library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
members_raw <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl (6): hired, success, solo, oxygen_used, died, injured
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
top_peaks <- members_raw %>%
count(peak_name, sort = TRUE) %>%
slice_max(n, n = 6) %>%
pull(peak_name)
members_raw %>%
filter(peak_name %in% top_peaks) %>%
count(peak_name, died) %>%
ggplot(aes(died, n, fill = died)) +
geom_col(show.legend = FALSE) +
facet_wrap(vars(peak_name), scales = "free")
members_raw %>%
count(died, citizenship)
## # A tibble: 267 × 3
## died citizenship n
## <lgl> <chr> <int>
## 1 FALSE Albania 6
## 2 FALSE Algeria 2
## 3 FALSE Andorra 31
## 4 FALSE Argentina 232
## 5 FALSE Argentina/Canada 2
## 6 FALSE Armenia 3
## 7 FALSE Australia 1395
## 8 FALSE Australia/Greece 1
## 9 FALSE Australia/Ireland 2
## 10 FALSE Australia/New Zealand 17
## # ℹ 257 more rows
top_role <- members_raw %>%
count(expedition_role, sort = TRUE) %>%
slice_max(n, n = 6) %>%
pull(expedition_role)
members_raw %>%
filter(expedition_role %in% top_role) %>%
count(expedition_role, died) %>%
ggplot(aes(died, n, fill = died)) +
geom_col(show.legend = FALSE) +
facet_wrap(vars(expedition_role), scales = "free_y")
members <- members_raw %>%
select(expedition_id, peak_name, year, age, died, citizenship, expedition_role, season, age) %>%
na.omit() %>%
mutate_if(is.character, as.factor) %>%
mutate(expedition_id = as.character(expedition_id)) %>%
mutate(across(where(is.logical), factor))
# members <- members %>% sample_n(5000)
members_small_true <- members %>% filter(died == "TRUE") %>% sample_n(200)
members_small_false <- members %>% filter(died == "FALSE") %>% sample_n(200)
members <- bind_rows(members_small_true, members_small_false)
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom 1.0.5 ✔ rsample 1.2.0
## ✔ dials 1.2.0 ✔ tune 1.1.2
## ✔ infer 1.0.5 ✔ workflows 1.1.3
## ✔ modeldata 1.2.0 ✔ workflowsets 1.0.1
## ✔ parsnip 1.1.1 ✔ yardstick 1.2.0
## ✔ recipes 1.0.8
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
## • Search for functions across packages at https://www.tidymodels.org/find/
set.seed(123)
member_split <- initial_split(members, strata = died)
member_train <- training(member_split)
member_test <- testing(member_split)
set.seed(234)
member_folds <- vfold_cv(member_train, strata = died)
member_folds
## # 10-fold cross-validation using stratification
## # A tibble: 10 × 2
## splits id
## <list> <chr>
## 1 <split [270/30]> Fold01
## 2 <split [270/30]> Fold02
## 3 <split [270/30]> Fold03
## 4 <split [270/30]> Fold04
## 5 <split [270/30]> Fold05
## 6 <split [270/30]> Fold06
## 7 <split [270/30]> Fold07
## 8 <split [270/30]> Fold08
## 9 <split [270/30]> Fold09
## 10 <split [270/30]> Fold10
library(embed)
member_rec <-
recipe(died ~ ., data = member_train) %>%
update_role(expedition_id, new_role = "id") %>%
step_lencode_glm(peak_name, outcome = vars(died)) %>%
step_dummy(all_nominal_predictors())
member_rec
##
## ── Recipe ──────────────────────────────────────────────────────────────────────
##
## ── Inputs
## Number of variables by role
## outcome: 1
## predictor: 6
## id: 1
##
## ── Operations
## • Linear embedding for factors via GLM for: peak_name
## • Dummy variables from: all_nominal_predictors()
prep(member_rec) %>%
tidy(number = 1) %>%
filter(level == "..new")
## New names:
## • `expedition_role_Climber.Guide` -> `expedition_role_Climber.Guide...345`
## • `expedition_role_Climber.Sirdar` -> `expedition_role_Climber.Sirdar...346`
## • `expedition_role_Climber.Guide` -> `expedition_role_Climber.Guide...361`
## • `expedition_role_Climber.Sirdar` -> `expedition_role_Climber.Sirdar...370`
## • `expedition_role_Leader.Scientist` ->
## `expedition_role_Leader.Scientist...571`
## • `expedition_role_Leader.Scientist` ->
## `expedition_role_Leader.Scientist...587`
## # A tibble: 1 × 4
## level value terms id
## <chr> <dbl> <chr> <chr>
## 1 ..new -0.0186 peak_name lencode_glm_9EDsX
xgb_spec <-
boost_tree(
trees = tune(),
min_n = tune(),
mtry = tune(),
learn_rate = 0.01) %>%
set_engine("xgboost") %>%
set_mode("classification")
xgb_wf <- workflow(member_rec, xgb_spec)
library(finetune)
doParallel::registerDoParallel()
set.seed(345)
xgb_rs <- tune_race_anova(
xgb_wf,
resamples = member_folds,
grid = 15,
control = control_race(verbose_elim = TRUE)
)
## i Creating pre-processing data to finalize unknown parameter: mtry
## New names:
## ℹ Racing will maximize the roc_auc metric.
## ℹ Resamples are analyzed in a random order.
## ℹ Fold10: 2 eliminated; 13 candidates remain.
## ℹ Fold07: 0 eliminated; 13 candidates remain.
## ℹ Fold03: 0 eliminated; 13 candidates remain.
## ℹ Fold05: 0 eliminated; 13 candidates remain.
## ℹ Fold09: 0 eliminated; 13 candidates remain.
## ℹ Fold04: 0 eliminated; 13 candidates remain.
## ℹ Fold06: 1 eliminated; 12 candidates remain.
## • `expedition_role_Climber.Guide` -> `expedition_role_Climber.Guide...345`
## • `expedition_role_Climber.Sirdar` -> `expedition_role_Climber.Sirdar...346`
## • `expedition_role_Climber.Guide` -> `expedition_role_Climber.Guide...361`
## • `expedition_role_Climber.Sirdar` -> `expedition_role_Climber.Sirdar...370`
## • `expedition_role_Leader.Scientist` ->
## `expedition_role_Leader.Scientist...571`
## • `expedition_role_Leader.Scientist` ->
## `expedition_role_Leader.Scientist...587`
xgb_rs
## # Tuning results
## # 10-fold cross-validation using stratification
## # A tibble: 10 × 5
## splits id .order .metrics .notes
## <list> <chr> <int> <list> <list>
## 1 <split [270/30]> Fold01 2 <tibble [30 × 7]> <tibble [0 × 3]>
## 2 <split [270/30]> Fold02 3 <tibble [30 × 7]> <tibble [0 × 3]>
## 3 <split [270/30]> Fold10 1 <tibble [30 × 7]> <tibble [0 × 3]>
## 4 <split [270/30]> Fold07 4 <tibble [26 × 7]> <tibble [0 × 3]>
## 5 <split [270/30]> Fold03 5 <tibble [26 × 7]> <tibble [0 × 3]>
## 6 <split [270/30]> Fold05 6 <tibble [26 × 7]> <tibble [0 × 3]>
## 7 <split [270/30]> Fold09 7 <tibble [26 × 7]> <tibble [0 × 3]>
## 8 <split [270/30]> Fold04 8 <tibble [26 × 7]> <tibble [0 × 3]>
## 9 <split [270/30]> Fold06 9 <tibble [26 × 7]> <tibble [0 × 3]>
## 10 <split [270/30]> Fold08 10 <tibble [24 × 7]> <tibble [0 × 3]>
plot_race(xgb_rs)
collect_metrics(xgb_rs)
## # A tibble: 24 × 9
## mtry trees min_n .metric .estimator mean n std_err .config
## <int> <int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 41 599 8 accuracy binary 0.603 10 0.0324 Preprocessor1_Mode…
## 2 41 599 8 roc_auc binary 0.645 10 0.0329 Preprocessor1_Mode…
## 3 88 1805 31 accuracy binary 0.617 10 0.0229 Preprocessor1_Mode…
## 4 88 1805 31 roc_auc binary 0.650 10 0.0295 Preprocessor1_Mode…
## 5 120 136 3 accuracy binary 0.603 10 0.0270 Preprocessor1_Mode…
## 6 120 136 3 roc_auc binary 0.637 10 0.0302 Preprocessor1_Mode…
## 7 171 122 21 accuracy binary 0.603 10 0.0393 Preprocessor1_Mode…
## 8 171 122 21 roc_auc binary 0.662 10 0.0340 Preprocessor1_Mode…
## 9 208 1536 11 accuracy binary 0.64 10 0.0321 Preprocessor1_Mode…
## 10 208 1536 11 roc_auc binary 0.673 10 0.0385 Preprocessor1_Mode…
## # ℹ 14 more rows
xgb_last <- xgb_wf %>%
finalize_workflow(select_best(xgb_rs, "accuracy")) %>%
last_fit(member_split)
## New names:
## New names:
## • `expedition_role_Climber.Guide` -> `expedition_role_Climber.Guide...345`
## • `expedition_role_Climber.Sirdar` -> `expedition_role_Climber.Sirdar...346`
## • `expedition_role_Climber.Guide` -> `expedition_role_Climber.Guide...361`
## • `expedition_role_Climber.Sirdar` -> `expedition_role_Climber.Sirdar...370`
## • `expedition_role_Leader.Scientist` ->
## `expedition_role_Leader.Scientist...571`
## • `expedition_role_Leader.Scientist` ->
## `expedition_role_Leader.Scientist...587`
xgb_last
## # Resampling results
## # Manual resampling
## # A tibble: 1 × 6
## splits id .metrics .notes .predictions .workflow
## <list> <chr> <list> <list> <list> <list>
## 1 <split [300/100]> train/test split <tibble> <tibble> <tibble> <workflow>
collect_metrics(xgb_last)
## # A tibble: 2 × 4
## .metric .estimator .estimate .config
## <chr> <chr> <dbl> <chr>
## 1 accuracy binary 0.56 Preprocessor1_Model1
## 2 roc_auc binary 0.604 Preprocessor1_Model1
collect_predictions(xgb_last) %>%
conf_mat(died, .pred_class)
## Truth
## Prediction FALSE TRUE
## FALSE 27 21
## TRUE 23 29
library(vip)
##
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
##
## vi
xgb_last %>%
extract_fit_engine() %>%
vip()
#2. Data Exploration and Transformation: - The newly transformed data has logical and character data changed to factor, as well as omited NA’s.
- There were a few steps made in this data prep and modeling section that include: step_dummy(creates a specification of a recipe step that will convert nominal data (e.g. characters or factors) into one or more numeric binary models) and step_lencode_glm(creates a specification of a recipe step that will convert a nominal predictor into a single set of scores derived from a generalized linear model).
#4. Model Evaluation: - Looking at the confusion matrix we can see that the model did an ok job of predicting the outcome.