birthweight <- read.csv("birthweight.csv")
mir <- read.csv("miRNA.csv", row.names = 1)
experiment <- merge(birthweight, mir)
experiment
## ID birth.date location length birthweight head.circumference
## 1 1107 1/25/1967 General 52 3.23 36
## 2 697 2/6/1967 Silver Hill 48 3.03 35
## 3 1683 2/14/1967 Silver Hill 53 3.35 33
## 4 27 3/9/1967 Silver Hill 53 3.55 37
## 5 1522 3/13/1967 Memorial 50 2.74 33
## 6 569 3/23/1967 Memorial 50 2.51 35
## 7 365 4/23/1967 Memorial 52 3.53 37
## 8 808 5/5/1967 Silver Hill 48 2.92 33
## 9 1369 6/4/1967 Silver Hill 49 3.18 34
## 10 1023 6/7/1967 Memorial 52 3.00 35
## 11 822 6/14/1967 Memorial 50 3.42 35
## 12 1272 6/20/1967 Memorial 53 2.75 32
## 13 1262 6/25/1967 Silver Hill 53 3.19 34
## 14 575 7/12/1967 Memorial 50 2.78 30
## 15 1016 7/13/1967 Silver Hill 53 4.32 36
## 16 792 9/7/1967 Memorial 53 3.64 38
## 17 820 10/7/1967 General 52 3.77 34
## 18 752 10/19/1967 General 49 3.32 36
## 19 619 11/1/1967 Memorial 52 3.41 33
## 20 1764 12/7/1967 Silver Hill 58 4.57 39
## 21 1081 12/14/1967 Silver Hill 54 3.63 38
## 22 516 1/8/1968 Silver Hill 47 2.66 33
## 23 272 1/10/1968 Memorial 52 3.86 36
## 24 321 1/21/1968 Silver Hill 48 3.11 33
## 25 1636 2/2/1968 Silver Hill 51 3.93 38
## 26 1360 2/16/1968 General 56 4.55 34
## 27 1388 2/22/1968 Memorial 51 3.14 33
## 28 1363 4/2/1968 General 48 2.37 30
## 29 1058 4/24/1968 Silver Hill 53 3.15 34
## 30 755 4/25/1968 Memorial 53 3.20 33
## 31 462 6/19/1968 Silver Hill 58 4.10 39
## 32 300 7/18/1968 Silver Hill 46 2.05 32
## 33 1088 7/24/1968 General 51 3.27 36
## 34 57 8/12/1968 Memorial 51 3.32 38
## 35 553 8/17/1968 Silver Hill 54 3.94 37
## 36 1191 9/7/1968 General 53 3.65 33
## 37 431 9/16/1968 Silver Hill 48 1.92 30
## 38 1313 9/27/1968 Silver Hill 43 2.65 32
## 39 1600 10/9/1968 General 53 2.90 34
## 40 532 10/25/1968 General 53 3.59 34
## 41 223 12/11/1968 General 50 3.87 33
## 42 1187 12/19/1968 Silver Hill 53 4.07 38
## 43 1107 1/25/1967 General 52 3.23 36
## 44 697 2/6/1967 Silver Hill 48 3.03 35
## 45 1683 2/14/1967 Silver Hill 53 3.35 33
## 46 27 3/9/1967 Silver Hill 53 3.55 37
## 47 1522 3/13/1967 Memorial 50 2.74 33
## 48 569 3/23/1967 Memorial 50 2.51 35
## 49 365 4/23/1967 Memorial 52 3.53 37
## 50 808 5/5/1967 Silver Hill 48 2.92 33
## 51 1369 6/4/1967 Silver Hill 49 3.18 34
## 52 1023 6/7/1967 Memorial 52 3.00 35
## 53 822 6/14/1967 Memorial 50 3.42 35
## 54 1272 6/20/1967 Memorial 53 2.75 32
## 55 1262 6/25/1967 Silver Hill 53 3.19 34
## 56 575 7/12/1967 Memorial 50 2.78 30
## 57 1016 7/13/1967 Silver Hill 53 4.32 36
## 58 792 9/7/1967 Memorial 53 3.64 38
## 59 820 10/7/1967 General 52 3.77 34
## 60 752 10/19/1967 General 49 3.32 36
## 61 619 11/1/1967 Memorial 52 3.41 33
## 62 1764 12/7/1967 Silver Hill 58 4.57 39
## 63 1081 12/14/1967 Silver Hill 54 3.63 38
## 64 516 1/8/1968 Silver Hill 47 2.66 33
## 65 272 1/10/1968 Memorial 52 3.86 36
## 66 321 1/21/1968 Silver Hill 48 3.11 33
## 67 1636 2/2/1968 Silver Hill 51 3.93 38
## 68 1360 2/16/1968 General 56 4.55 34
## 69 1388 2/22/1968 Memorial 51 3.14 33
## 70 1363 4/2/1968 General 48 2.37 30
## 71 1058 4/24/1968 Silver Hill 53 3.15 34
## 72 755 4/25/1968 Memorial 53 3.20 33
## 73 462 6/19/1968 Silver Hill 58 4.10 39
## 74 300 7/18/1968 Silver Hill 46 2.05 32
## 75 1088 7/24/1968 General 51 3.27 36
## 76 57 8/12/1968 Memorial 51 3.32 38
## 77 553 8/17/1968 Silver Hill 54 3.94 37
## 78 1191 9/7/1968 General 53 3.65 33
## 79 431 9/16/1968 Silver Hill 48 1.92 30
## 80 1313 9/27/1968 Silver Hill 43 2.65 32
## 81 1600 10/9/1968 General 53 2.90 34
## 82 532 10/25/1968 General 53 3.59 34
## 83 223 12/11/1968 General 50 3.87 33
## 84 1187 12/19/1968 Silver Hill 53 4.07 38
## 85 1107 1/25/1967 General 52 3.23 36
## 86 697 2/6/1967 Silver Hill 48 3.03 35
## 87 1683 2/14/1967 Silver Hill 53 3.35 33
## 88 27 3/9/1967 Silver Hill 53 3.55 37
## 89 1522 3/13/1967 Memorial 50 2.74 33
## 90 569 3/23/1967 Memorial 50 2.51 35
## 91 365 4/23/1967 Memorial 52 3.53 37
## 92 808 5/5/1967 Silver Hill 48 2.92 33
## 93 1369 6/4/1967 Silver Hill 49 3.18 34
## 94 1023 6/7/1967 Memorial 52 3.00 35
## 95 822 6/14/1967 Memorial 50 3.42 35
## 96 1272 6/20/1967 Memorial 53 2.75 32
## 97 1262 6/25/1967 Silver Hill 53 3.19 34
## 98 575 7/12/1967 Memorial 50 2.78 30
## 99 1016 7/13/1967 Silver Hill 53 4.32 36
## 100 792 9/7/1967 Memorial 53 3.64 38
## 101 820 10/7/1967 General 52 3.77 34
## 102 752 10/19/1967 General 49 3.32 36
## 103 619 11/1/1967 Memorial 52 3.41 33
## 104 1764 12/7/1967 Silver Hill 58 4.57 39
## 105 1081 12/14/1967 Silver Hill 54 3.63 38
## 106 516 1/8/1968 Silver Hill 47 2.66 33
## 107 272 1/10/1968 Memorial 52 3.86 36
## 108 321 1/21/1968 Silver Hill 48 3.11 33
## 109 1636 2/2/1968 Silver Hill 51 3.93 38
## 110 1360 2/16/1968 General 56 4.55 34
## 111 1388 2/22/1968 Memorial 51 3.14 33
## 112 1363 4/2/1968 General 48 2.37 30
## 113 1058 4/24/1968 Silver Hill 53 3.15 34
## 114 755 4/25/1968 Memorial 53 3.20 33
## 115 462 6/19/1968 Silver Hill 58 4.10 39
## 116 300 7/18/1968 Silver Hill 46 2.05 32
## 117 1088 7/24/1968 General 51 3.27 36
## 118 57 8/12/1968 Memorial 51 3.32 38
## 119 553 8/17/1968 Silver Hill 54 3.94 37
## 120 1191 9/7/1968 General 53 3.65 33
## 121 431 9/16/1968 Silver Hill 48 1.92 30
## 122 1313 9/27/1968 Silver Hill 43 2.65 32
## 123 1600 10/9/1968 General 53 2.90 34
## 124 532 10/25/1968 General 53 3.59 34
## 125 223 12/11/1968 General 50 3.87 33
## 126 1187 12/19/1968 Silver Hill 53 4.07 38
## 127 1107 1/25/1967 General 52 3.23 36
## 128 697 2/6/1967 Silver Hill 48 3.03 35
## 129 1683 2/14/1967 Silver Hill 53 3.35 33
## 130 27 3/9/1967 Silver Hill 53 3.55 37
## 131 1522 3/13/1967 Memorial 50 2.74 33
## 132 569 3/23/1967 Memorial 50 2.51 35
## 133 365 4/23/1967 Memorial 52 3.53 37
## 134 808 5/5/1967 Silver Hill 48 2.92 33
## 135 1369 6/4/1967 Silver Hill 49 3.18 34
## 136 1023 6/7/1967 Memorial 52 3.00 35
## 137 822 6/14/1967 Memorial 50 3.42 35
## 138 1272 6/20/1967 Memorial 53 2.75 32
## 139 1262 6/25/1967 Silver Hill 53 3.19 34
## 140 575 7/12/1967 Memorial 50 2.78 30
## 141 1016 7/13/1967 Silver Hill 53 4.32 36
## 142 792 9/7/1967 Memorial 53 3.64 38
## 143 820 10/7/1967 General 52 3.77 34
## 144 752 10/19/1967 General 49 3.32 36
## 145 619 11/1/1967 Memorial 52 3.41 33
## 146 1764 12/7/1967 Silver Hill 58 4.57 39
## 147 1081 12/14/1967 Silver Hill 54 3.63 38
## 148 516 1/8/1968 Silver Hill 47 2.66 33
## 149 272 1/10/1968 Memorial 52 3.86 36
## 150 321 1/21/1968 Silver Hill 48 3.11 33
## 151 1636 2/2/1968 Silver Hill 51 3.93 38
## 152 1360 2/16/1968 General 56 4.55 34
## 153 1388 2/22/1968 Memorial 51 3.14 33
## 154 1363 4/2/1968 General 48 2.37 30
## 155 1058 4/24/1968 Silver Hill 53 3.15 34
## 156 755 4/25/1968 Memorial 53 3.20 33
## 157 462 6/19/1968 Silver Hill 58 4.10 39
## 158 300 7/18/1968 Silver Hill 46 2.05 32
## 159 1088 7/24/1968 General 51 3.27 36
## 160 57 8/12/1968 Memorial 51 3.32 38
## 161 553 8/17/1968 Silver Hill 54 3.94 37
## 162 1191 9/7/1968 General 53 3.65 33
## 163 431 9/16/1968 Silver Hill 48 1.92 30
## 164 1313 9/27/1968 Silver Hill 43 2.65 32
## 165 1600 10/9/1968 General 53 2.90 34
## 166 532 10/25/1968 General 53 3.59 34
## 167 223 12/11/1968 General 50 3.87 33
## 168 1187 12/19/1968 Silver Hill 53 4.07 38
## weeks.gestation smoker maternal.age maternal.cigarettes maternal.height
## 1 38 no 31 0 164
## 2 39 no 27 0 162
## 3 41 no 27 0 164
## 4 41 yes 37 25 161
## 5 39 yes 21 17 156
## 6 39 yes 22 7 159
## 7 40 yes 26 25 170
## 8 34 no 26 0 167
## 9 38 yes 31 25 162
## 10 38 yes 30 12 165
## 11 38 no 20 0 157
## 12 40 yes 37 50 168
## 13 41 yes 27 35 163
## 14 37 yes 19 7 165
## 15 40 no 19 0 171
## 16 40 yes 20 2 170
## 17 40 no 24 0 157
## 18 40 yes 27 12 152
## 19 39 yes 23 25 181
## 20 41 yes 32 12 173
## 21 38 no 18 0 172
## 22 35 yes 20 35 170
## 23 39 yes 30 25 170
## 24 37 no 28 0 158
## 25 38 no 29 0 165
## 26 44 no 20 0 162
## 27 41 yes 22 7 160
## 28 37 yes 20 7 163
## 29 40 no 29 0 167
## 30 41 no 21 0 155
## 31 41 no 35 0 172
## 32 35 yes 41 7 166
## 33 40 no 24 0 168
## 34 39 yes 23 17 157
## 35 42 no 24 0 175
## 36 42 no 21 0 165
## 37 33 yes 20 7 161
## 38 33 no 24 0 149
## 39 39 no 19 0 165
## 40 40 yes 31 12 163
## 41 45 yes 28 25 163
## 42 44 no 20 0 174
## 43 38 no 31 0 164
## 44 39 no 27 0 162
## 45 41 no 27 0 164
## 46 41 yes 37 25 161
## 47 39 yes 21 17 156
## 48 39 yes 22 7 159
## 49 40 yes 26 25 170
## 50 34 no 26 0 167
## 51 38 yes 31 25 162
## 52 38 yes 30 12 165
## 53 38 no 20 0 157
## 54 40 yes 37 50 168
## 55 41 yes 27 35 163
## 56 37 yes 19 7 165
## 57 40 no 19 0 171
## 58 40 yes 20 2 170
## 59 40 no 24 0 157
## 60 40 yes 27 12 152
## 61 39 yes 23 25 181
## 62 41 yes 32 12 173
## 63 38 no 18 0 172
## 64 35 yes 20 35 170
## 65 39 yes 30 25 170
## 66 37 no 28 0 158
## 67 38 no 29 0 165
## 68 44 no 20 0 162
## 69 41 yes 22 7 160
## 70 37 yes 20 7 163
## 71 40 no 29 0 167
## 72 41 no 21 0 155
## 73 41 no 35 0 172
## 74 35 yes 41 7 166
## 75 40 no 24 0 168
## 76 39 yes 23 17 157
## 77 42 no 24 0 175
## 78 42 no 21 0 165
## 79 33 yes 20 7 161
## 80 33 no 24 0 149
## 81 39 no 19 0 165
## 82 40 yes 31 12 163
## 83 45 yes 28 25 163
## 84 44 no 20 0 174
## 85 38 no 31 0 164
## 86 39 no 27 0 162
## 87 41 no 27 0 164
## 88 41 yes 37 25 161
## 89 39 yes 21 17 156
## 90 39 yes 22 7 159
## 91 40 yes 26 25 170
## 92 34 no 26 0 167
## 93 38 yes 31 25 162
## 94 38 yes 30 12 165
## 95 38 no 20 0 157
## 96 40 yes 37 50 168
## 97 41 yes 27 35 163
## 98 37 yes 19 7 165
## 99 40 no 19 0 171
## 100 40 yes 20 2 170
## 101 40 no 24 0 157
## 102 40 yes 27 12 152
## 103 39 yes 23 25 181
## 104 41 yes 32 12 173
## 105 38 no 18 0 172
## 106 35 yes 20 35 170
## 107 39 yes 30 25 170
## 108 37 no 28 0 158
## 109 38 no 29 0 165
## 110 44 no 20 0 162
## 111 41 yes 22 7 160
## 112 37 yes 20 7 163
## 113 40 no 29 0 167
## 114 41 no 21 0 155
## 115 41 no 35 0 172
## 116 35 yes 41 7 166
## 117 40 no 24 0 168
## 118 39 yes 23 17 157
## 119 42 no 24 0 175
## 120 42 no 21 0 165
## 121 33 yes 20 7 161
## 122 33 no 24 0 149
## 123 39 no 19 0 165
## 124 40 yes 31 12 163
## 125 45 yes 28 25 163
## 126 44 no 20 0 174
## 127 38 no 31 0 164
## 128 39 no 27 0 162
## 129 41 no 27 0 164
## 130 41 yes 37 25 161
## 131 39 yes 21 17 156
## 132 39 yes 22 7 159
## 133 40 yes 26 25 170
## 134 34 no 26 0 167
## 135 38 yes 31 25 162
## 136 38 yes 30 12 165
## 137 38 no 20 0 157
## 138 40 yes 37 50 168
## 139 41 yes 27 35 163
## 140 37 yes 19 7 165
## 141 40 no 19 0 171
## 142 40 yes 20 2 170
## 143 40 no 24 0 157
## 144 40 yes 27 12 152
## 145 39 yes 23 25 181
## 146 41 yes 32 12 173
## 147 38 no 18 0 172
## 148 35 yes 20 35 170
## 149 39 yes 30 25 170
## 150 37 no 28 0 158
## 151 38 no 29 0 165
## 152 44 no 20 0 162
## 153 41 yes 22 7 160
## 154 37 yes 20 7 163
## 155 40 no 29 0 167
## 156 41 no 21 0 155
## 157 41 no 35 0 172
## 158 35 yes 41 7 166
## 159 40 no 24 0 168
## 160 39 yes 23 17 157
## 161 42 no 24 0 175
## 162 42 no 21 0 165
## 163 33 yes 20 7 161
## 164 33 no 24 0 149
## 165 39 no 19 0 165
## 166 40 yes 31 12 163
## 167 45 yes 28 25 163
## 168 44 no 20 0 174
## maternal.prepregnant.weight paternal.age paternal.education
## 1 57 NA NA
## 2 62 27 14
## 3 62 37 14
## 4 66 46 NA
## 5 53 24 12
## 6 52 23 14
## 7 62 30 10
## 8 64 25 12
## 9 57 32 16
## 10 64 38 14
## 11 48 22 14
## 12 61 31 16
## 13 51 31 16
## 14 60 20 14
## 15 62 19 12
## 16 59 24 12
## 17 50 31 16
## 18 48 37 12
## 19 69 23 16
## 20 70 38 14
## 21 50 20 12
## 22 57 23 12
## 23 78 40 16
## 24 54 39 10
## 25 61 NA NA
## 26 57 23 10
## 27 53 24 16
## 28 47 20 10
## 29 60 30 16
## 30 55 25 14
## 31 58 31 16
## 32 57 37 14
## 33 53 29 16
## 34 48 NA NA
## 35 66 30 12
## 36 61 21 10
## 37 50 20 10
## 38 45 26 16
## 39 57 NA NA
## 40 49 41 12
## 41 54 30 16
## 42 68 26 14
## 43 57 NA NA
## 44 62 27 14
## 45 62 37 14
## 46 66 46 NA
## 47 53 24 12
## 48 52 23 14
## 49 62 30 10
## 50 64 25 12
## 51 57 32 16
## 52 64 38 14
## 53 48 22 14
## 54 61 31 16
## 55 51 31 16
## 56 60 20 14
## 57 62 19 12
## 58 59 24 12
## 59 50 31 16
## 60 48 37 12
## 61 69 23 16
## 62 70 38 14
## 63 50 20 12
## 64 57 23 12
## 65 78 40 16
## 66 54 39 10
## 67 61 NA NA
## 68 57 23 10
## 69 53 24 16
## 70 47 20 10
## 71 60 30 16
## 72 55 25 14
## 73 58 31 16
## 74 57 37 14
## 75 53 29 16
## 76 48 NA NA
## 77 66 30 12
## 78 61 21 10
## 79 50 20 10
## 80 45 26 16
## 81 57 NA NA
## 82 49 41 12
## 83 54 30 16
## 84 68 26 14
## 85 57 NA NA
## 86 62 27 14
## 87 62 37 14
## 88 66 46 NA
## 89 53 24 12
## 90 52 23 14
## 91 62 30 10
## 92 64 25 12
## 93 57 32 16
## 94 64 38 14
## 95 48 22 14
## 96 61 31 16
## 97 51 31 16
## 98 60 20 14
## 99 62 19 12
## 100 59 24 12
## 101 50 31 16
## 102 48 37 12
## 103 69 23 16
## 104 70 38 14
## 105 50 20 12
## 106 57 23 12
## 107 78 40 16
## 108 54 39 10
## 109 61 NA NA
## 110 57 23 10
## 111 53 24 16
## 112 47 20 10
## 113 60 30 16
## 114 55 25 14
## 115 58 31 16
## 116 57 37 14
## 117 53 29 16
## 118 48 NA NA
## 119 66 30 12
## 120 61 21 10
## 121 50 20 10
## 122 45 26 16
## 123 57 NA NA
## 124 49 41 12
## 125 54 30 16
## 126 68 26 14
## 127 57 NA NA
## 128 62 27 14
## 129 62 37 14
## 130 66 46 NA
## 131 53 24 12
## 132 52 23 14
## 133 62 30 10
## 134 64 25 12
## 135 57 32 16
## 136 64 38 14
## 137 48 22 14
## 138 61 31 16
## 139 51 31 16
## 140 60 20 14
## 141 62 19 12
## 142 59 24 12
## 143 50 31 16
## 144 48 37 12
## 145 69 23 16
## 146 70 38 14
## 147 50 20 12
## 148 57 23 12
## 149 78 40 16
## 150 54 39 10
## 151 61 NA NA
## 152 57 23 10
## 153 53 24 16
## 154 47 20 10
## 155 60 30 16
## 156 55 25 14
## 157 58 31 16
## 158 57 37 14
## 159 53 29 16
## 160 48 NA NA
## 161 66 30 12
## 162 61 21 10
## 163 50 20 10
## 164 45 26 16
## 165 57 NA NA
## 166 49 41 12
## 167 54 30 16
## 168 68 26 14
## paternal.cigarettes paternal.height low.birthweight geriatric.pregnancy
## 1 NA NA 0 FALSE
## 2 0 178 0 FALSE
## 3 0 170 0 FALSE
## 4 0 175 0 TRUE
## 5 7 179 0 FALSE
## 6 25 NA 1 FALSE
## 7 25 181 0 FALSE
## 8 25 175 0 FALSE
## 9 50 194 0 FALSE
## 10 50 180 0 FALSE
## 11 0 179 0 FALSE
## 12 0 173 0 TRUE
## 13 25 185 0 FALSE
## 14 0 183 0 FALSE
## 15 0 183 0 FALSE
## 16 12 185 0 FALSE
## 17 0 173 0 FALSE
## 18 25 170 0 FALSE
## 19 2 181 0 FALSE
## 20 25 180 0 FALSE
## 21 7 172 0 FALSE
## 22 50 186 1 FALSE
## 23 50 178 0 FALSE
## 24 0 171 0 FALSE
## 25 NA NA 0 FALSE
## 26 35 179 0 FALSE
## 27 12 176 0 FALSE
## 28 35 185 1 FALSE
## 29 NA 182 0 FALSE
## 30 25 183 0 FALSE
## 31 25 185 0 TRUE
## 32 25 173 1 TRUE
## 33 0 181 0 FALSE
## 34 NA NA 0 FALSE
## 35 0 184 0 FALSE
## 36 25 185 0 FALSE
## 37 35 180 1 FALSE
## 38 0 169 1 FALSE
## 39 NA NA 0 FALSE
## 40 50 191 0 FALSE
## 41 0 183 0 FALSE
## 42 25 189 0 FALSE
## 43 NA NA 0 FALSE
## 44 0 178 0 FALSE
## 45 0 170 0 FALSE
## 46 0 175 0 TRUE
## 47 7 179 0 FALSE
## 48 25 NA 1 FALSE
## 49 25 181 0 FALSE
## 50 25 175 0 FALSE
## 51 50 194 0 FALSE
## 52 50 180 0 FALSE
## 53 0 179 0 FALSE
## 54 0 173 0 TRUE
## 55 25 185 0 FALSE
## 56 0 183 0 FALSE
## 57 0 183 0 FALSE
## 58 12 185 0 FALSE
## 59 0 173 0 FALSE
## 60 25 170 0 FALSE
## 61 2 181 0 FALSE
## 62 25 180 0 FALSE
## 63 7 172 0 FALSE
## 64 50 186 1 FALSE
## 65 50 178 0 FALSE
## 66 0 171 0 FALSE
## 67 NA NA 0 FALSE
## 68 35 179 0 FALSE
## 69 12 176 0 FALSE
## 70 35 185 1 FALSE
## 71 NA 182 0 FALSE
## 72 25 183 0 FALSE
## 73 25 185 0 TRUE
## 74 25 173 1 TRUE
## 75 0 181 0 FALSE
## 76 NA NA 0 FALSE
## 77 0 184 0 FALSE
## 78 25 185 0 FALSE
## 79 35 180 1 FALSE
## 80 0 169 1 FALSE
## 81 NA NA 0 FALSE
## 82 50 191 0 FALSE
## 83 0 183 0 FALSE
## 84 25 189 0 FALSE
## 85 NA NA 0 FALSE
## 86 0 178 0 FALSE
## 87 0 170 0 FALSE
## 88 0 175 0 TRUE
## 89 7 179 0 FALSE
## 90 25 NA 1 FALSE
## 91 25 181 0 FALSE
## 92 25 175 0 FALSE
## 93 50 194 0 FALSE
## 94 50 180 0 FALSE
## 95 0 179 0 FALSE
## 96 0 173 0 TRUE
## 97 25 185 0 FALSE
## 98 0 183 0 FALSE
## 99 0 183 0 FALSE
## 100 12 185 0 FALSE
## 101 0 173 0 FALSE
## 102 25 170 0 FALSE
## 103 2 181 0 FALSE
## 104 25 180 0 FALSE
## 105 7 172 0 FALSE
## 106 50 186 1 FALSE
## 107 50 178 0 FALSE
## 108 0 171 0 FALSE
## 109 NA NA 0 FALSE
## 110 35 179 0 FALSE
## 111 12 176 0 FALSE
## 112 35 185 1 FALSE
## 113 NA 182 0 FALSE
## 114 25 183 0 FALSE
## 115 25 185 0 TRUE
## 116 25 173 1 TRUE
## 117 0 181 0 FALSE
## 118 NA NA 0 FALSE
## 119 0 184 0 FALSE
## 120 25 185 0 FALSE
## 121 35 180 1 FALSE
## 122 0 169 1 FALSE
## 123 NA NA 0 FALSE
## 124 50 191 0 FALSE
## 125 0 183 0 FALSE
## 126 25 189 0 FALSE
## 127 NA NA 0 FALSE
## 128 0 178 0 FALSE
## 129 0 170 0 FALSE
## 130 0 175 0 TRUE
## 131 7 179 0 FALSE
## 132 25 NA 1 FALSE
## 133 25 181 0 FALSE
## 134 25 175 0 FALSE
## 135 50 194 0 FALSE
## 136 50 180 0 FALSE
## 137 0 179 0 FALSE
## 138 0 173 0 TRUE
## 139 25 185 0 FALSE
## 140 0 183 0 FALSE
## 141 0 183 0 FALSE
## 142 12 185 0 FALSE
## 143 0 173 0 FALSE
## 144 25 170 0 FALSE
## 145 2 181 0 FALSE
## 146 25 180 0 FALSE
## 147 7 172 0 FALSE
## 148 50 186 1 FALSE
## 149 50 178 0 FALSE
## 150 0 171 0 FALSE
## 151 NA NA 0 FALSE
## 152 35 179 0 FALSE
## 153 12 176 0 FALSE
## 154 35 185 1 FALSE
## 155 NA 182 0 FALSE
## 156 25 183 0 FALSE
## 157 25 185 0 TRUE
## 158 25 173 1 TRUE
## 159 0 181 0 FALSE
## 160 NA NA 0 FALSE
## 161 0 184 0 FALSE
## 162 25 185 0 FALSE
## 163 35 180 1 FALSE
## 164 0 169 1 FALSE
## 165 NA NA 0 FALSE
## 166 50 191 0 FALSE
## 167 0 183 0 FALSE
## 168 25 189 0 FALSE
## sample.27 sample.1522 sample.569 sample.365 sample.1369 sample.1023
## 1 46 56 47 54 56 59
## 2 46 56 47 54 56 59
## 3 46 56 47 54 56 59
## 4 46 56 47 54 56 59
## 5 46 56 47 54 56 59
## 6 46 56 47 54 56 59
## 7 46 56 47 54 56 59
## 8 46 56 47 54 56 59
## 9 46 56 47 54 56 59
## 10 46 56 47 54 56 59
## 11 46 56 47 54 56 59
## 12 46 56 47 54 56 59
## 13 46 56 47 54 56 59
## 14 46 56 47 54 56 59
## 15 46 56 47 54 56 59
## 16 46 56 47 54 56 59
## 17 46 56 47 54 56 59
## 18 46 56 47 54 56 59
## 19 46 56 47 54 56 59
## 20 46 56 47 54 56 59
## 21 46 56 47 54 56 59
## 22 46 56 47 54 56 59
## 23 46 56 47 54 56 59
## 24 46 56 47 54 56 59
## 25 46 56 47 54 56 59
## 26 46 56 47 54 56 59
## 27 46 56 47 54 56 59
## 28 46 56 47 54 56 59
## 29 46 56 47 54 56 59
## 30 46 56 47 54 56 59
## 31 46 56 47 54 56 59
## 32 46 56 47 54 56 59
## 33 46 56 47 54 56 59
## 34 46 56 47 54 56 59
## 35 46 56 47 54 56 59
## 36 46 56 47 54 56 59
## 37 46 56 47 54 56 59
## 38 46 56 47 54 56 59
## 39 46 56 47 54 56 59
## 40 46 56 47 54 56 59
## 41 46 56 47 54 56 59
## 42 46 56 47 54 56 59
## 43 52 43 40 35 59 47
## 44 52 43 40 35 59 47
## 45 52 43 40 35 59 47
## 46 52 43 40 35 59 47
## 47 52 43 40 35 59 47
## 48 52 43 40 35 59 47
## 49 52 43 40 35 59 47
## 50 52 43 40 35 59 47
## 51 52 43 40 35 59 47
## 52 52 43 40 35 59 47
## 53 52 43 40 35 59 47
## 54 52 43 40 35 59 47
## 55 52 43 40 35 59 47
## 56 52 43 40 35 59 47
## 57 52 43 40 35 59 47
## 58 52 43 40 35 59 47
## 59 52 43 40 35 59 47
## 60 52 43 40 35 59 47
## 61 52 43 40 35 59 47
## 62 52 43 40 35 59 47
## 63 52 43 40 35 59 47
## 64 52 43 40 35 59 47
## 65 52 43 40 35 59 47
## 66 52 43 40 35 59 47
## 67 52 43 40 35 59 47
## 68 52 43 40 35 59 47
## 69 52 43 40 35 59 47
## 70 52 43 40 35 59 47
## 71 52 43 40 35 59 47
## 72 52 43 40 35 59 47
## 73 52 43 40 35 59 47
## 74 52 43 40 35 59 47
## 75 52 43 40 35 59 47
## 76 52 43 40 35 59 47
## 77 52 43 40 35 59 47
## 78 52 43 40 35 59 47
## 79 52 43 40 35 59 47
## 80 52 43 40 35 59 47
## 81 52 43 40 35 59 47
## 82 52 43 40 35 59 47
## 83 52 43 40 35 59 47
## 84 52 43 40 35 59 47
## 85 98 97 87 96 84 96
## 86 98 97 87 96 84 96
## 87 98 97 87 96 84 96
## 88 98 97 87 96 84 96
## 89 98 97 87 96 84 96
## 90 98 97 87 96 84 96
## 91 98 97 87 96 84 96
## 92 98 97 87 96 84 96
## 93 98 97 87 96 84 96
## 94 98 97 87 96 84 96
## 95 98 97 87 96 84 96
## 96 98 97 87 96 84 96
## 97 98 97 87 96 84 96
## 98 98 97 87 96 84 96
## 99 98 97 87 96 84 96
## 100 98 97 87 96 84 96
## 101 98 97 87 96 84 96
## 102 98 97 87 96 84 96
## 103 98 97 87 96 84 96
## 104 98 97 87 96 84 96
## 105 98 97 87 96 84 96
## 106 98 97 87 96 84 96
## 107 98 97 87 96 84 96
## 108 98 97 87 96 84 96
## 109 98 97 87 96 84 96
## 110 98 97 87 96 84 96
## 111 98 97 87 96 84 96
## 112 98 97 87 96 84 96
## 113 98 97 87 96 84 96
## 114 98 97 87 96 84 96
## 115 98 97 87 96 84 96
## 116 98 97 87 96 84 96
## 117 98 97 87 96 84 96
## 118 98 97 87 96 84 96
## 119 98 97 87 96 84 96
## 120 98 97 87 96 84 96
## 121 98 97 87 96 84 96
## 122 98 97 87 96 84 96
## 123 98 97 87 96 84 96
## 124 98 97 87 96 84 96
## 125 98 97 87 96 84 96
## 126 98 97 87 96 84 96
## 127 53 45 63 41 46 50
## 128 53 45 63 41 46 50
## 129 53 45 63 41 46 50
## 130 53 45 63 41 46 50
## 131 53 45 63 41 46 50
## 132 53 45 63 41 46 50
## 133 53 45 63 41 46 50
## 134 53 45 63 41 46 50
## 135 53 45 63 41 46 50
## 136 53 45 63 41 46 50
## 137 53 45 63 41 46 50
## 138 53 45 63 41 46 50
## 139 53 45 63 41 46 50
## 140 53 45 63 41 46 50
## 141 53 45 63 41 46 50
## 142 53 45 63 41 46 50
## 143 53 45 63 41 46 50
## 144 53 45 63 41 46 50
## 145 53 45 63 41 46 50
## 146 53 45 63 41 46 50
## 147 53 45 63 41 46 50
## 148 53 45 63 41 46 50
## 149 53 45 63 41 46 50
## 150 53 45 63 41 46 50
## 151 53 45 63 41 46 50
## 152 53 45 63 41 46 50
## 153 53 45 63 41 46 50
## 154 53 45 63 41 46 50
## 155 53 45 63 41 46 50
## 156 53 45 63 41 46 50
## 157 53 45 63 41 46 50
## 158 53 45 63 41 46 50
## 159 53 45 63 41 46 50
## 160 53 45 63 41 46 50
## 161 53 45 63 41 46 50
## 162 53 45 63 41 46 50
## 163 53 45 63 41 46 50
## 164 53 45 63 41 46 50
## 165 53 45 63 41 46 50
## 166 53 45 63 41 46 50
## 167 53 45 63 41 46 50
## 168 53 45 63 41 46 50
## sample.1272 sample.1262 sample.575 sample.792 sample.752 sample.619
## 1 49 55 62 63 46 52
## 2 49 55 62 63 46 52
## 3 49 55 62 63 46 52
## 4 49 55 62 63 46 52
## 5 49 55 62 63 46 52
## 6 49 55 62 63 46 52
## 7 49 55 62 63 46 52
## 8 49 55 62 63 46 52
## 9 49 55 62 63 46 52
## 10 49 55 62 63 46 52
## 11 49 55 62 63 46 52
## 12 49 55 62 63 46 52
## 13 49 55 62 63 46 52
## 14 49 55 62 63 46 52
## 15 49 55 62 63 46 52
## 16 49 55 62 63 46 52
## 17 49 55 62 63 46 52
## 18 49 55 62 63 46 52
## 19 49 55 62 63 46 52
## 20 49 55 62 63 46 52
## 21 49 55 62 63 46 52
## 22 49 55 62 63 46 52
## 23 49 55 62 63 46 52
## 24 49 55 62 63 46 52
## 25 49 55 62 63 46 52
## 26 49 55 62 63 46 52
## 27 49 55 62 63 46 52
## 28 49 55 62 63 46 52
## 29 49 55 62 63 46 52
## 30 49 55 62 63 46 52
## 31 49 55 62 63 46 52
## 32 49 55 62 63 46 52
## 33 49 55 62 63 46 52
## 34 49 55 62 63 46 52
## 35 49 55 62 63 46 52
## 36 49 55 62 63 46 52
## 37 49 55 62 63 46 52
## 38 49 55 62 63 46 52
## 39 49 55 62 63 46 52
## 40 49 55 62 63 46 52
## 41 49 55 62 63 46 52
## 42 49 55 62 63 46 52
## 43 42 45 55 45 42 43
## 44 42 45 55 45 42 43
## 45 42 45 55 45 42 43
## 46 42 45 55 45 42 43
## 47 42 45 55 45 42 43
## 48 42 45 55 45 42 43
## 49 42 45 55 45 42 43
## 50 42 45 55 45 42 43
## 51 42 45 55 45 42 43
## 52 42 45 55 45 42 43
## 53 42 45 55 45 42 43
## 54 42 45 55 45 42 43
## 55 42 45 55 45 42 43
## 56 42 45 55 45 42 43
## 57 42 45 55 45 42 43
## 58 42 45 55 45 42 43
## 59 42 45 55 45 42 43
## 60 42 45 55 45 42 43
## 61 42 45 55 45 42 43
## 62 42 45 55 45 42 43
## 63 42 45 55 45 42 43
## 64 42 45 55 45 42 43
## 65 42 45 55 45 42 43
## 66 42 45 55 45 42 43
## 67 42 45 55 45 42 43
## 68 42 45 55 45 42 43
## 69 42 45 55 45 42 43
## 70 42 45 55 45 42 43
## 71 42 45 55 45 42 43
## 72 42 45 55 45 42 43
## 73 42 45 55 45 42 43
## 74 42 45 55 45 42 43
## 75 42 45 55 45 42 43
## 76 42 45 55 45 42 43
## 77 42 45 55 45 42 43
## 78 42 45 55 45 42 43
## 79 42 45 55 45 42 43
## 80 42 45 55 45 42 43
## 81 42 45 55 45 42 43
## 82 42 45 55 45 42 43
## 83 42 45 55 45 42 43
## 84 42 45 55 45 42 43
## 85 88 97 96 104 103 92
## 86 88 97 96 104 103 92
## 87 88 97 96 104 103 92
## 88 88 97 96 104 103 92
## 89 88 97 96 104 103 92
## 90 88 97 96 104 103 92
## 91 88 97 96 104 103 92
## 92 88 97 96 104 103 92
## 93 88 97 96 104 103 92
## 94 88 97 96 104 103 92
## 95 88 97 96 104 103 92
## 96 88 97 96 104 103 92
## 97 88 97 96 104 103 92
## 98 88 97 96 104 103 92
## 99 88 97 96 104 103 92
## 100 88 97 96 104 103 92
## 101 88 97 96 104 103 92
## 102 88 97 96 104 103 92
## 103 88 97 96 104 103 92
## 104 88 97 96 104 103 92
## 105 88 97 96 104 103 92
## 106 88 97 96 104 103 92
## 107 88 97 96 104 103 92
## 108 88 97 96 104 103 92
## 109 88 97 96 104 103 92
## 110 88 97 96 104 103 92
## 111 88 97 96 104 103 92
## 112 88 97 96 104 103 92
## 113 88 97 96 104 103 92
## 114 88 97 96 104 103 92
## 115 88 97 96 104 103 92
## 116 88 97 96 104 103 92
## 117 88 97 96 104 103 92
## 118 88 97 96 104 103 92
## 119 88 97 96 104 103 92
## 120 88 97 96 104 103 92
## 121 88 97 96 104 103 92
## 122 88 97 96 104 103 92
## 123 88 97 96 104 103 92
## 124 88 97 96 104 103 92
## 125 88 97 96 104 103 92
## 126 88 97 96 104 103 92
## 127 49 50 62 51 64 58
## 128 49 50 62 51 64 58
## 129 49 50 62 51 64 58
## 130 49 50 62 51 64 58
## 131 49 50 62 51 64 58
## 132 49 50 62 51 64 58
## 133 49 50 62 51 64 58
## 134 49 50 62 51 64 58
## 135 49 50 62 51 64 58
## 136 49 50 62 51 64 58
## 137 49 50 62 51 64 58
## 138 49 50 62 51 64 58
## 139 49 50 62 51 64 58
## 140 49 50 62 51 64 58
## 141 49 50 62 51 64 58
## 142 49 50 62 51 64 58
## 143 49 50 62 51 64 58
## 144 49 50 62 51 64 58
## 145 49 50 62 51 64 58
## 146 49 50 62 51 64 58
## 147 49 50 62 51 64 58
## 148 49 50 62 51 64 58
## 149 49 50 62 51 64 58
## 150 49 50 62 51 64 58
## 151 49 50 62 51 64 58
## 152 49 50 62 51 64 58
## 153 49 50 62 51 64 58
## 154 49 50 62 51 64 58
## 155 49 50 62 51 64 58
## 156 49 50 62 51 64 58
## 157 49 50 62 51 64 58
## 158 49 50 62 51 64 58
## 159 49 50 62 51 64 58
## 160 49 50 62 51 64 58
## 161 49 50 62 51 64 58
## 162 49 50 62 51 64 58
## 163 49 50 62 51 64 58
## 164 49 50 62 51 64 58
## 165 49 50 62 51 64 58
## 166 49 50 62 51 64 58
## 167 49 50 62 51 64 58
## 168 49 50 62 51 64 58
## sample.1764 sample.516 sample.272 sample.1388 sample.1363 sample.300
## 1 46 61 49 46 61 60
## 2 46 61 49 46 61 60
## 3 46 61 49 46 61 60
## 4 46 61 49 46 61 60
## 5 46 61 49 46 61 60
## 6 46 61 49 46 61 60
## 7 46 61 49 46 61 60
## 8 46 61 49 46 61 60
## 9 46 61 49 46 61 60
## 10 46 61 49 46 61 60
## 11 46 61 49 46 61 60
## 12 46 61 49 46 61 60
## 13 46 61 49 46 61 60
## 14 46 61 49 46 61 60
## 15 46 61 49 46 61 60
## 16 46 61 49 46 61 60
## 17 46 61 49 46 61 60
## 18 46 61 49 46 61 60
## 19 46 61 49 46 61 60
## 20 46 61 49 46 61 60
## 21 46 61 49 46 61 60
## 22 46 61 49 46 61 60
## 23 46 61 49 46 61 60
## 24 46 61 49 46 61 60
## 25 46 61 49 46 61 60
## 26 46 61 49 46 61 60
## 27 46 61 49 46 61 60
## 28 46 61 49 46 61 60
## 29 46 61 49 46 61 60
## 30 46 61 49 46 61 60
## 31 46 61 49 46 61 60
## 32 46 61 49 46 61 60
## 33 46 61 49 46 61 60
## 34 46 61 49 46 61 60
## 35 46 61 49 46 61 60
## 36 46 61 49 46 61 60
## 37 46 61 49 46 61 60
## 38 46 61 49 46 61 60
## 39 46 61 49 46 61 60
## 40 46 61 49 46 61 60
## 41 46 61 49 46 61 60
## 42 46 61 49 46 61 60
## 43 40 51 43 44 47 48
## 44 40 51 43 44 47 48
## 45 40 51 43 44 47 48
## 46 40 51 43 44 47 48
## 47 40 51 43 44 47 48
## 48 40 51 43 44 47 48
## 49 40 51 43 44 47 48
## 50 40 51 43 44 47 48
## 51 40 51 43 44 47 48
## 52 40 51 43 44 47 48
## 53 40 51 43 44 47 48
## 54 40 51 43 44 47 48
## 55 40 51 43 44 47 48
## 56 40 51 43 44 47 48
## 57 40 51 43 44 47 48
## 58 40 51 43 44 47 48
## 59 40 51 43 44 47 48
## 60 40 51 43 44 47 48
## 61 40 51 43 44 47 48
## 62 40 51 43 44 47 48
## 63 40 51 43 44 47 48
## 64 40 51 43 44 47 48
## 65 40 51 43 44 47 48
## 66 40 51 43 44 47 48
## 67 40 51 43 44 47 48
## 68 40 51 43 44 47 48
## 69 40 51 43 44 47 48
## 70 40 51 43 44 47 48
## 71 40 51 43 44 47 48
## 72 40 51 43 44 47 48
## 73 40 51 43 44 47 48
## 74 40 51 43 44 47 48
## 75 40 51 43 44 47 48
## 76 40 51 43 44 47 48
## 77 40 51 43 44 47 48
## 78 40 51 43 44 47 48
## 79 40 51 43 44 47 48
## 80 40 51 43 44 47 48
## 81 40 51 43 44 47 48
## 82 40 51 43 44 47 48
## 83 40 51 43 44 47 48
## 84 40 51 43 44 47 48
## 85 98 97 91 105 77 89
## 86 98 97 91 105 77 89
## 87 98 97 91 105 77 89
## 88 98 97 91 105 77 89
## 89 98 97 91 105 77 89
## 90 98 97 91 105 77 89
## 91 98 97 91 105 77 89
## 92 98 97 91 105 77 89
## 93 98 97 91 105 77 89
## 94 98 97 91 105 77 89
## 95 98 97 91 105 77 89
## 96 98 97 91 105 77 89
## 97 98 97 91 105 77 89
## 98 98 97 91 105 77 89
## 99 98 97 91 105 77 89
## 100 98 97 91 105 77 89
## 101 98 97 91 105 77 89
## 102 98 97 91 105 77 89
## 103 98 97 91 105 77 89
## 104 98 97 91 105 77 89
## 105 98 97 91 105 77 89
## 106 98 97 91 105 77 89
## 107 98 97 91 105 77 89
## 108 98 97 91 105 77 89
## 109 98 97 91 105 77 89
## 110 98 97 91 105 77 89
## 111 98 97 91 105 77 89
## 112 98 97 91 105 77 89
## 113 98 97 91 105 77 89
## 114 98 97 91 105 77 89
## 115 98 97 91 105 77 89
## 116 98 97 91 105 77 89
## 117 98 97 91 105 77 89
## 118 98 97 91 105 77 89
## 119 98 97 91 105 77 89
## 120 98 97 91 105 77 89
## 121 98 97 91 105 77 89
## 122 98 97 91 105 77 89
## 123 98 97 91 105 77 89
## 124 98 97 91 105 77 89
## 125 98 97 91 105 77 89
## 126 98 97 91 105 77 89
## 127 57 59 55 60 60 65
## 128 57 59 55 60 60 65
## 129 57 59 55 60 60 65
## 130 57 59 55 60 60 65
## 131 57 59 55 60 60 65
## 132 57 59 55 60 60 65
## 133 57 59 55 60 60 65
## 134 57 59 55 60 60 65
## 135 57 59 55 60 60 65
## 136 57 59 55 60 60 65
## 137 57 59 55 60 60 65
## 138 57 59 55 60 60 65
## 139 57 59 55 60 60 65
## 140 57 59 55 60 60 65
## 141 57 59 55 60 60 65
## 142 57 59 55 60 60 65
## 143 57 59 55 60 60 65
## 144 57 59 55 60 60 65
## 145 57 59 55 60 60 65
## 146 57 59 55 60 60 65
## 147 57 59 55 60 60 65
## 148 57 59 55 60 60 65
## 149 57 59 55 60 60 65
## 150 57 59 55 60 60 65
## 151 57 59 55 60 60 65
## 152 57 59 55 60 60 65
## 153 57 59 55 60 60 65
## 154 57 59 55 60 60 65
## 155 57 59 55 60 60 65
## 156 57 59 55 60 60 65
## 157 57 59 55 60 60 65
## 158 57 59 55 60 60 65
## 159 57 59 55 60 60 65
## 160 57 59 55 60 60 65
## 161 57 59 55 60 60 65
## 162 57 59 55 60 60 65
## 163 57 59 55 60 60 65
## 164 57 59 55 60 60 65
## 165 57 59 55 60 60 65
## 166 57 59 55 60 60 65
## 167 57 59 55 60 60 65
## 168 57 59 55 60 60 65
## sample.57 sample.431 sample.532 sample.223 sample.1107 sample.697
## 1 46 70 60 60 57 68
## 2 46 70 60 60 57 68
## 3 46 70 60 60 57 68
## 4 46 70 60 60 57 68
## 5 46 70 60 60 57 68
## 6 46 70 60 60 57 68
## 7 46 70 60 60 57 68
## 8 46 70 60 60 57 68
## 9 46 70 60 60 57 68
## 10 46 70 60 60 57 68
## 11 46 70 60 60 57 68
## 12 46 70 60 60 57 68
## 13 46 70 60 60 57 68
## 14 46 70 60 60 57 68
## 15 46 70 60 60 57 68
## 16 46 70 60 60 57 68
## 17 46 70 60 60 57 68
## 18 46 70 60 60 57 68
## 19 46 70 60 60 57 68
## 20 46 70 60 60 57 68
## 21 46 70 60 60 57 68
## 22 46 70 60 60 57 68
## 23 46 70 60 60 57 68
## 24 46 70 60 60 57 68
## 25 46 70 60 60 57 68
## 26 46 70 60 60 57 68
## 27 46 70 60 60 57 68
## 28 46 70 60 60 57 68
## 29 46 70 60 60 57 68
## 30 46 70 60 60 57 68
## 31 46 70 60 60 57 68
## 32 46 70 60 60 57 68
## 33 46 70 60 60 57 68
## 34 46 70 60 60 57 68
## 35 46 70 60 60 57 68
## 36 46 70 60 60 57 68
## 37 46 70 60 60 57 68
## 38 46 70 60 60 57 68
## 39 46 70 60 60 57 68
## 40 46 70 60 60 57 68
## 41 46 70 60 60 57 68
## 42 46 70 60 60 57 68
## 43 39 51 44 46 49 47
## 44 39 51 44 46 49 47
## 45 39 51 44 46 49 47
## 46 39 51 44 46 49 47
## 47 39 51 44 46 49 47
## 48 39 51 44 46 49 47
## 49 39 51 44 46 49 47
## 50 39 51 44 46 49 47
## 51 39 51 44 46 49 47
## 52 39 51 44 46 49 47
## 53 39 51 44 46 49 47
## 54 39 51 44 46 49 47
## 55 39 51 44 46 49 47
## 56 39 51 44 46 49 47
## 57 39 51 44 46 49 47
## 58 39 51 44 46 49 47
## 59 39 51 44 46 49 47
## 60 39 51 44 46 49 47
## 61 39 51 44 46 49 47
## 62 39 51 44 46 49 47
## 63 39 51 44 46 49 47
## 64 39 51 44 46 49 47
## 65 39 51 44 46 49 47
## 66 39 51 44 46 49 47
## 67 39 51 44 46 49 47
## 68 39 51 44 46 49 47
## 69 39 51 44 46 49 47
## 70 39 51 44 46 49 47
## 71 39 51 44 46 49 47
## 72 39 51 44 46 49 47
## 73 39 51 44 46 49 47
## 74 39 51 44 46 49 47
## 75 39 51 44 46 49 47
## 76 39 51 44 46 49 47
## 77 39 51 44 46 49 47
## 78 39 51 44 46 49 47
## 79 39 51 44 46 49 47
## 80 39 51 44 46 49 47
## 81 39 51 44 46 49 47
## 82 39 51 44 46 49 47
## 83 39 51 44 46 49 47
## 84 39 51 44 46 49 47
## 85 105 84 94 87 116 98
## 86 105 84 94 87 116 98
## 87 105 84 94 87 116 98
## 88 105 84 94 87 116 98
## 89 105 84 94 87 116 98
## 90 105 84 94 87 116 98
## 91 105 84 94 87 116 98
## 92 105 84 94 87 116 98
## 93 105 84 94 87 116 98
## 94 105 84 94 87 116 98
## 95 105 84 94 87 116 98
## 96 105 84 94 87 116 98
## 97 105 84 94 87 116 98
## 98 105 84 94 87 116 98
## 99 105 84 94 87 116 98
## 100 105 84 94 87 116 98
## 101 105 84 94 87 116 98
## 102 105 84 94 87 116 98
## 103 105 84 94 87 116 98
## 104 105 84 94 87 116 98
## 105 105 84 94 87 116 98
## 106 105 84 94 87 116 98
## 107 105 84 94 87 116 98
## 108 105 84 94 87 116 98
## 109 105 84 94 87 116 98
## 110 105 84 94 87 116 98
## 111 105 84 94 87 116 98
## 112 105 84 94 87 116 98
## 113 105 84 94 87 116 98
## 114 105 84 94 87 116 98
## 115 105 84 94 87 116 98
## 116 105 84 94 87 116 98
## 117 105 84 94 87 116 98
## 118 105 84 94 87 116 98
## 119 105 84 94 87 116 98
## 120 105 84 94 87 116 98
## 121 105 84 94 87 116 98
## 122 105 84 94 87 116 98
## 123 105 84 94 87 116 98
## 124 105 84 94 87 116 98
## 125 105 84 94 87 116 98
## 126 105 84 94 87 116 98
## 127 40 48 49 52 48 57
## 128 40 48 49 52 48 57
## 129 40 48 49 52 48 57
## 130 40 48 49 52 48 57
## 131 40 48 49 52 48 57
## 132 40 48 49 52 48 57
## 133 40 48 49 52 48 57
## 134 40 48 49 52 48 57
## 135 40 48 49 52 48 57
## 136 40 48 49 52 48 57
## 137 40 48 49 52 48 57
## 138 40 48 49 52 48 57
## 139 40 48 49 52 48 57
## 140 40 48 49 52 48 57
## 141 40 48 49 52 48 57
## 142 40 48 49 52 48 57
## 143 40 48 49 52 48 57
## 144 40 48 49 52 48 57
## 145 40 48 49 52 48 57
## 146 40 48 49 52 48 57
## 147 40 48 49 52 48 57
## 148 40 48 49 52 48 57
## 149 40 48 49 52 48 57
## 150 40 48 49 52 48 57
## 151 40 48 49 52 48 57
## 152 40 48 49 52 48 57
## 153 40 48 49 52 48 57
## 154 40 48 49 52 48 57
## 155 40 48 49 52 48 57
## 156 40 48 49 52 48 57
## 157 40 48 49 52 48 57
## 158 40 48 49 52 48 57
## 159 40 48 49 52 48 57
## 160 40 48 49 52 48 57
## 161 40 48 49 52 48 57
## 162 40 48 49 52 48 57
## 163 40 48 49 52 48 57
## 164 40 48 49 52 48 57
## 165 40 48 49 52 48 57
## 166 40 48 49 52 48 57
## 167 40 48 49 52 48 57
## 168 40 48 49 52 48 57
## sample.1683 sample.808 sample.822 sample.1016 sample.820 sample.1081
## 1 49 59 54 69 58 55
## 2 49 59 54 69 58 55
## 3 49 59 54 69 58 55
## 4 49 59 54 69 58 55
## 5 49 59 54 69 58 55
## 6 49 59 54 69 58 55
## 7 49 59 54 69 58 55
## 8 49 59 54 69 58 55
## 9 49 59 54 69 58 55
## 10 49 59 54 69 58 55
## 11 49 59 54 69 58 55
## 12 49 59 54 69 58 55
## 13 49 59 54 69 58 55
## 14 49 59 54 69 58 55
## 15 49 59 54 69 58 55
## 16 49 59 54 69 58 55
## 17 49 59 54 69 58 55
## 18 49 59 54 69 58 55
## 19 49 59 54 69 58 55
## 20 49 59 54 69 58 55
## 21 49 59 54 69 58 55
## 22 49 59 54 69 58 55
## 23 49 59 54 69 58 55
## 24 49 59 54 69 58 55
## 25 49 59 54 69 58 55
## 26 49 59 54 69 58 55
## 27 49 59 54 69 58 55
## 28 49 59 54 69 58 55
## 29 49 59 54 69 58 55
## 30 49 59 54 69 58 55
## 31 49 59 54 69 58 55
## 32 49 59 54 69 58 55
## 33 49 59 54 69 58 55
## 34 49 59 54 69 58 55
## 35 49 59 54 69 58 55
## 36 49 59 54 69 58 55
## 37 49 59 54 69 58 55
## 38 49 59 54 69 58 55
## 39 49 59 54 69 58 55
## 40 49 59 54 69 58 55
## 41 49 59 54 69 58 55
## 42 49 59 54 69 58 55
## 43 48 56 52 41 55 52
## 44 48 56 52 41 55 52
## 45 48 56 52 41 55 52
## 46 48 56 52 41 55 52
## 47 48 56 52 41 55 52
## 48 48 56 52 41 55 52
## 49 48 56 52 41 55 52
## 50 48 56 52 41 55 52
## 51 48 56 52 41 55 52
## 52 48 56 52 41 55 52
## 53 48 56 52 41 55 52
## 54 48 56 52 41 55 52
## 55 48 56 52 41 55 52
## 56 48 56 52 41 55 52
## 57 48 56 52 41 55 52
## 58 48 56 52 41 55 52
## 59 48 56 52 41 55 52
## 60 48 56 52 41 55 52
## 61 48 56 52 41 55 52
## 62 48 56 52 41 55 52
## 63 48 56 52 41 55 52
## 64 48 56 52 41 55 52
## 65 48 56 52 41 55 52
## 66 48 56 52 41 55 52
## 67 48 56 52 41 55 52
## 68 48 56 52 41 55 52
## 69 48 56 52 41 55 52
## 70 48 56 52 41 55 52
## 71 48 56 52 41 55 52
## 72 48 56 52 41 55 52
## 73 48 56 52 41 55 52
## 74 48 56 52 41 55 52
## 75 48 56 52 41 55 52
## 76 48 56 52 41 55 52
## 77 48 56 52 41 55 52
## 78 48 56 52 41 55 52
## 79 48 56 52 41 55 52
## 80 48 56 52 41 55 52
## 81 48 56 52 41 55 52
## 82 48 56 52 41 55 52
## 83 48 56 52 41 55 52
## 84 48 56 52 41 55 52
## 85 98 101 86 98 102 93
## 86 98 101 86 98 102 93
## 87 98 101 86 98 102 93
## 88 98 101 86 98 102 93
## 89 98 101 86 98 102 93
## 90 98 101 86 98 102 93
## 91 98 101 86 98 102 93
## 92 98 101 86 98 102 93
## 93 98 101 86 98 102 93
## 94 98 101 86 98 102 93
## 95 98 101 86 98 102 93
## 96 98 101 86 98 102 93
## 97 98 101 86 98 102 93
## 98 98 101 86 98 102 93
## 99 98 101 86 98 102 93
## 100 98 101 86 98 102 93
## 101 98 101 86 98 102 93
## 102 98 101 86 98 102 93
## 103 98 101 86 98 102 93
## 104 98 101 86 98 102 93
## 105 98 101 86 98 102 93
## 106 98 101 86 98 102 93
## 107 98 101 86 98 102 93
## 108 98 101 86 98 102 93
## 109 98 101 86 98 102 93
## 110 98 101 86 98 102 93
## 111 98 101 86 98 102 93
## 112 98 101 86 98 102 93
## 113 98 101 86 98 102 93
## 114 98 101 86 98 102 93
## 115 98 101 86 98 102 93
## 116 98 101 86 98 102 93
## 117 98 101 86 98 102 93
## 118 98 101 86 98 102 93
## 119 98 101 86 98 102 93
## 120 98 101 86 98 102 93
## 121 98 101 86 98 102 93
## 122 98 101 86 98 102 93
## 123 98 101 86 98 102 93
## 124 98 101 86 98 102 93
## 125 98 101 86 98 102 93
## 126 98 101 86 98 102 93
## 127 55 74 49 51 53 52
## 128 55 74 49 51 53 52
## 129 55 74 49 51 53 52
## 130 55 74 49 51 53 52
## 131 55 74 49 51 53 52
## 132 55 74 49 51 53 52
## 133 55 74 49 51 53 52
## 134 55 74 49 51 53 52
## 135 55 74 49 51 53 52
## 136 55 74 49 51 53 52
## 137 55 74 49 51 53 52
## 138 55 74 49 51 53 52
## 139 55 74 49 51 53 52
## 140 55 74 49 51 53 52
## 141 55 74 49 51 53 52
## 142 55 74 49 51 53 52
## 143 55 74 49 51 53 52
## 144 55 74 49 51 53 52
## 145 55 74 49 51 53 52
## 146 55 74 49 51 53 52
## 147 55 74 49 51 53 52
## 148 55 74 49 51 53 52
## 149 55 74 49 51 53 52
## 150 55 74 49 51 53 52
## 151 55 74 49 51 53 52
## 152 55 74 49 51 53 52
## 153 55 74 49 51 53 52
## 154 55 74 49 51 53 52
## 155 55 74 49 51 53 52
## 156 55 74 49 51 53 52
## 157 55 74 49 51 53 52
## 158 55 74 49 51 53 52
## 159 55 74 49 51 53 52
## 160 55 74 49 51 53 52
## 161 55 74 49 51 53 52
## 162 55 74 49 51 53 52
## 163 55 74 49 51 53 52
## 164 55 74 49 51 53 52
## 165 55 74 49 51 53 52
## 166 55 74 49 51 53 52
## 167 55 74 49 51 53 52
## 168 55 74 49 51 53 52
## sample.321 sample.1636 sample.1360 sample.1058 sample.755 sample.462
## 1 68 63 70 77 56 65
## 2 68 63 70 77 56 65
## 3 68 63 70 77 56 65
## 4 68 63 70 77 56 65
## 5 68 63 70 77 56 65
## 6 68 63 70 77 56 65
## 7 68 63 70 77 56 65
## 8 68 63 70 77 56 65
## 9 68 63 70 77 56 65
## 10 68 63 70 77 56 65
## 11 68 63 70 77 56 65
## 12 68 63 70 77 56 65
## 13 68 63 70 77 56 65
## 14 68 63 70 77 56 65
## 15 68 63 70 77 56 65
## 16 68 63 70 77 56 65
## 17 68 63 70 77 56 65
## 18 68 63 70 77 56 65
## 19 68 63 70 77 56 65
## 20 68 63 70 77 56 65
## 21 68 63 70 77 56 65
## 22 68 63 70 77 56 65
## 23 68 63 70 77 56 65
## 24 68 63 70 77 56 65
## 25 68 63 70 77 56 65
## 26 68 63 70 77 56 65
## 27 68 63 70 77 56 65
## 28 68 63 70 77 56 65
## 29 68 63 70 77 56 65
## 30 68 63 70 77 56 65
## 31 68 63 70 77 56 65
## 32 68 63 70 77 56 65
## 33 68 63 70 77 56 65
## 34 68 63 70 77 56 65
## 35 68 63 70 77 56 65
## 36 68 63 70 77 56 65
## 37 68 63 70 77 56 65
## 38 68 63 70 77 56 65
## 39 68 63 70 77 56 65
## 40 68 63 70 77 56 65
## 41 68 63 70 77 56 65
## 42 68 63 70 77 56 65
## 43 46 39 57 55 46 58
## 44 46 39 57 55 46 58
## 45 46 39 57 55 46 58
## 46 46 39 57 55 46 58
## 47 46 39 57 55 46 58
## 48 46 39 57 55 46 58
## 49 46 39 57 55 46 58
## 50 46 39 57 55 46 58
## 51 46 39 57 55 46 58
## 52 46 39 57 55 46 58
## 53 46 39 57 55 46 58
## 54 46 39 57 55 46 58
## 55 46 39 57 55 46 58
## 56 46 39 57 55 46 58
## 57 46 39 57 55 46 58
## 58 46 39 57 55 46 58
## 59 46 39 57 55 46 58
## 60 46 39 57 55 46 58
## 61 46 39 57 55 46 58
## 62 46 39 57 55 46 58
## 63 46 39 57 55 46 58
## 64 46 39 57 55 46 58
## 65 46 39 57 55 46 58
## 66 46 39 57 55 46 58
## 67 46 39 57 55 46 58
## 68 46 39 57 55 46 58
## 69 46 39 57 55 46 58
## 70 46 39 57 55 46 58
## 71 46 39 57 55 46 58
## 72 46 39 57 55 46 58
## 73 46 39 57 55 46 58
## 74 46 39 57 55 46 58
## 75 46 39 57 55 46 58
## 76 46 39 57 55 46 58
## 77 46 39 57 55 46 58
## 78 46 39 57 55 46 58
## 79 46 39 57 55 46 58
## 80 46 39 57 55 46 58
## 81 46 39 57 55 46 58
## 82 46 39 57 55 46 58
## 83 46 39 57 55 46 58
## 84 46 39 57 55 46 58
## 85 125 104 111 124 101 101
## 86 125 104 111 124 101 101
## 87 125 104 111 124 101 101
## 88 125 104 111 124 101 101
## 89 125 104 111 124 101 101
## 90 125 104 111 124 101 101
## 91 125 104 111 124 101 101
## 92 125 104 111 124 101 101
## 93 125 104 111 124 101 101
## 94 125 104 111 124 101 101
## 95 125 104 111 124 101 101
## 96 125 104 111 124 101 101
## 97 125 104 111 124 101 101
## 98 125 104 111 124 101 101
## 99 125 104 111 124 101 101
## 100 125 104 111 124 101 101
## 101 125 104 111 124 101 101
## 102 125 104 111 124 101 101
## 103 125 104 111 124 101 101
## 104 125 104 111 124 101 101
## 105 125 104 111 124 101 101
## 106 125 104 111 124 101 101
## 107 125 104 111 124 101 101
## 108 125 104 111 124 101 101
## 109 125 104 111 124 101 101
## 110 125 104 111 124 101 101
## 111 125 104 111 124 101 101
## 112 125 104 111 124 101 101
## 113 125 104 111 124 101 101
## 114 125 104 111 124 101 101
## 115 125 104 111 124 101 101
## 116 125 104 111 124 101 101
## 117 125 104 111 124 101 101
## 118 125 104 111 124 101 101
## 119 125 104 111 124 101 101
## 120 125 104 111 124 101 101
## 121 125 104 111 124 101 101
## 122 125 104 111 124 101 101
## 123 125 104 111 124 101 101
## 124 125 104 111 124 101 101
## 125 125 104 111 124 101 101
## 126 125 104 111 124 101 101
## 127 60 43 46 56 50 60
## 128 60 43 46 56 50 60
## 129 60 43 46 56 50 60
## 130 60 43 46 56 50 60
## 131 60 43 46 56 50 60
## 132 60 43 46 56 50 60
## 133 60 43 46 56 50 60
## 134 60 43 46 56 50 60
## 135 60 43 46 56 50 60
## 136 60 43 46 56 50 60
## 137 60 43 46 56 50 60
## 138 60 43 46 56 50 60
## 139 60 43 46 56 50 60
## 140 60 43 46 56 50 60
## 141 60 43 46 56 50 60
## 142 60 43 46 56 50 60
## 143 60 43 46 56 50 60
## 144 60 43 46 56 50 60
## 145 60 43 46 56 50 60
## 146 60 43 46 56 50 60
## 147 60 43 46 56 50 60
## 148 60 43 46 56 50 60
## 149 60 43 46 56 50 60
## 150 60 43 46 56 50 60
## 151 60 43 46 56 50 60
## 152 60 43 46 56 50 60
## 153 60 43 46 56 50 60
## 154 60 43 46 56 50 60
## 155 60 43 46 56 50 60
## 156 60 43 46 56 50 60
## 157 60 43 46 56 50 60
## 158 60 43 46 56 50 60
## 159 60 43 46 56 50 60
## 160 60 43 46 56 50 60
## 161 60 43 46 56 50 60
## 162 60 43 46 56 50 60
## 163 60 43 46 56 50 60
## 164 60 43 46 56 50 60
## 165 60 43 46 56 50 60
## 166 60 43 46 56 50 60
## 167 60 43 46 56 50 60
## 168 60 43 46 56 50 60
## sample.1088 sample.553 sample.1191 sample.1313 sample.1600 sample.1187
## 1 42 63 66 64 50 57
## 2 42 63 66 64 50 57
## 3 42 63 66 64 50 57
## 4 42 63 66 64 50 57
## 5 42 63 66 64 50 57
## 6 42 63 66 64 50 57
## 7 42 63 66 64 50 57
## 8 42 63 66 64 50 57
## 9 42 63 66 64 50 57
## 10 42 63 66 64 50 57
## 11 42 63 66 64 50 57
## 12 42 63 66 64 50 57
## 13 42 63 66 64 50 57
## 14 42 63 66 64 50 57
## 15 42 63 66 64 50 57
## 16 42 63 66 64 50 57
## 17 42 63 66 64 50 57
## 18 42 63 66 64 50 57
## 19 42 63 66 64 50 57
## 20 42 63 66 64 50 57
## 21 42 63 66 64 50 57
## 22 42 63 66 64 50 57
## 23 42 63 66 64 50 57
## 24 42 63 66 64 50 57
## 25 42 63 66 64 50 57
## 26 42 63 66 64 50 57
## 27 42 63 66 64 50 57
## 28 42 63 66 64 50 57
## 29 42 63 66 64 50 57
## 30 42 63 66 64 50 57
## 31 42 63 66 64 50 57
## 32 42 63 66 64 50 57
## 33 42 63 66 64 50 57
## 34 42 63 66 64 50 57
## 35 42 63 66 64 50 57
## 36 42 63 66 64 50 57
## 37 42 63 66 64 50 57
## 38 42 63 66 64 50 57
## 39 42 63 66 64 50 57
## 40 42 63 66 64 50 57
## 41 42 63 66 64 50 57
## 42 42 63 66 64 50 57
## 43 54 54 48 47 44 46
## 44 54 54 48 47 44 46
## 45 54 54 48 47 44 46
## 46 54 54 48 47 44 46
## 47 54 54 48 47 44 46
## 48 54 54 48 47 44 46
## 49 54 54 48 47 44 46
## 50 54 54 48 47 44 46
## 51 54 54 48 47 44 46
## 52 54 54 48 47 44 46
## 53 54 54 48 47 44 46
## 54 54 54 48 47 44 46
## 55 54 54 48 47 44 46
## 56 54 54 48 47 44 46
## 57 54 54 48 47 44 46
## 58 54 54 48 47 44 46
## 59 54 54 48 47 44 46
## 60 54 54 48 47 44 46
## 61 54 54 48 47 44 46
## 62 54 54 48 47 44 46
## 63 54 54 48 47 44 46
## 64 54 54 48 47 44 46
## 65 54 54 48 47 44 46
## 66 54 54 48 47 44 46
## 67 54 54 48 47 44 46
## 68 54 54 48 47 44 46
## 69 54 54 48 47 44 46
## 70 54 54 48 47 44 46
## 71 54 54 48 47 44 46
## 72 54 54 48 47 44 46
## 73 54 54 48 47 44 46
## 74 54 54 48 47 44 46
## 75 54 54 48 47 44 46
## 76 54 54 48 47 44 46
## 77 54 54 48 47 44 46
## 78 54 54 48 47 44 46
## 79 54 54 48 47 44 46
## 80 54 54 48 47 44 46
## 81 54 54 48 47 44 46
## 82 54 54 48 47 44 46
## 83 54 54 48 47 44 46
## 84 54 54 48 47 44 46
## 85 107 106 102 104 111 86
## 86 107 106 102 104 111 86
## 87 107 106 102 104 111 86
## 88 107 106 102 104 111 86
## 89 107 106 102 104 111 86
## 90 107 106 102 104 111 86
## 91 107 106 102 104 111 86
## 92 107 106 102 104 111 86
## 93 107 106 102 104 111 86
## 94 107 106 102 104 111 86
## 95 107 106 102 104 111 86
## 96 107 106 102 104 111 86
## 97 107 106 102 104 111 86
## 98 107 106 102 104 111 86
## 99 107 106 102 104 111 86
## 100 107 106 102 104 111 86
## 101 107 106 102 104 111 86
## 102 107 106 102 104 111 86
## 103 107 106 102 104 111 86
## 104 107 106 102 104 111 86
## 105 107 106 102 104 111 86
## 106 107 106 102 104 111 86
## 107 107 106 102 104 111 86
## 108 107 106 102 104 111 86
## 109 107 106 102 104 111 86
## 110 107 106 102 104 111 86
## 111 107 106 102 104 111 86
## 112 107 106 102 104 111 86
## 113 107 106 102 104 111 86
## 114 107 106 102 104 111 86
## 115 107 106 102 104 111 86
## 116 107 106 102 104 111 86
## 117 107 106 102 104 111 86
## 118 107 106 102 104 111 86
## 119 107 106 102 104 111 86
## 120 107 106 102 104 111 86
## 121 107 106 102 104 111 86
## 122 107 106 102 104 111 86
## 123 107 106 102 104 111 86
## 124 107 106 102 104 111 86
## 125 107 106 102 104 111 86
## 126 107 106 102 104 111 86
## 127 63 60 50 42 67 43
## 128 63 60 50 42 67 43
## 129 63 60 50 42 67 43
## 130 63 60 50 42 67 43
## 131 63 60 50 42 67 43
## 132 63 60 50 42 67 43
## 133 63 60 50 42 67 43
## 134 63 60 50 42 67 43
## 135 63 60 50 42 67 43
## 136 63 60 50 42 67 43
## 137 63 60 50 42 67 43
## 138 63 60 50 42 67 43
## 139 63 60 50 42 67 43
## 140 63 60 50 42 67 43
## 141 63 60 50 42 67 43
## 142 63 60 50 42 67 43
## 143 63 60 50 42 67 43
## 144 63 60 50 42 67 43
## 145 63 60 50 42 67 43
## 146 63 60 50 42 67 43
## 147 63 60 50 42 67 43
## 148 63 60 50 42 67 43
## 149 63 60 50 42 67 43
## 150 63 60 50 42 67 43
## 151 63 60 50 42 67 43
## 152 63 60 50 42 67 43
## 153 63 60 50 42 67 43
## 154 63 60 50 42 67 43
## 155 63 60 50 42 67 43
## 156 63 60 50 42 67 43
## 157 63 60 50 42 67 43
## 158 63 60 50 42 67 43
## 159 63 60 50 42 67 43
## 160 63 60 50 42 67 43
## 161 63 60 50 42 67 43
## 162 63 60 50 42 67 43
## 163 63 60 50 42 67 43
## 164 63 60 50 42 67 43
## 165 63 60 50 42 67 43
## 166 63 60 50 42 67 43
## 167 63 60 50 42 67 43
## 168 63 60 50 42 67 43
The ggplot2 library is an extremely popular visualization package that provides an interface for extremely fine control over graphics for plotting. It is used by a number of of other popular packages in their built-in plotting functions. It provides a “grammar of graphics” that is quite useful to know.
A note about accessibility:
The default colors automatically selected by ggplot2 are not very user-friendly. Colors are chosen by sampling evenly spaced hues on the color wheel. Because of this behavior, all of the colors have similar intensity, which means that they do not work well when printed in gray-scale, and may be difficult to distinguish for users with atypical color vision. There are many resources for selecting color palettes online. Here are just a few:
In this documentation we will be using four palettes generated using the viridis library.
library(ggplot2)
library(viridis)
## Loading required package: viridisLite
?viridis
## Help on topic 'viridis' was found in the following packages:
##
## Package Library
## viridis /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
## viridisLite /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
##
##
## Using the first match ...
locations.palette <- viridis(3)
smoking.palette <- inferno(2, begin = 0.5, direction = -1)
years.palette <- mako(2, begin = 0.4, end = 0.9, direction = -1)
genes.palette <- plasma(4)
As we go through this plotting section, we will pause several times to allow you to explore. Don’t limit yourself to the visualizations included! Experiment with manipulating each of the elements of the plots to accheive interesting and informative graphics.
The basic function of the ggplot2 library is ggplot().
?ggplot
It is capable of taking a lot of arguments and options, but requires only two: an object (typically a data frame) containing the data, and a list of “aesthetic mappings” that tell R which values to use for the axes, colors, and other graphical elements of the plot.
ggplot(data = experiment, mapping = aes(x = birthweight))
Alone, this produces an empty plot. The ggplot() function by itself creates the blank canvas upon which the plot will be drawn. The plot elements are added to this canvas in layers called “geoms.”
##8.2 The geom
There are over 30 geoms in the ggplot2 library, each of which accepts a particular set of aesthetic mappings. The geoms inherit the mapping specified in the original ggplot() function call, and additional layer-specific aesthetics may be specified within the geom. Let’s start with one of the simplest geoms, the histogram.
The geom_histogram() function requires, at a minimum, that a value be provided for x.
ggplot(data = experiment, mapping = aes(x = birthweight)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Setting the “binwidth” parameter within the geom_histogram() call changes the appearance of the plot and eliminates the message.
ggplot(data = experiment, mapping = aes(x = birthweight)) +
geom_histogram(binwidth = 1)
ggplot(data = experiment, mapping = aes(x = birthweight)) +
geom_histogram(binwidth = 0.25)
The color (for lines and points) and fill (for areas, like bars) of a geom can add another layer of information to the plot.
ggplot(data = experiment, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25) +
scale_fill_manual(values = locations.palette)
Here the total height of the bar is equal to the number of births at each weight, and the fill denotes the hospital at which the birth occured.
##8.4 Creating faceted plots Sometimes, it may be more clear graphically to create multiple sub-plots or “facets” based on categorical values in the data. The facet_wrap() and facet_grid() functions allow the user to break the data down into multiple plots by one or two categorical variables, respectively.
'ggplot(data = experiment, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25) +
scale_fill_manual(values = locations.palette) +
facet_wrap(~year, nrow = 2)'
## [1] "ggplot(data = experiment, mapping = aes(x = birthweight, fill = location)) +\n geom_histogram(binwidth = 0.25) +\n scale_fill_manual(values = locations.palette) +\n facet_wrap(~year, nrow = 2)"
getwd()
## [1] "/Users/syukurhalim/Documents/KULIAH S2/SEMESTER 2/Bioinformatika/PENGANTAR BIOINFORMATIKA (PUBLISH 1)"
Often, the aesthetic names (column names) are uninformative, or unattractive. This may not make much difference when making exploratory figures, but in a report or publication, it is important to have a greater degree of control over the plot title, axis labels, and so on. The labs() function offers the option to set the following labels:
'ggplot(data = experiment, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25) +
scale_fill_manual(values = locations.palette) +
facet_wrap(~year, nrow = 2) +
labs(x = "birth weight (kg)",
fill = "Hospital",
tag = "fig. 1",
caption = "Birth weights by year, color-coded by delivery location.",
alt = "Pair of histograms displaying the distribution of birth weights of infants born at General Hospital, Memorial Hospital, and Silver Hill Medical Center in 1967 and 1968.")'
## [1] "ggplot(data = experiment, mapping = aes(x = birthweight, fill = location)) +\n geom_histogram(binwidth = 0.25) +\n scale_fill_manual(values = locations.palette) +\n facet_wrap(~year, nrow = 2) +\n labs(x = \"birth weight (kg)\",\n fill = \"Hospital\",\n tag = \"fig. 1\",\n caption = \"Birth weights by year, color-coded by delivery location.\",\n alt = \"Pair of histograms displaying the distribution of birth weights of infants born at General Hospital, Memorial Hospital, and Silver Hill Medical Center in 1967 and 1968.\")"
The “theme” of a ggplot object controls the graphical elements that are not mapped onto the data. This includes things like the font size and alignment of axis labels and the color of the plot background. There are a number of pre-set themes offering a range of plot styles.
In addition, the theme() function offers access to these graphical elements independently. Using it, you can change the angle of the text on the x axis, the placement of the legend, and many other things. Here, we will use it to remove the legend title.
'ggplot(data = experiment, mapping = aes(x = birthweight, fill = location)) +
geom_histogram(binwidth = 0.25) +
scale_fill_manual(values = locations.palette) +
facet_grid(location~year) +
labs(x = "weight (kg)", y = "births") +
theme_bw() +
theme(legend.title = element_blank())'
## [1] "ggplot(data = experiment, mapping = aes(x = birthweight, fill = location)) +\n geom_histogram(binwidth = 0.25) +\n scale_fill_manual(values = locations.palette) +\n facet_grid(location~year) +\n labs(x = \"weight (kg)\", y = \"births\") +\n theme_bw() +\n theme(legend.title = element_blank())"
An interesting alternative to geom_histogram() is geom_density().
ggplot(data = experiment, mapping = aes(x = birthweight, fill = smoker)) +
geom_density(alpha = 0.5) +
scale_fill_manual(values = smoking.palette) +
labs(x = "birth weight (kg)", fill = "Maternal smoking in pregnancy") +
theme_bw()
The alpha channel of a color determines its opacity. In this case, we have placed alpha = 0.5 outside of the aes() function call, because the opacity is not being mapped to any characteristic of the data.
The examples above use color in a discrete fashion. In the scatter plot below, the color of each point represents a birth weight (continuous variable).
'experiment %>%
filter(smoker == TRUE) %>%
ggplot(mapping = aes(x = maternal.cigarettes,
y = weeks.gestation,
color = birthweight)) +
geom_point() +
labs(x = "Maternal cigarettes / day", y = "Gestational age at birth (weeks)", color = "Birth weight (kg)") +
scale_color_viridis(option = "inferno", begin = 0.4) +
theme_bw()'
## [1] "experiment %>%\n filter(smoker == TRUE) %>%\n ggplot(mapping = aes(x = maternal.cigarettes,\n y = weeks.gestation,\n color = birthweight)) +\n geom_point() +\n labs(x = \"Maternal cigarettes / day\", y = \"Gestational age at birth (weeks)\", color = \"Birth weight (kg)\") +\n scale_color_viridis(option = \"inferno\", begin = 0.4) +\n theme_bw()"
Notice that it is not necessary to specify a color palette; viridis has a built-in function for interacting with ggplot objects.
All of the elements of the plot, not just the height of bars and position of points, convey information. The labels on a categorical axis should be meaningful.
'experiment %>%
ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +
geom_boxplot() +
scale_fill_manual(values = smoking.palette) +
theme_bw()'
## [1] "experiment %>%\n ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +\n geom_boxplot() +\n scale_fill_manual(values = smoking.palette) +\n theme_bw()"
The bar chart above displays the values “TRUE” and “FALSE” on the x-axis. This is fine for an exploratory plot, but in a report or publication, it might be more informative to replace them with “smoker” and “non-smoker.” The scale_x_discrete() function allows us to do just that.
'experiment %>%
ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +
geom_boxplot() +
scale_fill_manual(values = smoking.palette) +
scale_x_discrete(labels = c("non-smoker", "smoker")) +
guides(fill = "none") +
labs(y = "birth weight (kg)", x = "maternal cigarette use in pregnancy") +
theme_bw()'
## [1] "experiment %>%\n ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +\n geom_boxplot() +\n scale_fill_manual(values = smoking.palette) +\n scale_x_discrete(labels = c(\"non-smoker\", \"smoker\")) +\n guides(fill = \"none\") +\n labs(y = \"birth weight (kg)\", x = \"maternal cigarette use in pregnancy\") +\n theme_bw()"
## 8.8 Change the direction
of axes to improve readability
If the category names are very long, it may be necessary to change the direction of the axis labels.
'experiment %>%
ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +
geom_boxplot() +
scale_fill_manual(values = smoking.palette) +
scale_x_discrete(labels = c("non-smoking in pregnancy", "cigarette smoking in pregnancy")) +
guides(fill = "none") +
labs(y = "birth weight (kg)") +
theme_bw() +
theme(axis.title.x = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))'
## [1] "experiment %>%\n ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +\n geom_boxplot() +\n scale_fill_manual(values = smoking.palette) +\n scale_x_discrete(labels = c(\"non-smoking in pregnancy\", \"cigarette smoking in pregnancy\")) +\n guides(fill = \"none\") +\n labs(y = \"birth weight (kg)\") +\n theme_bw() +\n theme(axis.title.x = element_blank(),\n axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))"
Or even the direction of the axes themselves.
'experiment %>%
ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +
geom_boxplot() +
scale_fill_manual(values = smoking.palette) +
scale_x_discrete(labels = c("non-smoking in pregnancy", "cigarette smoking in pregnancy")) +
guides(fill = "none") +
labs(y = "birth weight (kg)") +
coord_flip() +
theme_bw() +
theme(axis.title.y = element_blank())'
## [1] "experiment %>%\n ggplot(mapping = aes(x = smoker, y = birthweight, fill = smoker)) +\n geom_boxplot() +\n scale_fill_manual(values = smoking.palette) +\n scale_x_discrete(labels = c(\"non-smoking in pregnancy\", \"cigarette smoking in pregnancy\")) +\n guides(fill = \"none\") +\n labs(y = \"birth weight (kg)\") +\n coord_flip() +\n theme_bw() +\n theme(axis.title.y = element_blank())"
##8.9 The pivot_longer() function revisited
In the previous section on Tidyverse, pivot_longer() was only briefly discussed. This is because the easiest way to explain why changing the shape of a data set to create fewer, longer columns is useful is to demonstrate.
'experiment %>%
pivot_longer(cols = c(22:25),
names_to = "gene.id",
values_to = "expression") %>%
ggplot(mapping = aes(x = smoker, y = expression, fill = smoker)) +
geom_violin() +
scale_fill_manual(values = smoking.palette) +
scale_x_discrete(labels = c("non-smoker", "smoker")) +
facet_wrap(~ gene.id, nrow = 2) +
guides(fill = "none") +
labs(x = "Maternal tobacco use in pregnancy", y = "miRNA expression") +
theme_bw()'
## [1] "experiment %>%\n pivot_longer(cols = c(22:25),\n names_to = \"gene.id\",\n values_to = \"expression\") %>%\n ggplot(mapping = aes(x = smoker, y = expression, fill = smoker)) +\n geom_violin() +\n scale_fill_manual(values = smoking.palette) +\n scale_x_discrete(labels = c(\"non-smoker\", \"smoker\")) +\n facet_wrap(~ gene.id, nrow = 2) +\n guides(fill = \"none\") +\n labs(x = \"Maternal tobacco use in pregnancy\", y = \"miRNA expression\") +\n theme_bw()"
After pivoting the miRNA data
into a single column called expression, that data is available for
ggplot to map that onto an aesthetic property.
##8.10 Use shape and line type to convey meaning
Color is not the only aesthetic available for mapping to the data. Shape and line type are also good candidates for displaying categorical (or discrete) values.
'experiment %>%
pivot_longer(cols = c(22:25),
names_to = "gene.id",
values_to = "expression") %>%
ggplot(mapping = aes(x = maternal.cigarettes, y = expression, color = location, shape = low.birthweight)) +
geom_point() +
scale_color_manual(values = locations.palette) +
scale_shape_manual(values = c(16, 17), labels = c("< 2.72 kg", ">= 2.72 kg")) +
facet_wrap(~ gene.id, nrow = 2) +
labs(x = "Maternal cigarettes / day", y = "miRNA expression") +
theme_bw() +
theme(legend.title = element_blank())'
## [1] "experiment %>%\n pivot_longer(cols = c(22:25),\n names_to = \"gene.id\",\n values_to = \"expression\") %>%\n ggplot(mapping = aes(x = maternal.cigarettes, y = expression, color = location, shape = low.birthweight)) +\n geom_point() +\n scale_color_manual(values = locations.palette) +\n scale_shape_manual(values = c(16, 17), labels = c(\"< 2.72 kg\", \">= 2.72 kg\")) +\n facet_wrap(~ gene.id, nrow = 2) +\n labs(x = \"Maternal cigarettes / day\", y = \"miRNA expression\") +\n theme_bw() +\n theme(legend.title = element_blank())"
There are 25 shapes available for plotting. You can see them all here.
'experiment %>%
ggplot(mapping = aes(x = weeks.gestation, y = birthweight, linetype = smoker)) +
geom_quantile(quantiles = c(0.25, 0.5, 0.75), color = "black") +
labs(x = "gestational age at birth", y = "birth weight (kg)", linetype = "geriatric preganancy") +
theme_bw()'
## [1] "experiment %>%\n ggplot(mapping = aes(x = weeks.gestation, y = birthweight, linetype = smoker)) +\n geom_quantile(quantiles = c(0.25, 0.5, 0.75), color = \"black\") +\n labs(x = \"gestational age at birth\", y = \"birth weight (kg)\", linetype = \"geriatric preganancy\") +\n theme_bw()"
##8.11 Focus in on one
portion of the plot
We can zoom in to the the lower left hand corner of the plot using coord_cartesian().
'experiment %>%
ggplot(mapping = aes(x = weeks.gestation, y = birthweight, linetype = smoker)) +
geom_quantile(quantiles = c(0.25, 0.5, 0.75), color = "black") +
labs(x = "gestational age at birth", y = "birth weight (kg)", linetype = "geriatric preganancy") +
coord_cartesian(xlim = c(33, 35), ylim = c(1.5, 3.5)) +
theme_bw()'
## [1] "experiment %>%\n ggplot(mapping = aes(x = weeks.gestation, y = birthweight, linetype = smoker)) +\n geom_quantile(quantiles = c(0.25, 0.5, 0.75), color = \"black\") +\n labs(x = \"gestational age at birth\", y = \"birth weight (kg)\", linetype = \"geriatric preganancy\") +\n coord_cartesian(xlim = c(33, 35), ylim = c(1.5, 3.5)) +\n theme_bw()"
##8.12 Layer multiple geoms
It is not necessary to make a single geom convey all of the information a plot must communicate. Instead, ggplot2 offers users the ability to layer geoms together. As long as they use the same axes, geoms may share a plot.
ggplot(experiment, mapping = aes(x = weeks.gestation,
y = birthweight,
color = smoker)) +
geom_point() +
geom_smooth(alpha = 0.2) +
labs(x = "Gestational age at birth (weeks)",
y = "Birth weight (kg)",
color = "Maternal tobacco use",
caption = "Birthweight increases with gestational age for infants born to both\nsmokers and non-smokers.") +
scale_color_manual(values = smoking.palette) +
theme_bw() +
theme(plot.caption = element_text(hjust = 0))
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
'experiment %>%
group_by(year, smoker) %>%
summarise(mean.birthweight = mean(birthweight),
sd.birthweight = sd(birthweight)) %>%
ggplot(mapping = aes(x = as.factor(year), y = mean.birthweight, fill = smoker)) +
geom_col(position = position_dodge2(preserve = "single")) +
geom_errorbar(mapping = aes(ymin = mean.birthweight - sd.birthweight,
ymax = mean.birthweight + sd.birthweight),
position = position_dodge2(preserve = "single")) +
scale_fill_manual(values = smoking.palette) +
labs(x = "birth year", y = "birth weight (kg)", fill = "maternal smoking") +
theme_bw()'
## [1] "experiment %>%\n group_by(year, smoker) %>%\n summarise(mean.birthweight = mean(birthweight),\n sd.birthweight = sd(birthweight)) %>%\n ggplot(mapping = aes(x = as.factor(year), y = mean.birthweight, fill = smoker)) +\n geom_col(position = position_dodge2(preserve = \"single\")) +\n geom_errorbar(mapping = aes(ymin = mean.birthweight - sd.birthweight,\n ymax = mean.birthweight + sd.birthweight),\n position = position_dodge2(preserve = \"single\")) +\n scale_fill_manual(values = smoking.palette) +\n labs(x = \"birth year\", y = \"birth weight (kg)\", fill = \"maternal smoking\") +\n theme_bw()"
Refrensi :