 531831.03 531701.21 531388.91
## (01)Concepción 204401.08 207386.53 210435.12 213538.18 216707.19
## (02)San Pedro 359430.56 364364.26 369301.91 374229.68 379173.35
## (03)Cordillera 256359.67 259410.88 262558.44 265815.30 269173.66
## (04)Guairá 157165.31 159171.21 161226.97 163335.50 165505.24
## (05)Caaguazú 506714.29 513814.71 520738.70 527505.50 534129.74
## (06)Caazapá 109419.29 110313.26 111248.39 112225.68 113254.01
## (07)Itapúa 240686.96 241725.90 242772.81 243843.55 244951.00
## (08)Misiones 644078.84 658242.46 672107.82 685656.81 698926.13
## (09)Paraguarí 1553729.78 1596476.39 1639381.41 1682388.88 1725429.84
## (10)Alto Paraná 82533.25 83047.55 83563.46 84081.56 84604.07
## (11)Central 132884.03 135540.24 138187.38 140841.92 143486.56
## (12)Ñeembucú 165889.14 170689.14 175460.48 180196.23 184914.86
## (13)Amambay 94734.71 96836.88 98954.07 101086.48 103241.20
## (14)Canindeyú 47286.36 48567.27 49860.79 51162.00 52475.16
## (15)Presidente Hayes 13802.33 14053.84 14310.16 14573.38 14841.50
## (16)Boquerón 196443.77 198235.76 200061.82 201937.66 203861.48
## (17)Alto Paraguay 482648.34 487665.80 492665.15 497661.43 502693.58
## year
## departamento 2010 2011 2012 2013 2014
## (00)Asunción 530895.42 530226.74 529432.80 528528.08 527496.56
## (01)Concepción 219936.07 223232.20 226584.97 230000.37 233452.02
## (02)San Pedro 384150.84 389153.36 394168.96 399213.71 404300.05
## (03)Cordillera 272637.34 276192.84 279859.58 283602.10 287419.59
## (04)Guairá 167730.95 170013.74 172344.58 174723.26 177138.03
## (05)Caaguazú 540787.97 547653.31 554652.89 561810.18 569109.58
## (06)Caazapá 114339.30 115476.62 116671.95 117920.58 119220.33
## (07)Itapúa 246085.64 247253.29 248460.86 249695.61 250964.67
## (08)Misiones 711901.64 724627.44 737092.04 749348.86 761398.37
## (09)Paraguarí 1768598.77 1811838.04 1855240.97 1898592.39 1941991.58
## (10)Alto Paraná 85128.75 85653.56 86179.66 86705.26 87227.44
## (11)Central 146126.78 148768.69 151394.86 154026.93 156646.47
## (12)Ñeembucú 189608.06 194268.23 198899.14 203507.88 208084.94
## (13)Amambay 105415.54 107608.53 109817.62 112040.27 114281.04
## (14)Canindeyú 53793.97 55116.85 56440.23 57765.27 59085.13
## (15)Presidente Hayes 15115.24 15395.29 15681.51 15974.80 16275.14
## (16)Boquerón 205831.41 207840.02 209900.38 212004.93 214147.50
## (17)Alto Paraguay 507793.00 512957.73 518217.87 523566.65 528993.56
## year
## departamento 2015 2016 2017 2018 2019
## (00)Asunción 526407.67 525293.52 524189.54 523183.98 522286.80
## (01)Concepción 236959.01 240495.00 244070.62 247674.73 251314.28
## (02)San Pedro 409381.03 414503.21 419628.56 424774.30 429957.20
## (03)Cordillera 291311.24 295256.20 299233.94 303242.45 307255.95
## (04)Guairá 179575.91 182038.87 184529.68 187034.84 189540.93
## (05)Caaguazú 576576.56 584200.71 592016.66 600011.17 608214.79
## (06)Caazapá 120576.05 121984.82 123442.24 124954.10 126517.17
## (07)Itapúa 252254.82 253557.32 254884.17 256224.29 257586.64
## (08)Misiones 773302.76 785065.88 796689.19 808172.46 819588.85
## (09)Paraguarí 1985383.78 2028699.64 2072041.47 2115174.38 2158215.48
## (10)Alto Paraná 87749.54 88269.85 88783.91 89290.35 89794.29
## (11)Central 159262.53 161869.41 164461.78 167049.85 169615.07
## (12)Ñeembucú 212636.88 217153.95 221647.06 226110.84 230556.40
## (13)Amambay 116536.48 118801.24 121074.57 123360.67 125657.96
## (14)Canindeyú 60402.05 61713.49 63011.43 64298.26 65572.32
## (15)Presidente Hayes 16582.29 16896.61 17218.64 17548.12 17885.73
## (16)Boquerón 216335.02 218560.33 220818.18 223104.10 225409.74
## (17)Alto Paraguay 534522.36 540175.72 545904.41 551774.32 557733.12
## year
## departamento 2020 2021 2022 2023 2024
## (00)Asunción 521558.83 521101.15 520917.44 521091.11 521630.50
## (01)Concepción 254976.44 258653.45 262360.07 266071.70 269804.94
## (02)San Pedro 435126.40 440334.70 445550.14 450802.19 456088.77
## (03)Cordillera 311272.61 315244.72 319176.45 323040.14 326842.49
## (04)Guairá 192031.04 194511.56 196993.72 199470.53 201936.22
## (05)Caaguazú 616564.96 625096.13 633846.86 642752.81 651856.41
## (06)Caazapá 128129.88 129786.64 131493.13 133235.52 135022.38
## (07)Itapúa 258957.47 260331.20 261701.34 263079.37 264460.34
## (08)Misiones 830943.46 842307.16 853610.46 864920.13 876234.42
## (09)Paraguarí 2201109.50 2243792.17 2286193.10 2328453.44 2370332.89
## (10)Alto Paraná 90286.71 90773.54 91251.62 91720.59 92180.02
## (11)Central 172169.42 174721.21 177252.36 179773.14 182281.02
## (12)Ñeembucú 234977.59 239386.05 243778.59 248151.90 252521.54
## (13)Amambay 127951.39 130257.54 132564.30 134879.54 137190.66
## (14)Canindeyú 66835.66 68079.89 69303.99 70504.99 71687.55
## (15)Presidente Hayes 18230.62 18581.30 18937.07 19298.16 19663.54
## (16)Boquerón 227747.48 230112.41 232503.49 234920.27 237364.29
## (17)Alto Paraguay 563802.52 569967.41 576260.65 582630.37 589117.12
## year
## departamento 2025
## (00)Asunción 522615.84
## (01)Concepción 273578.69
## (02)San Pedro 461413.31
## (03)Cordillera 330537.61
## (04)Guairá 204387.84
## (05)Caaguazú 661146.20
## (06)Caazapá 136852.50
## (07)Itapúa 265840.11
## (08)Misiones 887612.85
## (09)Paraguarí 2411983.41
## (10)Alto Paraná 92629.98
## (11)Central 184771.74
## (12)Ñeembucú 256887.41
## (13)Amambay 139505.76
## (14)Canindeyú 72844.81
## (15)Presidente Hayes 20032.40
## (16)Boquerón 239854.91
## (17)Alto Paraguay 595767.16
Generar la variable
dataproy$edadt dividiendo la columna edad por 5
dataproylong$edadt <- floor(dataproylong$edad / 5)
table(dataproylong$edadt)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## 4680 4680 4680 4680 4680 4680 4680 4680 4680 4680 4680 4680 4680 4680 4680 4680
## 16
## 936
# Etiquetar los valores en función de los grupos de edades
etiquetas <- c("0 a 4", "5 a 9", "10 a 14", "15 a 19", "20 a 24", "25 a 29", "30 a 34", "35 a 39", "40 a 44", "45 a 49", "50 a 54", "55 a 59", "60 a 64", "65 a 69", "70 a 74", "75 a 79", "80 y más")
dataproylong$edadt <- factor(dataproylong$edadt, levels = 0:16, labels = etiquetas)
table(dataproylong$edadt )
##
## 0 a 4 5 a 9 10 a 14 15 a 19 20 a 24 25 a 29 30 a 34 35 a 39
## 4680 4680 4680 4680 4680 4680 4680 4680
## 40 a 44 45 a 49 50 a 54 55 a 59 60 a 64 65 a 69 70 a 74 75 a 79
## 4680 4680 4680 4680 4680 4680 4680 4680
## 80 y más
## 936
dataproylong2022 <- subset(dataproylong, year == 2022 & sexo=="Hombres")
tabla <- xtabs(valor ~ (departamento + edadt), dataproylong2022)
tabla
## edadt
## departamento 0 a 4 5 a 9 10 a 14 15 a 19
## (00)Asunción 18932.7677 20542.6237 22377.7857 22926.1161
## (01)Concepción 14935.7867 14791.0026 14258.8343 13394.0199
## (02)San Pedro 24173.4981 24225.8219 23616.1983 22134.8106
## (03)Cordillera 15253.8441 14764.1748 14143.1386 13954.8714
## (04)Guairá 10949.9334 10962.1057 10535.6671 9749.8503
## (05)Caaguazú 32208.2507 31694.2127 31643.1069 31311.1896
## (06)Caazapá 6291.2783 6096.5567 5898.1277 5831.2926
## (07)Itapúa 11346.4340 11644.6788 11778.4428 11690.2106
## (08)Misiones 42363.7663 42180.8034 42295.5708 42383.8349
## (09)Paraguarí 106073.0047 103431.8351 101479.4319 99494.4691
## (10)Alto Paraná 3622.3418 3731.4113 3804.1897 3705.5581
## (11)Central 9140.5627 9001.7786 8847.1745 8521.4469
## (12)Ñeembucú 12945.1870 12725.5887 12437.2332 11966.9573
## (13)Amambay 7301.5317 7009.1615 6659.7058 6292.2466
## (14)Canindeyú 3724.1271 3558.7746 3349.4555 3109.3882
## (15)Presidente Hayes 1045.7066 977.9447 967.0579 922.1177
## (16)Boquerón 11019.2987 11046.4782 10748.0399 10199.8706
## (17)Alto Paraguay 29811.7474 29634.3795 29060.1071 28032.2005
## edadt
## departamento 20 a 24 25 a 29 30 a 34 35 a 39
## (00)Asunción 21085.3937 18319.1961 17314.9343 17776.5662
## (01)Concepción 12540.2467 12128.5819 11578.9971 9636.3287
## (02)San Pedro 20467.6523 19785.3152 18836.1523 16330.2027
## (03)Cordillera 14850.5343 15256.5856 14923.7946 13025.0532
## (04)Guairá 8950.9292 8550.3726 8323.2743 7174.8568
## (05)Caaguazú 29745.2709 26996.1191 24688.0720 21617.6023
## (06)Caazapá 6038.3289 5767.5531 5727.2769 5106.6889
## (07)Itapúa 11613.1616 11392.7894 11511.5253 10444.9201
## (08)Misiones 40964.7646 37162.3798 34060.9421 30226.8795
## (09)Paraguarí 98952.8211 99121.6189 92985.3308 85157.8749
## (10)Alto Paraná 3383.0976 3191.6659 3369.9949 3240.1192
## (11)Central 7965.2590 7479.8066 7090.1949 6287.9983
## (12)Ñeembucú 11548.3000 11168.4577 10380.2919 9160.7119
## (13)Amambay 6026.3052 5782.0661 5450.3765 4936.8116
## (14)Canindeyú 2904.5770 2821.3217 2763.8308 2696.7415
## (15)Presidente Hayes 899.8304 930.5505 798.4432 676.8581
## (16)Boquerón 9829.9458 9867.9720 10072.9540 9401.7626
## (17)Alto Paraguay 27329.7225 25749.5790 24047.5710 20719.9349
## edadt
## departamento 40 a 44 45 a 49 50 a 54 55 a 59
## (00)Asunción 18098.5226 15331.4433 11749.9149 10116.0992
## (01)Concepción 6628.4606 5078.5209 4561.3050 4113.0099
## (02)San Pedro 12495.2984 10401.0464 9461.3367 8297.1751
## (03)Cordillera 9820.0532 7769.2430 6792.2946 6139.7790
## (04)Guairá 5197.2042 4055.8676 3638.4247 3317.5414
## (05)Caaguazú 17446.4614 14974.5105 13658.1176 11982.8510
## (06)Caazapá 3455.6724 2915.8688 2720.3680 2476.1155
## (07)Itapúa 7880.6914 6398.6343 5970.1709 5620.0949
## (08)Misiones 25043.2998 22039.7452 19804.2158 16475.7702
## (09)Paraguarí 72539.7874 61346.8426 54283.0011 45437.1404
## (10)Alto Paraná 2832.0920 2754.0563 2621.0201 2371.1784
## (11)Central 5114.1385 4350.8302 3779.4030 3157.8059
## (12)Ñeembucú 7558.3251 6527.5816 5790.7080 4741.5188
## (13)Amambay 4029.8782 3346.8265 2956.5199 2502.3640
## (14)Canindeyú 2319.5292 1999.3101 1766.7309 1417.6143
## (15)Presidente Hayes 503.6249 427.5656 448.4451 372.9312
## (16)Boquerón 7345.1963 5970.0826 5439.3383 4939.3794
## (17)Alto Paraguay 15957.6892 13459.3905 12389.4136 10981.2157
## edadt
## departamento 60 a 64 65 a 69 70 a 74 75 a 79
## (00)Asunción 9334.0802 7971.8136 6052.9580 4166.2015
## (01)Concepción 3614.7627 2954.0640 2071.2394 1326.2928
## (02)San Pedro 7110.9572 5734.6816 3992.8666 2569.9017
## (03)Cordillera 5506.0158 4680.2626 3457.1850 2348.7747
## (04)Guairá 3004.6626 2524.4458 1768.4875 1135.3573
## (05)Caaguazú 10394.2146 8423.4639 5809.5652 3657.4552
## (06)Caazapá 2326.6036 2046.8597 1505.6309 992.7202
## (07)Itapúa 5243.7642 4554.7334 3356.2420 2249.9370
## (08)Misiones 13447.2671 10177.3821 6542.8929 3776.8546
## (09)Paraguarí 36903.7918 28167.8769 18518.1104 11215.1364
## (10)Alto Paraná 2072.5118 1766.5510 1334.3931 902.6315
## (11)Central 2585.2168 2048.7050 1396.3977 862.5902
## (12)Ñeembucú 3762.2368 2842.8608 1861.9318 1128.4528
## (13)Amambay 2086.1594 1647.4502 1126.2782 706.8125
## (14)Canindeyú 1092.9247 836.9910 568.3122 363.3880
## (15)Presidente Hayes 312.6127 260.0653 214.2974 165.0063
## (16)Boquerón 4336.1346 3601.2778 2495.8080 1598.8976
## (17)Alto Paraguay 9483.7391 7634.6902 5331.5501 3467.0824
## edadt
## departamento 80 y más
## (00)Asunción 4460.5461
## (01)Concepción 1362.0897
## (02)San Pedro 2572.7983
## (03)Cordillera 2600.9602
## (04)Guairá 1259.1415
## (05)Caaguazú 3677.9247
## (06)Caazapá 1051.8795
## (07)Itapúa 2490.0948
## (08)Misiones 3064.0994
## (09)Paraguarí 10684.7497
## (10)Alto Paraná 945.0613
## (11)Central 854.7592
## (12)Ñeembucú 969.8722
## (13)Amambay 691.2022
## (14)Canindeyú 361.8130
## (15)Presidente Hayes 150.1211
## (16)Boquerón 1722.3213
## (17)Alto Paraguay 3505.9364
Crear un nuevo campo
“quinquenio” basado en la edad
dataproylong2022$codquinquenio<-floor(dataproylong2022$edad/5)
table(dataproylong2022$codquinquenio)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 18
dataproylong2022$codquinquenio<-ifelse(dataproylong2022$codquinquenio>17,17,dataproylong2022$codquinquenio)
table(dataproylong2022$codquinquenio)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 18
Generar la variable
de llave
dataproylong$tipo<-"Dato proyectado"
dataproylong$llave <- paste(dataproylong$edad, dataproylong$year, dataproylong$departamento, dataproylong$sexo, sep = "-")
names(dataproylong)
## [1] "edad" "departamento" "sexo" "year" "valor"
## [6] "edadt" "tipo" "llave"
Exportar la base de
datos a un archivo Excel
library(writexl)
write.csv2(dataproylong, "D:/OneDrive/INE_Py/base_long_proyeccionesINE.csv")
base<-read.csv2("D:/OneDrive/INE_Py/base_long_proyeccionesINE.csv")
names(base)
## [1] "X" "edad" "departamento" "sexo" "year"
## [6] "valor" "edadt" "tipo" "llave"
#JUNTAR LOS REGISTROS CON DATOS CENSALES CON LOS DATOS
PROYECTADOS
UNIÓN DE LAS
BASES
library(dplyr)
# Leer los archivos CSV en dataframes
base_proyecciones <- read.csv2("D:/OneDrive/INE_Py/base_long_proyeccionesINE.csv")
names(base_proyecciones)
## [1] "X" "edad" "departamento" "sexo" "year"
## [6] "valor" "edadt" "tipo" "llave"
base_datos_censales <- read.csv2("D:/OneDrive/INE_Py/base_long_datoscensales_INE.csv")
names(base_datos_censales)
## [1] "X" "sexo" "year" "edad"
## [5] "departamento" "valor" "nuevo_valor" "codquinquenio"
## [9] "quinquenio" "tipo" "llave"
Conservar solo las
variables comunes
columnas_comunes <- c("edad", "departamento", "sexo", "year", "valor", "tipo", "llave")
base_proyecciones <- select(base_proyecciones, all_of(columnas_comunes))
base_datos_censales <- select(base_datos_censales, all_of(columnas_comunes))
# Realizar un append de las bases de datos
resultado_append <- rbind(base_proyecciones, base_datos_censales)
write.csv2(resultado_append, "D:/OneDrive/INE_Py/base_INE_proyectados_y_censales.csv")
base<-read.csv2("D:/OneDrive/INE_Py/base_INE_proyectados_y_censales.csv")
names(base)
## [1] "X" "edad" "departamento" "sexo" "year"
## [6] "valor" "tipo" "llave"
# Crear una base que suma la población por año, tipo, sexo y departamento
base_agregada <- aggregate(valor ~ year + tipo + sexo, data = base, FUN = sum)
# Renombrar la columna resultante
colnames(base_agregada) <- c("year", "tipo", "sexo", "valor")
# Visualizar las primeras filas de la base agregada
head(base_agregada)
2002 |
Dato censal |
Hombres |
2603242 |
2012 |
Dato censal |
Hombres |
2425510 |
2022 |
Dato censal |
Hombres |
2828594 |
2000 |
Dato proyectado |
Hombres |
2671656 |
2001 |
Dato proyectado |
Hombres |
2722569 |
2002 |
Dato proyectado |
Hombres |
2772953 |
library(ggplot2)
# Crear un gráfico de barras apiladas con la suma de la población por año, tipo y sexo
ggplot(base_agregada, aes(x = as.factor(year), y = valor, fill = tipo)) +
geom_bar(stat = "identity", position = "dodge", alpha = 0.5) +
labs(title = "Suma de Población por Año y Tipo (Censal vs. Proyectado)",
x = "Año",
y = "Suma de Población") +
facet_grid(. ~ sexo) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) # Rotar el texto en el eje x

library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
# Crear un gráfico de barras apiladas con la suma de la población por año, tipo y sexo
gg <- ggplot(base_agregada, aes(x = as.factor(year), y = valor, fill = tipo)) +
geom_bar(stat = "identity", position = "dodge", alpha = 0.5) +
labs(title = "Suma de Población por Año y Tipo (Censal vs. Proyectado)",
x = "Año",
y = "Suma de Población") +
facet_grid(. ~ sexo) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1) )
# Convertir el gráfico de ggplot2 en una gráfica interactiva
ggplotly(gg)