library(quantmod)
library(tseries)
library(stats)
library(rugarch)
library(fGarch)
library(forecast)
getSymbols("^GSPC", from = "200-01-01", to = "2023-10-30")
## [1] "GSPC"
head(GSPC)
## GSPC.Open GSPC.High GSPC.Low GSPC.Close GSPC.Volume GSPC.Adjusted
## 1927-12-30 17.66 17.66 17.66 17.66 0 17.66
## 1928-01-03 17.76 17.76 17.76 17.76 0 17.76
## 1928-01-04 17.72 17.72 17.72 17.72 0 17.72
## 1928-01-05 17.55 17.55 17.55 17.55 0 17.55
## 1928-01-06 17.66 17.66 17.66 17.66 0 17.66
## 1928-01-09 17.50 17.50 17.50 17.50 0 17.50
On va travailler avec les valeurs ajuster
Donnees=GSPC$GSPC.Adjusted
plot(Donnees)
On voit que la tendance est en hausse , la série n’est pas stationnaire , pas de saisonnalité, et présence de volatilités
R=dailyReturn(Donnees)
R=na.omit(R)
plot(R)
On voit que la série est stationnaire, des périodes de fortes volatilités ont tendance à être suivies par des périodes de faibles volatilités. Cela témoignage de la présence de la variance conditionneele c’est à dire l’hétéroscédasticité conditionnelle Donc on envisage le modèle GARCH/ARCH
Le modèle GARCH(p,q) s’écrit:
\[ \sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2 \]
Où:
\(\sigma_t^2\) est la variance conditionnelle à t
\(\omega\) est le terme constant
\(\epsilon_{t-i}\) sont les termes d’erreurs passés
\(\alpha_i\) mesurent l’impact des chocs passés
\(\beta_j\) mesurent la persistance de la volatilité
adf.test(R)
##
## Augmented Dickey-Fuller Test
##
## data: R
## Dickey-Fuller = -29.201, Lag order = 28, p-value = 0.01
## alternative hypothesis: stationary
#fonction d’autocorrélation
acf(R)
Ce rendement ressemble à un bruit blanc aléatoire.
R2=R^2
acf(R2)
On observe une decroissance régulière, d’où la variance conditionnelle de R2 est constante en temps
spec=ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(5, 1)))
modele_garch=ugarchfit(spec = spec, data = R2)
print(modele_garch)
##
## *---------------------------------*
## * GARCH Model Fit *
## *---------------------------------*
##
## Conditional Variance Dynamics
## -----------------------------------
## GARCH Model : sGARCH(5,1)
## Mean Model : ARFIMA(1,0,1)
## Distribution : norm
##
## Optimal Parameters
## ------------------------------------
## Estimate Std. Error t value Pr(>|t|)
## mu 0.000077 0.000001 55.29178 0.000000
## ar1 0.941738 0.003520 267.57302 0.000000
## ma1 -0.802623 0.004646 -172.76752 0.000000
## omega 0.000000 0.000000 0.01093 0.991279
## alpha1 0.010000 0.000313 31.94322 0.000000
## alpha2 0.010000 0.000864 11.57285 0.000000
## alpha3 0.010000 0.001409 7.09560 0.000000
## alpha4 0.010000 0.002482 4.02985 0.000056
## alpha5 0.010000 0.001985 5.03745 0.000000
## beta1 0.900007 0.000370 2433.53162 0.000000
##
## Robust Standard Errors:
## Estimate Std. Error t value Pr(>|t|)
## mu 0.000077 0.017596 0.004356 0.99652
## ar1 0.941738 80.689065 0.011671 0.99069
## ma1 -0.802623 97.872184 -0.008201 0.99346
## omega 0.000000 0.001316 0.000000 1.00000
## alpha1 0.010000 1.020153 0.009803 0.99218
## alpha2 0.010000 0.407220 0.024557 0.98041
## alpha3 0.010000 0.320426 0.031209 0.97510
## alpha4 0.010000 1.721228 0.005810 0.99536
## alpha5 0.010000 5.004762 0.001998 0.99841
## beta1 0.900007 1.860347 0.483785 0.62854
##
## LogLikelihood : 168069.1
##
## Information Criteria
## ------------------------------------
##
## Akaike -13.963
## Bayes -13.960
## Shibata -13.963
## Hannan-Quinn -13.962
##
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 16.43 5.058e-05
## Lag[2*(p+q)+(p+q)-1][5] 16.74 0.000e+00
## Lag[4*(p+q)+(p+q)-1][9] 18.73 3.805e-07
## d.o.f=2
## H0 : No serial correlation
##
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
## statistic p-value
## Lag[1] 1.860 0.1726
## Lag[2*(p+q)+(p+q)-1][17] 1.895 0.9988
## Lag[4*(p+q)+(p+q)-1][29] 1.968 1.0000
## d.o.f=6
##
## Weighted ARCH LM Tests
## ------------------------------------
## Statistic Shape Scale P-Value
## ARCH Lag[7] 0.003858 0.500 2.000 0.9505
## ARCH Lag[9] 0.010174 1.485 1.796 0.9997
## ARCH Lag[11] 0.019438 2.440 1.677 1.0000
##
## Nyblom stability test
## ------------------------------------
## Joint Statistic: 888.696
## Individual Statistics:
## mu 2.256
## ar1 7.689
## ma1 3.382
## omega 236.388
## alpha1 28.554
## alpha2 31.055
## alpha3 28.065
## alpha4 27.487
## alpha5 27.029
## beta1 24.358
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 2.29 2.54 3.05
## Individual Statistic: 0.35 0.47 0.75
##
## Sign Bias Test
## ------------------------------------
## t-value prob sig
## Sign Bias 1.0397 2.985e-01
## Negative Sign Bias 0.1688 8.660e-01
## Positive Sign Bias 4.0978 4.185e-05 ***
## Joint Effect 21.1329 9.879e-05 ***
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
## group statistic p-value(g-1)
## 1 20 20713 0
## 2 30 21486 0
## 3 40 22006 0
## 4 50 22347 0
##
##
## Elapsed time : 1.94999