Carichiamo il dataset olive e iniziamo la nostra
analisi.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(knitr)
load("ClusterData_L31.RData")
data <- olive
Modifichiamo le variabili ‘Area’ e ‘Region’ per una migliore interpretazione dei dati.
data <- data %>%
mutate(Area = case_when(
Area == 1 ~ "Puglia Nord",
Area == 2 ~ "Calabria",
Area == 3 ~ "Puglia Sud",
Area == 4 ~ "Sicilia",
Area == 5 ~ "Sardegna Entroterra",
Area == 6 ~ "Sardegna Costa",
Area == 7 ~ "Liguria Est",
Area == 8 ~ "Liguria Ovest",
Area == 9 ~ "Umbria",
TRUE ~ as.character(Area)
))
data <- data %>%
mutate(Region = case_when(
Region == 1 ~ "Sud",
Region == 2 ~ "Sardegna",
Region == 3 ~ "Nord",
TRUE ~ as.character(Region)
))
Diamo uno sguardo alle prime righe del dataset modificato.
t = head(data)
kable(t, format = "markdown")
| Region | Area | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Linolenic | Arachidic | Eicosenoic |
|---|---|---|---|---|---|---|---|---|---|
| Sud | Puglia Nord | 1075 | 75 | 226 | 7823 | 672 | 36 | 60 | 29 |
| Sud | Puglia Nord | 1088 | 73 | 224 | 7709 | 781 | 31 | 61 | 29 |
| Sud | Puglia Nord | 911 | 54 | 246 | 8113 | 549 | 31 | 63 | 29 |
| Sud | Puglia Nord | 966 | 57 | 240 | 7952 | 619 | 50 | 78 | 35 |
| Sud | Puglia Nord | 1051 | 67 | 259 | 7771 | 672 | 50 | 80 | 46 |
| Sud | Puglia Nord | 911 | 49 | 268 | 7924 | 678 | 51 | 70 | 44 |
Convertiamo i valori degli acidi in percentuali.
lista_Acidi <- c('Palmitic', 'Palmitoleic', 'Stearic', 'Oleic', 'Linoleic', 'Linolenic', 'Arachidic', 'Eicosenoic')
data_df <- data[lista_Acidi] / 100.0
data[lista_Acidi] <- data_df
kable(head(data, n = 5), format = "markdown")
| Region | Area | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Linolenic | Arachidic | Eicosenoic |
|---|---|---|---|---|---|---|---|---|---|
| Sud | Puglia Nord | 10.75 | 0.75 | 2.26 | 78.23 | 6.72 | 0.36 | 0.60 | 0.29 |
| Sud | Puglia Nord | 10.88 | 0.73 | 2.24 | 77.09 | 7.81 | 0.31 | 0.61 | 0.29 |
| Sud | Puglia Nord | 9.11 | 0.54 | 2.46 | 81.13 | 5.49 | 0.31 | 0.63 | 0.29 |
| Sud | Puglia Nord | 9.66 | 0.57 | 2.40 | 79.52 | 6.19 | 0.50 | 0.78 | 0.35 |
| Sud | Puglia Nord | 10.51 | 0.67 | 2.59 | 77.71 | 6.72 | 0.50 | 0.80 | 0.46 |
Facciamo un sommario delle percentuali totali degli acidi.
totalPcts <- data %>%
select(-Region, -Area) %>%
rowSums()
summary(totalPcts)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 98.11 99.70 99.96 99.85 100.01 101.02
length(totalPcts)
## [1] 572
Calcoliamo ora le percentuali dei vari tipi di acidi
SATURI = Palmitic , Stearic , Arachid
MONOINSATURI = Palmitoleic, Oleic, Eicosenoic
POLINSATURI = Linoleic, Linolenic
data_sat <- data %>%
rowwise() %>%
mutate(percent_saturated = sum(Palmitic, Stearic, Arachidic),
percent_monounsaturated = sum(Palmitoleic, Oleic, Eicosenoic,Linoleic, Linolenic),
percent_polyunsaturated = sum(Linoleic, Linolenic))
kable(head(data_sat), format = "markdown")
| Region | Area | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Linolenic | Arachidic | Eicosenoic | percent_saturated | percent_monounsaturated | percent_polyunsaturated |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Sud | Puglia Nord | 10.75 | 0.75 | 2.26 | 78.23 | 6.72 | 0.36 | 0.60 | 0.29 | 13.61 | 86.35 | 7.08 |
| Sud | Puglia Nord | 10.88 | 0.73 | 2.24 | 77.09 | 7.81 | 0.31 | 0.61 | 0.29 | 13.73 | 86.23 | 8.12 |
| Sud | Puglia Nord | 9.11 | 0.54 | 2.46 | 81.13 | 5.49 | 0.31 | 0.63 | 0.29 | 12.20 | 87.76 | 5.80 |
| Sud | Puglia Nord | 9.66 | 0.57 | 2.40 | 79.52 | 6.19 | 0.50 | 0.78 | 0.35 | 12.84 | 87.13 | 6.69 |
| Sud | Puglia Nord | 10.51 | 0.67 | 2.59 | 77.71 | 6.72 | 0.50 | 0.80 | 0.46 | 13.90 | 86.06 | 7.22 |
| Sud | Puglia Nord | 9.11 | 0.49 | 2.68 | 79.24 | 6.78 | 0.51 | 0.70 | 0.44 | 12.49 | 87.46 | 7.29 |
Calcoliamo la media dei valori per ogni acido grasso, raggruppati per regione.
library(dplyr)
library(tidyr)
library(knitr)
means_region <- data %>%
group_by(Region) %>%
gather(key = "fatty_acid", value = "percentage", -Region, -Area) %>%
group_by(Region, fatty_acid) %>%
summarise(Mean = mean(percentage, na.rm = TRUE), .groups = "keep") %>%
spread(key = fatty_acid, value = Mean)
# Stampa la tabella dei valori medi
kable(means_region, format = "markdown")
| Region | Arachidic | Eicosenoic | Linoleic | Linolenic | Oleic | Palmitic | Palmitoleic | Stearic |
|---|---|---|---|---|---|---|---|---|
| Nord | 0.3757616 | 0.0197351 | 7.270331 | 0.2178808 | 77.93053 | 10.94801 | 0.837351 | 2.308013 |
| Sardegna | 0.7317347 | 0.0193878 | 11.965306 | 0.2709184 | 72.68020 | 11.11347 | 0.967449 | 2.261837 |
| Sud | 0.6311765 | 0.2732198 | 10.334984 | 0.3806502 | 71.00009 | 13.32288 | 1.548019 | 2.287740 |
Mappa che rappresenta la media dell’acido oleico in italia https://www.humanitas.it/enciclopedia/integratori-alimentari/acido-oleico/
italy_regions <- st_read("/Users/damianotaricone/Documents/DATA MINING /Clustering/Olive_project/gadm41_ITA_shp/gadm41_ITA_3.shp")
## Reading layer `gadm41_ITA_3' from data source
## `/Users/damianotaricone/Documents/DATA MINING /Clustering/Olive_project/gadm41_ITA_shp/gadm41_ITA_3.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 8100 features and 16 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: 6.630879 ymin: 35.49292 xmax: 18.52069 ymax: 47.09265
## Geodetic CRS: WGS 84
means_area <- data %>%
group_by(Area) %>%
gather(key = "fatty_acid", value = "percentage", -Region, -Area) %>%
group_by(Area, fatty_acid) %>%
summarise(Mean = mean(percentage, na.rm = TRUE), .groups = "keep") %>%
spread(key = fatty_acid, value = Mean)
data_aggregated <- means_area %>%
group_by(Area) %>%
summarise(mean_value = mean(`Oleic`))
datamap <- data_aggregated %>%
mutate(regionmap = sub(" .*", "", Area)) %>%
mutate(regionmap = case_when(
regionmap == "Puglia" ~ "Apulia",
regionmap == "Sicilia" ~ "Sicily",
TRUE ~ as.character(regionmap)
))
italy_data <- left_join(italy_regions, datamap, by = c("NAME_1" = "regionmap"))
## Warning in sf_column %in% names(g): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 306 of `x` matches multiple rows in `y`.
## ℹ Row 4 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
ggplot(data = italy_data) +
geom_sf(aes(fill = mean_value)) +
scale_fill_viridis_c(name = "Mean value of Oleic Acid") +
labs(title = "Heatmap of Oleic Acid in Italy by Region") +
theme_minimal()
library(tidyr)
mean_area <- data_sat %>%
group_by(Area) %>%
mutate(Media_Polinsaturi = mean(percent_polyunsaturated),
Media_Saturi = mean(percent_saturated),
Media_Monoinsaturi = mean(percent_monounsaturated)) %>%
select(Region, Area, Media_Polinsaturi, Media_Saturi, Media_Monoinsaturi)%>%
distinct()
kable(mean_area, format = "markdown")
| Region | Area | Media_Polinsaturi | Media_Saturi | Media_Monoinsaturi |
|---|---|---|---|---|
| Sud | Puglia Nord | 7.484000 | 13.33800 | 86.64960 |
| Sud | Calabria | 8.645714 | 16.28375 | 83.21429 |
| Sud | Puglia Sud | 12.010194 | 16.66383 | 83.20379 |
| Sud | Sicilia | 8.771944 | 15.77806 | 83.78389 |
| Sardegna | Sardegna Entroterra | 11.538615 | 13.88738 | 86.10923 |
| Sardegna | Sardegna Costa | 13.610303 | 14.53970 | 85.49758 |
| Nord | Umbria | 6.312157 | 13.23137 | 86.48784 |
| Nord | Liguria Est | 7.158000 | 14.50400 | 85.47880 |
| Nord | Liguria Ovest | 9.018000 | 13.16800 | 86.85660 |
visuliazziamo graficamente la distribuzione delle medie per area
library(tidyr)
library(ggplot2)
# Trasforma i dati in formato lungo
mean_area_long <- mean_area %>%
pivot_longer(
cols = starts_with("Media_"),
names_to = "TipoDiAcidoGrasso",
values_to = "Valore"
)
ggplot(mean_area_long, aes(x = Area, y = Valore, fill = TipoDiAcidoGrasso)) +
geom_bar(stat = "identity", position = position_dodge()) +
facet_wrap(~TipoDiAcidoGrasso, scales = "free_y") +
labs(x = "Area", y = "Media Valore") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
Selezioniamo le colonne rilevanti e normalizziamo i dati.
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.4
## ✔ lubridate 1.9.3 ✔ stringr 1.5.0
## ✔ purrr 1.0.2 ✔ tibble 3.2.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
data_cluster <- data %>%
select(Area, Palmitic, Palmitoleic, Stearic, Oleic, Linoleic, Linolenic, Arachidic, Eicosenoic) %>%
na.omit()
# Now you can use mutate from dplyr
data_cluster <- data_cluster %>%
mutate(Area = case_when(
Area == "Puglia Nord" ~ "PN",
Area == "Calabria" ~ "C",
Area == "Puglia Sud" ~ "PS",
Area == "Sicilia" ~ "SIC",
Area == "Sardegna Entroterra" ~ "SAE",
Area == "Sardegna Costa" ~ "SAC",
Area == "Umbria" ~ "U",
Area == "Liguria Est" ~ "LE",
Area == "Liguria Ovest" ~ "LO",
TRUE ~ Area
))
# Normalizzazione dei dati senza la colonna 'Area'
data_scaled <- data_cluster %>%
select(-Area) %>%
scale()
Eseguiamo il clustering K-means sui dati normalizzati.
set.seed(123) # Imposta un seed per riproducibilità
kmeans_result <- kmeans(data_scaled, centers = 4, nstart = 100)
data_cluster$Cluster <- factor(kmeans_result$cluster)
Utilizziamo fviz_cluster per visualizzare i risultati
del clustering.
# Preparazione dei dati per la visualizzazione
data_for_plot <- data_cluster %>%
mutate(Cluster = as.factor(Cluster))
# Utilizzare fviz_cluster per visualizzare i cluster con colori specifici per 'Area'
fviz_cluster(list(data = data_scaled, cluster = kmeans_result$cluster)) +
geom_point(aes(color = data_for_plot$Area)) + # Aggiungi i colori basati sulla colonna 'Area'
scale_color_manual(values = c("PN" = "red", "C" = "red", "PS" = "red", # ecc...
"SIC" = "red", "SAE" = "green", "SAC" = "green",
"U" = "blue", "LE" = "blue", "LO" = "blue"))
Creiamo dei boxplot per mostrare la distribuzione degli acidi grassi nelle diverse regioni.
data_box <- select(data, -Area)
Box_acid <- data_box %>%
gather(fatty_acid, percentage, -Region) %>%
ggplot(aes(Region, percentage, fill = Region)) +
geom_boxplot() +
facet_wrap(~fatty_acid, scales = "free", ncol = 4) +
theme_minimal() +
theme(legend.position = "bottom",
plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
axis.title.x = element_text(size = 12),
axis.title.y = element_text(size = 12),
strip.text = element_text(size = 12),
axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_fill_brewer(palette = "Set1") +
labs(title = "Distribuzione degli Acidi Grassi tra le Regioni",
x = "Regioni",
y = "Percentuali") +
guides(fill = guide_legend(title = "Regioni")) +
theme(legend.title = element_text(size = 12, face = "bold"))
print(Box_acid)
Applichiamo il Partitioning Around Medoids (PAM) al nostro dataset scalato.
library(cluster) # per pam
library(ggplot2)
library(dplyr)
pam_result <- pam(data_scaled, k = 5)
Aggiungiamo i cluster al nostro dataset originale.
data_with_clusters <- data # sostituisci con il tuo dataframe originale se necessario
data_with_clusters$Cluster <- pam_result$clustering
Eseguiamo una PCA per ridurre la dimensionalità e visualizzare i nostri dati.
pca <- prcomp(data_scaled)
pca_data <- as.data.frame(pca$x[, 1:2])
pca_data$Cluster <- pam_result$clustering
pca_data$Area <- data$Area # sostituisci con il tuo dataframe originale se necessario
Modifichiamo le etichette di ‘Area’ con abbreviazioni.
pca_data <- pca_data %>%
mutate(Area = case_when(
Area == "Puglia Nord" ~ "PN",
Area == "Calabria" ~ "C",
Area == "Puglia Sud" ~ "PS",
Area == "Sicilia" ~ "SIC",
Area == "Sardegna Entroterra" ~ "SAE",
Area == "Sardegna Costa" ~ "SAC",
Area == "Umbria" ~ "U",
Area == "Liguria Est" ~ "LE",
Area == "Liguria Ovest" ~ "LO",
TRUE ~ Area
))
Creiamo un grafico PCA con ggplot2.
ggplot(pca_data, aes(x = PC1, y = PC2, color = factor(Cluster))) +
geom_point(alpha = 0.8) +
geom_text(aes(label = Area), vjust = 1.5, color = "black") +
scale_color_brewer(palette = "Set1") +
labs(color = "Cluster") +
theme_minimal()
grafico interattivo
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
ggplotly(
ggplot(pca_data, aes(x = PC1, y = PC2, color = factor(Cluster), text = Area)) +
geom_point(alpha = 0.8) +
scale_color_brewer(palette = "Set1") +
labs(color = "Cluster") +
theme_minimal()
) %>%
layout(legend = list(orientation = "h", x = 0.5, xanchor = "center", y = -0.1))
Il clustering gerarchico è un metodo di analisi dei cluster che mira a costruire una gerarchia di cluster. Nell’esempio seguente, utilizziamo il clustering gerarchico su un set di dati contenente diverse misure di acidi grassi in campioni di olio di oliva.
Per prima cosa, selezioniamo le variabili rilevanti dal nostro dataframe e rimuoviamo le righe con valori mancanti:
data_cluster_dt <- data %>%
select(Region, Area, Palmitic, Palmitoleic, Stearic, Oleic, Linoleic, Linolenic, Arachidic, Eicosenoic) %>%
na.omit()
Successivamente, normalizziamo i dati escludendo le colonne
Region e Area poiché contengono dati
categorici:
data_scaled_dt <- data_cluster_dt %>%
select(-Region,-Area) %>%
scale()
data_scaled_dt <- data.frame(data_scaled_dt)
Calcoliamo la distanza euclidea e applichiamo il metodo Ward.D2:
DistEuc1 = dist(data_scaled_dt, method = "euclidean")
EucWard1 = hclust(DistEuc1, method = "ward.D2")
Il dendrogramma può essere visualizzato con i cluster proposti evidenziati:
plot(EucWard1)
rect.hclust(EucWard1, k = 5, border = "red")
Eseguiamo un taglio del dendrogramma per ottenere 4 cluster:
TaglioEucWard1 = cutree(EucWard1, k = 5)
plot(data_scaled_dt, col = TaglioEucWard1)
Utilizziamo NbClust per determinare il numero ottimale
di cluster:
library(NbClust)
NbClust(data_scaled_dt, distance = "euclidean", min.nc = 2, max.nc = 12, method = "ward.D2", index = "all")
## *** : The Hubert index is a graphical method of determining the number of clusters.
## In the plot of Hubert index, we seek a significant knee that corresponds to a
## significant increase of the value of the measure i.e the significant peak in Hubert
## index second differences plot.
##
## *** : The D index is a graphical method of determining the number of clusters.
## In the plot of D index, we seek a significant knee (the significant peak in Dindex
## second differences plot) that corresponds to a significant increase of the value of
## the measure.
##
## *******************************************************************
## * Among all indices:
## * 2 proposed 2 as the best number of clusters
## * 5 proposed 3 as the best number of clusters
## * 1 proposed 4 as the best number of clusters
## * 6 proposed 5 as the best number of clusters
## * 2 proposed 6 as the best number of clusters
## * 3 proposed 7 as the best number of clusters
## * 2 proposed 12 as the best number of clusters
##
## ***** Conclusion *****
##
## * According to the majority rule, the best number of clusters is 5
##
##
## *******************************************************************
## $All.index
## KL CH Hartigan CCC Scott Marriot TrCovW TraceW
## 2 1.2803 248.2752 182.5851 -4.1362 1287.376 5.179956e+17 362984.53 3182.0100
## 3 1.2749 254.7468 151.5304 -0.3191 1945.198 3.690228e+17 169612.54 2410.0209
## 4 1.1402 265.1023 144.0174 6.4969 2646.958 1.923602e+17 106836.56 1903.1839
## 5 2.9334 284.7418 66.5108 15.4920 3325.922 9.171223e+16 59743.62 1518.2332
## 6 1.4315 267.3441 51.3569 16.7913 3662.531 7.331914e+16 44401.66 1358.8375
## 7 1.1796 251.1167 44.7676 17.2658 3970.985 5.819898e+16 38352.16 1245.7980
## 8 1.0581 238.2705 41.9368 18.8017 4220.258 4.916292e+16 33101.08 1154.3346
## 9 1.4392 228.8246 32.9067 20.3707 4390.149 4.623294e+16 26431.91 1074.4433
## 10 1.3883 218.5555 26.6686 21.2298 4526.388 4.498073e+16 22286.36 1015.1112
## 11 0.9024 208.3295 27.1916 21.6498 4771.994 3.542693e+16 20599.37 969.1234
## 12 0.9223 200.6838 27.8312 22.3226 4928.188 3.208634e+16 18334.46 924.3216
## Friedman Rubin Cindex DB Silhouette Duda Pseudot2 Beale Ratkowsky
## 2 155.8591 1.4356 0.3248 1.5058 0.3064 0.5560 256.3183 4.2071 0.3399
## 3 275.3606 1.8954 0.3317 1.3357 0.3134 0.6488 133.6938 2.8492 0.3822
## 4 303.3259 2.4002 0.3136 1.2873 0.3412 0.4720 200.2466 5.8797 0.3779
## 5 410.9174 3.0088 0.2807 1.1013 0.3716 0.6933 53.5195 2.3185 0.3626
## 6 492.0507 3.3617 0.3120 1.1082 0.3725 0.5158 76.0438 4.9013 0.3396
## 7 515.0001 3.6667 0.3052 1.0857 0.3738 0.7954 50.9317 1.3527 0.3207
## 8 536.2701 3.9573 0.2881 1.2966 0.2892 0.7343 32.9205 1.8912 0.3040
## 9 544.3956 4.2515 0.3084 1.3291 0.2908 0.7138 26.4598 2.0873 0.2906
## 10 546.5869 4.5000 0.3013 1.3362 0.2789 0.6520 27.7598 2.7682 0.2784
## 11 554.4410 4.7135 0.2963 1.3397 0.2818 0.5951 65.3062 3.5583 0.2672
## 12 570.1837 4.9420 0.2943 1.3208 0.2627 0.7265 39.8965 1.9707 0.2574
## Ball Ptbiserial Frey McClain Dunn Hubert SDindex Dindex SDbw
## 2 1591.0050 0.4842 0.3934 0.6644 0.1759 4e-04 1.7526 2.1947 0.8618
## 3 803.3403 0.5335 0.0752 1.1281 0.0867 5e-04 1.3650 1.9024 0.6731
## 4 475.7960 0.6048 0.2276 1.3921 0.0950 6e-04 1.3331 1.6940 0.5439
## 5 303.6466 0.6211 0.1756 1.6448 0.0950 6e-04 1.1450 1.4928 0.4681
## 6 226.4729 0.6285 0.4004 1.7333 0.1111 6e-04 1.1285 1.4188 0.3842
## 7 177.9711 0.6247 1.3432 1.8092 0.1111 7e-04 1.1410 1.3469 0.3462
## 8 144.2918 0.5345 0.2145 2.7138 0.0923 7e-04 1.7345 1.3010 0.3276
## 9 119.3826 0.5307 0.1593 2.8736 0.1033 7e-04 1.6938 1.2610 0.3036
## 10 101.5111 0.5304 0.2466 2.9315 0.1033 8e-04 1.7228 1.2329 0.2806
## 11 88.1021 0.5278 2.8371 2.9988 0.1033 8e-04 1.6886 1.2027 0.2662
## 12 77.0268 0.4996 0.9788 3.3882 0.1033 8e-04 1.6709 1.1579 0.2479
##
## $All.CriticalValues
## CritValue_Duda CritValue_PseudoT2 Fvalue_Beale
## 2 0.8360 62.9590 0.0001
## 3 0.8243 52.6480 0.0038
## 4 0.8077 42.6221 0.0000
## 5 0.7837 33.4039 0.0182
## 6 0.7539 26.4364 0.0000
## 7 0.8132 45.4915 0.2130
## 8 0.7631 28.2442 0.0584
## 9 0.7365 23.6147 0.0354
## 10 0.7140 20.8276 0.0054
## 11 0.7672 29.1296 0.0005
## 12 0.7745 30.8677 0.0473
##
## $Best.nc
## KL CH Hartigan CCC Scott Marriot TrCovW
## Number_clusters 5.0000 5.0000 5.0000 12.0000 4.0000 5.00000e+00 3
## Value_Index 2.9334 284.7418 77.5066 22.3226 701.7598 8.22549e+16 193372
## TraceW Friedman Rubin Cindex DB Silhouette Duda
## Number_clusters 3.0000 3.0000 5.0000 5.0000 7.0000 7.0000 NA
## Value_Index 265.1522 119.5015 -0.2556 0.2807 1.0857 0.3738 NA
## PseudoT2 Beale Ratkowsky Ball PtBiserial Frey McClain
## Number_clusters NA 7.0000 3.0000 3.0000 6.0000 1 2.0000
## Value_Index NA 1.3527 0.3822 787.6647 0.6285 NA 0.6644
## Dunn Hubert SDindex Dindex SDbw
## Number_clusters 2.0000 0 6.0000 0 12.0000
## Value_Index 0.1759 0 1.1285 0 0.2479
##
## $Best.partition
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
## 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2
## 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
## 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2
## 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
## 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1
## 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
## 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 2 2
## 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
## 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
## 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
## 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
## 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
## 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
## 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 4
## 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
## 4 4 4 4 4 4 4 4 4 4 4 4 5 4 5 4 4 4 4 4
## 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
## 4 5 5 5 5 4 5 5 5 4 4 5 5 5 4 4 4 4 5 5
## 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
## 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
## 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
## 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
## 561 562 563 564 565 566 567 568 569 570 571 572
## 5 5 5 5 5 5 5 5 5 5 5 5
La funzione NbClust eseguirà il test per un numero di
cluster che va da 2 a 12 e valuterà vari indici per determinare il
numero ottimale di cluster.