Librerias usadas

library(readxl)
library(dplyr)
library(tidyverse)
library(stringi)
library(corrplot)
library(GGally)
library(textshape)
library(FactoMineR)
library(factoextra)
library(rlang)
library(tibble)
library(ggstatsplot)

Cargar municipios con aptitud para el cultivo de papa

AP.TOT <- read_excel("K:/Articulos/Analisis suelos papa 2023/Bases de datos/MUNICIPIOS CON ALTO DESMPEÑO PRODUCTIVO PAPA 07.10.23.xlsx")
# Quitar las tildes a la columna de municipios
AP.TOT$MUN <- toupper(stri_trans_general(AP.TOT$MUN,"Latin-ASCII"))
AP.CUN <-  AP.TOT %>% filter(., DEPARTAMENTO=="CUNDINAMARCA") %>% 
  mutate(., IDPM= pmin(IDPMi, IDPMii, na.rm = T) )
AP.CUN
## # A tibble: 47 × 7
##    DEPARTAMENTO MUN              IDPMi IDPMii ALTITUD TEMPERATURA  IDPM
##    <chr>        <chr>            <dbl>  <dbl> <chr>   <chr>       <dbl>
##  1 CUNDINAMARCA BOGOTA               3      3 2625    13.1            3
##  2 CUNDINAMARCA CAJICA               3      3 2558    14              3
##  3 CUNDINAMARCA CARMEN DE CARUPA     1      2 2600    12              1
##  4 CUNDINAMARCA CHIA                 2      2 2600    14              2
##  5 CUNDINAMARCA CHIPAQUE             3      3 2400    13              3
##  6 CUNDINAMARCA CHOACHI              3      3 1923    18              3
##  7 CUNDINAMARCA CHOCONTA             1      2 2689    10              1
##  8 CUNDINAMARCA COGUA                1      2 2600    14              1
##  9 CUNDINAMARCA COTA                 2      2 2566    14              2
## 10 CUNDINAMARCA CUCUNUBA             2     NA 2590    14              2
## # ℹ 37 more rows

Cargar base de datos de productividad DATOS ABIERTOS

PRO.TOT <- read_excel("K:/Articulos/Analisis suelos papa 2023/Bases de datos/RENDIMIENTO DE CULTIVOS EN COLOMBIA POR AÑO 1.10.23.xlsx", sheet = "RENDIMIENTO DE CULTIVOS EN COLO")
# Quitar las tildes a la columna de municipios
PRO.TOT$MUN <- toupper(stri_trans_general(PRO.TOT$MUN,"Latin-ASCII"))
# 
PRO.CUN1 <- PRO.TOT %>%
  filter(., Depertamento==c("CUNDINAMARCA", "BOGOTÁ"), Cultivo=="PAPA") %>%
  group_by(., MUN) %>% 
  dplyr::summarise(.,
            Asem1=mean(`Area sembrada`, na.rm = TRUE),
            Acos1=mean(`Area cosechada`, na.rm = TRUE),
            Prod1=mean(`Produccion`, na.rm = TRUE),
            Rmax1=max(`Rendimiento`, na.rm = TRUE),
            Rmed1=median(`Rendimiento`, na.rm = TRUE),
            Rmea1=mean(`Rendimiento`, na.rm = TRUE)) %>% 
  ungroup() %>% 
  right_join(., AP.CUN, by="MUN") %>% 
  dplyr::mutate(., 
         ALT=as.numeric(ALTITUD),
         TEM=as.numeric(TEMPERATURA),
         IDPM=as.numeric(IDPM) ) %>%
  select(., !c("IDPMi", "IDPMii", "DEPARTAMENTO", "ALTITUD", "TEMPERATURA") ) 
PRO.CUN1
## # A tibble: 47 × 10
##    MUN              Asem1 Acos1  Prod1 Rmax1 Rmed1 Rmea1  IDPM   ALT   TEM
##    <chr>            <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 CAJICA            20.1  12.2   251.  30    20    20.7     3  2558    14
##  2 CARMEN DE CARUPA 945.  855.  15280.  32.6  15    16.0     1  2600    12
##  3 CHIA             125.  118.   2035   18    17    17.1     2  2600    14
##  4 CHIPAQUE         118.  116.   1722.  20    14.5  14.0     3  2400    13
##  5 CHOACHI           41.8  41.5   631.  18    15    15.5     3  1923    18
##  6 CHOCONTA         923.  859.  21884.  30.7  20    22.1     1  2689    10
##  7 COGUA            792.  789   15641.  25    19.7  21.1     1  2600    14
##  8 COTA              71.4  71.1  1960.  40    23    23.3     2  2566    14
##  9 CUCUNUBA         158.  158.   2422.  18.1  15.2  15.5     2  2590    14
## 10 EL ROSAL         276.  259.   4601.  18    18    17.4     1  2685    12
## # ℹ 37 more rows

Cargar base de datos de productividad PAPA TETRAPLOIDE papa de año (AGRONET)

PRO.CUN2 <- read_excel("K:/Articulos/Analisis suelos papa 2023/Bases de datos/agronet, 2022. Produccion y rendimiento cundinamarca.xlsx")
# Quitar las tildes a la columna de municipios
PRO.CUN2$MUN <- toupper(stri_trans_general(PRO.CUN2$MUN,"Latin-ASCII"))
# 
PRO.CUN2 <- PRO.CUN2 %>%
  group_by(., MUN) %>% 
  dplyr::summarise(.,
            Asem2=mean(`Area sembrada`, na.rm = TRUE),
            Acos2=mean(`Area cosechada`, na.rm = TRUE),
            Prod2=mean(`Produccion`, na.rm = TRUE),
            Rmax2=max(`Rendimiento`, na.rm = TRUE),
            Rmed2=median(`Rendimiento`, na.rm = TRUE),
            Rmea2=mean(`Rendimiento`, na.rm = TRUE)) %>% 
  ungroup() %>% 
  right_join(., AP.CUN, by="MUN") %>% 
  dplyr::mutate(., 
         ALT=as.numeric(ALTITUD),
         TEM=as.numeric(TEMPERATURA),
         IDPM=as.numeric(IDPM) ) %>%
  select(., !c("IDPMi", "IDPMii", "DEPARTAMENTO", "ALTITUD", "TEMPERATURA") ) 
PRO.CUN2
## # A tibble: 47 × 10
##    MUN               Asem2  Acos2  Prod2 Rmax2 Rmed2 Rmea2  IDPM   ALT   TEM
##    <chr>             <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 CAJICA             39.4   26.5   514.  30    19.5  19.5     3  2558    14
##  2 CARMEN DE CARUPA 2276.  2083.  39427   28.7  19.0  19.3     1  2600    12
##  3 CHIA              189.   195.   3465.  25    18    18.2     2  2600    14
##  4 CHIPAQUE          121.   156.   2366.  30    15.7  16.4     3  2400    13
##  5 CHOACHI            70.1   71.8  1080.  18    15.5  15.4     3  1923    18
##  6 CHOCONTA         3448.  3091.  84074.  30.7  28.9  27.2     1  2689    10
##  7 COGUA            1309.  1362.  27124.  25    20.0  20.8     1  2600    14
##  8 COTA              146.   144.   4054.  36.4  26    26.6     2  2566    14
##  9 CUCUNUBA          292.   290.   4856   30    15.7  17.3     2  2590    14
## 10 EL ROSAL          718.   675.  13333.  24    18    19.3     1  2685    12
## # ℹ 37 more rows

Cargar base de datos de productividad PAPA DIPLOIDE

PRO.CUN3 <- read_excel("K:/Articulos/Analisis suelos papa 2023/Bases de datos/agronet, 2022. Produccion y rendimiento cundinamarca criolla.xlsx")
# Quitar las tildes a la columna de municipios
PRO.CUN3$MUN <- toupper(stri_trans_general(PRO.CUN3$MUN,"Latin-ASCII"))
# 
PRO.CUN3 <- PRO.CUN3 %>%
  group_by(., MUN) %>% 
  dplyr::summarise(.,
            Asem3=mean(`Area sembrada`, na.rm = TRUE),
            Acos3=mean(`Area cosechada`, na.rm = TRUE),
            Prod3=mean(`Produccion`, na.rm = TRUE),
            Rmax3=max(`Rendimiento`, na.rm = TRUE),
            Rmed3=median(`Rendimiento`, na.rm = TRUE),
            Rmea3=mean(`Rendimiento`, na.rm = TRUE)) %>% 
  ungroup() %>% 
  right_join(., AP.CUN, by="MUN") %>% 
  dplyr::mutate(., 
         ALT=as.numeric(ALTITUD),
         TEM=as.numeric(TEMPERATURA),
         IDPM=as.numeric(IDPM) ) %>%
  select(., !c("IDPMi", "IDPMii", "DEPARTAMENTO", "ALTITUD", "TEMPERATURA") ) 
PRO.CUN3
## # A tibble: 47 × 10
##    MUN              Asem3 Acos3 Prod3 Rmax3 Rmed3 Rmea3  IDPM   ALT   TEM
##    <chr>            <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 CAJICA            10    12    140   11.7  11.7  11.7     3  2558    14
##  2 CARMEN DE CARUPA  77.6  69.4  956.  20    14.0  13.1     1  2600    12
##  3 CHIPAQUE          38.3  46.8  625.  20    11.7  12.5     3  2400    13
##  4 CHOACHI           76.5  70.1  987.  16    14.5  14.4     3  1923    18
##  5 CHOCONTA         150.  138.  2327.  25.6  17.9  18.4     1  2689    10
##  6 COGUA            453.  452.  8403.  19.8  17.9  12.6     1  2600    14
##  7 COTA              22    22    338.  16    15.7  15.6     2  2566    14
##  8 CUCUNUBA          21.2  21.2  353.  22    16.7  17.3     2  2590    14
##  9 EL ROSAL         459   436.  7616   18    18    17.3     1  2685    12
## 10 FACATATIVA       127.  112.  1988.  23.0  17    17.6     1  2586    19
## # ℹ 37 more rows

Unificamos las bases de datos de productividad

PRO.CUN <- PRO.CUN1 %>%
  full_join(., PRO.CUN2) %>%
  full_join(., PRO.CUN3) %>% 
  select(sort(names(.))); PRO.CUN
## # A tibble: 47 × 22
##    Acos1  Acos2 Acos3   ALT Asem1  Asem2 Asem3  IDPM MUN      Prod1  Prod2 Prod3
##    <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <chr>    <dbl>  <dbl> <dbl>
##  1  12.2   26.5  12    2558  20.1   39.4  10       3 CAJICA    251.   514.  140 
##  2 855.  2083.   69.4  2600 945.  2276.   77.6     1 CARMEN… 15280. 39427   956.
##  3 118.   195.   NA    2600 125.   189.   NA       2 CHIA     2035   3465.   NA 
##  4 116.   156.   46.8  2400 118.   121.   38.3     3 CHIPAQ…  1722.  2366.  625.
##  5  41.5   71.8  70.1  1923  41.8   70.1  76.5     3 CHOACHI   631.  1080.  987.
##  6 859.  3091.  138.   2689 923.  3448.  150.      1 CHOCON… 21884. 84074. 2327.
##  7 789   1362.  452.   2600 792.  1309.  453.      1 COGUA   15641. 27124. 8403.
##  8  71.1  144.   22    2566  71.4  146.   22       2 COTA     1960.  4054.  338.
##  9 158.   290.   21.2  2590 158.   292.   21.2     2 CUCUNU…  2422.  4856   353.
## 10 259.   675.  436.   2685 276.   718.  459       1 EL ROS…  4601. 13333. 7616 
## # ℹ 37 more rows
## # ℹ 10 more variables: Rmax1 <dbl>, Rmax2 <dbl>, Rmax3 <dbl>, Rmea1 <dbl>,
## #   Rmea2 <dbl>, Rmea3 <dbl>, Rmed1 <dbl>, Rmed2 <dbl>, Rmed3 <dbl>, TEM <dbl>
names(PRO.CUN)
##  [1] "Acos1" "Acos2" "Acos3" "ALT"   "Asem1" "Asem2" "Asem3" "IDPM"  "MUN"  
## [10] "Prod1" "Prod2" "Prod3" "Rmax1" "Rmax2" "Rmax3" "Rmea1" "Rmea2" "Rmea3"
## [19] "Rmed1" "Rmed2" "Rmed3" "TEM"

Cargar base de datos de analisis de suelos

RAS.TOT <- read_excel("K:/Articulos/Analisis suelos papa 2023/Bases de datos/RESULTADOS ANALISIS DE SUELOS 1.10.23.xlsx", sheet = "RAS")
# Quitar las tildes a la columna de municipios
RAS.TOT$MUN <- toupper(stri_trans_general(RAS.TOT$MUN,"Latin-ASCII"))
RAS.TOT
## # A tibble: 46,745 × 31
##    DEP   MUN   CUL   EST   TIE   TOP   DRE   RIE   FER   FEC   PH      MAT FOS  
##    <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <lgl> <chr> <dbl> <chr>
##  1 CUND… FUNZA Uchu… POR … NO A… Ondu… Bueno No i… No i… NA    5.66   9.71 5.62…
##  2 CUND… BITU… Citr… POR … NO A… Ondu… Bueno No c… No i… NA    8.08   3.42 7.57…
##  3 CUND… VILL… Past… ESTA… NO I… Ondu… Bueno No c… No i… NA    5.87   2.34 16.9…
##  4 CUND… VILL… Past… ESTA… NO I… Ondu… Bueno No c… No i… NA    5.56   6.85 32.0…
##  5 CUND… BOGO… Papa… POR … NO A… Pend… Bueno No c… 15-1… NA    4.87  16.0  64.1…
##  6 HUILA GIGA… Agua… POR … NO A… Pend… Bueno No c… No h… NA    5.82   2.34 7.09…
##  7 META  ACAC… Citr… ESTA… mas … Plano Bueno No c… No i… NA    4.68   2.12 9.16…
##  8 META  ACAC… Agua… ESTA… mas … Plano Regu… No c… Cal … NA    4.51…  1.51 36.1…
##  9 META  ACAC… Cacao ESTA… mas … Plano Bueno No c… 18-1… NA    5.15   2.10 12.0…
## 10 META  ACAC… Cacao ESTA… de 5… Plano Bueno No c… Calf… NA    4.79   1.22 7.81…
## # ℹ 46,735 more rows
## # ℹ 18 more variables: AZU <dbl>, ACI <chr>, ALU <chr>, CAL <chr>, MAG <chr>,
## #   POT <chr>, SOD <chr>, CAP <dbl>, CON <dbl>, HIE <chr>, COB <chr>,
## #   MAN <chr>, ZIN <chr>, BOR <dbl>, HIE2 <chr>, COB2 <chr>, MAN2 <chr>,
## #   ZIN2 <chr>

Extraemos los analisis de suelos para municipios con potencial de producción de papa

cultivos.calido <- c("Plátano", "Cacao", "Aguacate", "Pastos-Estrella", "Yuca", "Caña panelera/azucar", "Maracuyá", "Citricos",
               "Arroz", "Pastos-brachiaria", "Ñame", "Piña", "Algodón", "Sacha Inchi", "Citricos-Limón", "Citricos-Naranjo", "Guayaba", "Mango", "Melón", "Palma de aceite", "Caucho", "Chirimoya", "Guadua", "Guanabana", "Sábila", "Papaya", "Ají", "Balu"); cultivos.calido
##  [1] "Plátano"              "Cacao"                "Aguacate"            
##  [4] "Pastos-Estrella"      "Yuca"                 "Caña panelera/azucar"
##  [7] "Maracuyá"             "Citricos"             "Arroz"               
## [10] "Pastos-brachiaria"    "Ñame"                 "Piña"                
## [13] "Algodón"              "Sacha Inchi"          "Citricos-Limón"      
## [16] "Citricos-Naranjo"     "Guayaba"              "Mango"               
## [19] "Melón"                "Palma de aceite"      "Caucho"              
## [22] "Chirimoya"            "Guadua"               "Guanabana"           
## [25] "Sábila"               "Papaya"               "Ají"                 
## [28] "Balu"
RAS.CUN <- RAS.TOT %>%
  mutate_all(~ ifelse(. == "ND", 0.0, .)) %>%
  mutate_all(~ ifelse(. == "<0,01", 0.005, .)) %>% 
  mutate_all(~ ifelse(. == "<0,06", 0.030, .)) %>% 
  mutate_all(~ ifelse(. == "<0,09", 0.045, .)) %>% 
  mutate_all(~ ifelse(. == "<0,14", 0.070, .)) %>%
  mutate_all(~ ifelse(. == "<0,20", 0.100, .)) %>%
  mutate_all(~ ifelse(. == "<0,50", 0.250, .)) %>%
  mutate_all(~ ifelse(. == "<0,55", 0.275, .)) %>% 
  mutate_all(~ ifelse(. == "<0,59", 0.295, .)) %>% 
  mutate_all(~ ifelse(. == "<1,00", 0.500, .)) %>% 
  mutate_all(~ ifelse(. == "<3,87", 1.935, .)) %>% 
  mutate_all(~ ifelse(. == "<3,80", 1.900, .)) %>% 
  mutate_all(~ ifelse(. == "<5,00", 2.500, .)) %>%
  mutate_all(~ ifelse(. == "<10,00", 5.000, .)) %>%
  mutate_all(~ ifelse(. == ">12,88", 12.88, .)) %>% 
  select(., !c(DEP, EST, TIE, TOP, DRE, RIE, FER, FEC, HIE2, COB2, MAN2, ZIN2) ) %>%
  dplyr::right_join(., PRO.CUN, by = "MUN") %>%
  mutate(., 
         MUN=as.factor(MUN),
         CUL=as.factor(CUL),
         IDPM=as.numeric(IDPM),
         ALT=as.numeric(ALT),
         TEM=as.numeric(TEM),
         Asem1=as.numeric(Asem1),
         Asem2=as.numeric(Asem2),
         Asem3=as.numeric(Asem3),
         Acos1=as.numeric(Acos1),
         Acos2=as.numeric(Acos2),
         Acos3=as.numeric(Acos3),
         Prod1=as.numeric(Prod1),
         Prod2=as.numeric(Prod2),
         Prod3=as.numeric(Prod3),
         Rmax1=as.numeric(Rmax1),
         Rmax2=as.numeric(Rmax2),
         Rmax3=as.numeric(Rmax3),
         Rmea1=as.numeric(Rmea1),
         Rmea2=as.numeric(Rmea2),
         Rmea3=as.numeric(Rmea3),
         Rmed1=as.numeric(Rmed1),
         Rmed2=as.numeric(Rmed2),
         Rmed3=as.numeric(Rmed3),
         pH=as.numeric(PH),
         CIC=as.numeric(CAP),
         CE=as.numeric(CON),
         MO=as.numeric(MAT),
         P=as.numeric(FOS),
         K=as.numeric(POT),
         Ca=as.numeric(CAL),
         S=as.numeric(AZU),
         Mg=as.numeric(MAG),
         Na=as.numeric(SOD),
         Fe=as.numeric(HIE),
         Cu=as.numeric(COB),
         Mn=as.numeric(MAN),
         Zn=as.numeric(ZIN),
         B=as.numeric(BOR),
         Aci=as.numeric(ACI),
         Al=as.numeric(ALU) ) %>% 
  mutate(.,
         P.dis=(P*2.29), # FOSFORO DISPONIBLE EN PPM P2O5
         N.tot=(MO*0.05), # NITROGENO EN PORCENTAJE
         N.dis=((MO*0.05)*0.015)*10000, # NITROGENO DISPONIBLE CLIMA FRÍO EN ppm
         S.Bas=((Ca+Mg+K+Na)/CIC)*100, # SATURACION DE BASES
         S.Al=(Al/CIC)*100, # SATURACION DE ALUMINIO
         S.Ca=(Ca/CIC)*100, # SATURACION DE CALCIO
         S.Mg=(Mg/CIC)*100, # SATURACION DE MAGNESIO
         S.K=(K/CIC)*100, # SATURACION DE POTASIO
         S.Na=(Na/CIC)*100, # SATURACION DE SODIO
         Ca_Mg=(Ca/Mg), # RELACION CALCIO MAGNESIO
         Mg_K=(Mg/K), # RELACION MAGNESIO POTASIO
         Ca_K=(Ca/K), # RELACION CALCIO POTASIO
         Ca.Mg_K=((Ca+Mg)/K), # RELACION CALCIO MAGNESIO CON POTASIO
         Ca_B=(Ca/B), # RELACION CALCIO BORO
         Fe_Mn=(Fe/Mn), # RELACION HIERRO MANGANESO
         P_Zn=(P/Zn), # RELACION FOSFORO ZINC
         Fe_Zn=(Fe/Zn) ) %>% # RELACION HIERRO ZINC
  select(., !c(PH, MAT, FOS, AZU, ACI, ALU, CAL, MAG, POT, SOD, CAP, CON, HIE, COB, MAN, ZIN, BOR) ) %>%
  filter(., !(CUL %in% cultivos.calido)
         )
RAS.CUN
## # A tibble: 3,054 × 57
##    MUN       CUL   Acos1 Acos2 Acos3   ALT Asem1 Asem2 Asem3  IDPM  Prod1  Prod2
##    <fct>     <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>
##  1 FUNZA     Uchu…  408.  586.  NA    2548  492.  651.  NA       1  8161. 11779.
##  2 BOGOTA    Papa…   NA    NA   NA    2625   NA    NA   NA       3    NA     NA 
##  3 CHIA      Frut…  118.  195.  NA    2600  125.  189.  NA       2  2035   3465.
##  4 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  5 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  6 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  7 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  8 CARMEN D… Arve…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  9 CARMEN D… Past…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
## 10 CARMEN D… Past…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
## # ℹ 3,044 more rows
## # ℹ 45 more variables: Prod3 <dbl>, Rmax1 <dbl>, Rmax2 <dbl>, Rmax3 <dbl>,
## #   Rmea1 <dbl>, Rmea2 <dbl>, Rmea3 <dbl>, Rmed1 <dbl>, Rmed2 <dbl>,
## #   Rmed3 <dbl>, TEM <dbl>, pH <dbl>, CIC <dbl>, CE <dbl>, MO <dbl>, P <dbl>,
## #   K <dbl>, Ca <dbl>, S <dbl>, Mg <dbl>, Na <dbl>, Fe <dbl>, Cu <dbl>,
## #   Mn <dbl>, Zn <dbl>, B <dbl>, Aci <dbl>, Al <dbl>, P.dis <dbl>, N.tot <dbl>,
## #   N.dis <dbl>, S.Bas <dbl>, S.Al <dbl>, S.Ca <dbl>, S.Mg <dbl>, S.K <dbl>, …

Conteo de observaciones por cultivo

head(sort(table(RAS.CUN$CUL), decreasing = T), n = 80)
## 
##                         Pastos                    Papa de año 
##                            999                            427 
##                     Hortalizas                         Frijol 
##                            153                            116 
##                   Papa Criolla                         Arveja 
##                            105                             99 
##                         Uchuva                           Café 
##                             96                             95 
##                           Maíz                 Pastos-raigrás 
##                             93                             91 
##               Cebolla de bulbo                           Mora 
##                             72                             65 
##                         Tomate                          Fresa 
##                             63                             59 
##                         Quinua                  Pastos-kikuyo 
##                             51                             44 
##                      Zanahoria                       Forestal 
##                             39                             34 
##                      No indica                Tomate de arbol 
##                             32                             30 
##                          Avena                Cebolla de rama 
##                             29                             24 
##                         Gulupa                            Ajo 
##                             20                             19 
##                        Lechuga                        Cebolla 
##                             14                             12 
##                     Granadilla                       Frutales 
##                             12                             11 
##                           Lulo                      Arandanos 
##                             11                             10 
##                     Aromaticas         Aromaticas-Hierbabuena 
##                             10                             10 
##                       Cannabis                         Feijoa 
##                             10                              6 
##                      Frambuesa                      Eucalipto 
##                              6                              5 
##                  Pastos-Kikuyo                           Soya 
##                              5                              5 
##                        Alfalfa           Aromaticas-Calendula 
##                              4                              4 
##                   Caducifolios                          Calas 
##                              4                              4 
##                         Cebada                 Cebolla puerro 
##                              4                              3 
##            flores Ornamentales                        Ahuyama 
##                              3                              2 
##                      Alcachofa              Aromaticas-Laurel 
##                              2                              2 
##                      Arracacha                       Calabaza 
##                              2                              2 
##               Citricos-Tangelo                       Coliflor 
##                              2                              2 
##                       Espinaca             Follaje Ornamental 
##                              2                              2 
##                      Guisantes              agrosilvopastoril 
##                              2                              1 
##            Aromaticas-Estragón             Aromaticas-Tomillo 
##                              1                              1 
##    Banco de proteina forrajero                      Calabacín 
##                              1                              1 
##                         Cañamo                        cebolla 
##                              1                              1 
##                       Cebollin                       Cilantro 
##                              1                              1 
##                          Cubio                       Epifitas 
##                              1                              1 
##         flores industrial-Rosa flores Ornamentales-Crisantemo 
##                              1                              1 
## flores Ornamentales-Hortencias flores Ornamentales-Snapdragon 
##                              1                              1 
## Follaje Ornamental-Brillantina      follaje Ornamental-Ruscus 
##                              1                              1 
##                  Forestal-Pino                           Haba 
##                              1                              1 
##                        Helecho                         Huerta 
##                              1                              1 
##                Pastos-Angleton              Pastos-King grass 
##                              1                              1 
##                       Pimentón                       Solidago 
##                              1                              1
### NOTA ELIMINAR ANALISIS DE SUELOS RELACIONADOS CON CULTIVOS DE CLIMA CALIDO
# Plátano, Cacao, Aguacate, Pastos-Estrella, Yuca, Caña panelera/azucar, Maracuyá, Citricos, Arroz, Pastos-brachiaria, Ñame, Piña, Algodón, Sacha Inchi, Citricos-Limón, 
# Citricos-Naranjo, Citricos-Tangelo, Guayaba, Mango, Melón, Palma de aceite, Caucho, Chirimoya, Guadua, Guanabana

Conteo de observaciones por municipio

head(sort(table(RAS.CUN$MUN), decreasing = T), n = 50)
## 
##           BOGOTA         CHOCONTA           GUASCA CARMEN DE CARUPA 
##              322              156              144              128 
##           SIBATE        GUATAVITA         CUCUNUBA            MANTA 
##              109              106              102              102 
##          GRANADA            TAUSA         SIMIJACA        GUTIERREZ 
##               98               95               92               90 
##      LENGUAZAQUE           SUESCA        LA CALERA            PASCA 
##               90               89               84               83 
##     SAN CAYETANO          CHOACHI     SAN BERNARDO       FACATATIVA 
##               82               74               73               70 
##             SUSA         GUACHETA              UNE         CHIPAQUE 
##               65               63               63               59 
##       SUBACHOQUE          FUQUENE            FUNZA         SESQUILE 
##               55               54               50               49 
##            PACHO            COGUA      VILLAPINZON            FOSCA 
##               42               35               34               32 
##            JUNIN           UBAQUE            TENJO            TABIO 
##               32               28               26               22 
##        ZIPAQUIRA             CHIA        SUTATAUSA         EL ROSAL 
##               22               21               21               20 
##          ZIPACON           MADRID           SOACHA             SOPO 
##               20               17               14                6 
##           CAJICA             COTA          MACHETA 
##                5                5                5

Agrupar variables por municipio

p.truncado <- 0.05
GR.CUN <- RAS.CUN %>% group_by(., MUN) %>% 
  dplyr::summarise(.,
            pH=mean(pH, na.rm = TRUE, trim = p.truncado),
            MO=mean(MO, na.rm = TRUE, trim = p.truncado),
            N.tot=mean(N.tot, na.rm = TRUE, trim = p.truncado),
            N.dis=mean(N.dis, na.rm = TRUE, trim = p.truncado),
            P=mean(P, na.rm = TRUE, trim = p.truncado),
            P.dis=mean(P.dis, na.rm = TRUE, trim = p.truncado),
            S=mean(S, na.rm = TRUE, trim = p.truncado),
            Aci=mean(Aci, na.rm = TRUE, trim = p.truncado),
            Al=mean(Al, na.rm = TRUE, trim = p.truncado),
            Ca=mean(Ca, na.rm = TRUE, trim = p.truncado),
            Mg=mean(Mg, na.rm = TRUE, trim = p.truncado),
            K=mean(K, na.rm = TRUE, trim = p.truncado),
            Na=mean(Na, na.rm = TRUE, trim = p.truncado),
            CIC=mean(CIC, na.rm = TRUE, trim = p.truncado),
            CE=mean(CE, na.rm = TRUE, trim = p.truncado),
            Fe=mean(Fe, na.rm = TRUE, trim = p.truncado),
            Cu=mean(Cu, na.rm = TRUE, trim = p.truncado),
            Mn=mean(Mn, na.rm = TRUE, trim = p.truncado),
            Zn=mean(Zn, na.rm = TRUE, trim = p.truncado),
            B=mean(B, na.rm = TRUE, trim = p.truncado),
            S.Bas=mean(S.Bas, na.rm = TRUE, trim = p.truncado),
            S.Al=mean(S.Al, na.rm = TRUE, trim = p.truncado),
            S.Ca=mean(S.Ca, na.rm = TRUE, trim = p.truncado),
            S.Mg=mean(S.Mg, na.rm = TRUE, trim = p.truncado),
            S.K=mean(S.K, na.rm = TRUE, trim = p.truncado),
            S.Na=mean(S.Na, na.rm = TRUE, trim = p.truncado),
            Ca_Mg=mean(Ca_Mg, na.rm = TRUE, trim = p.truncado),
            Mg_K=mean(Mg_K, na.rm = TRUE, trim = p.truncado),
            Ca_K=mean(Ca_K, na.rm = TRUE, trim = p.truncado),
            Ca.Mg_K=mean(Ca.Mg_K, na.rm = TRUE, trim = p.truncado),
            Ca_B=mean(Ca_B, na.rm = TRUE, trim = p.truncado),
            Fe_Mn=mean(Fe_Mn, na.rm = TRUE, trim = p.truncado),
            Fe_Zn=mean(Fe_Zn, na.rm = TRUE, trim = p.truncado)) %>% 
  right_join(., PRO.CUN, by="MUN") %>% 
  textshape::column_to_rownames(., 1) %>%
  select(., c(Rmed1, Rmed2, Rmed3, Rmea1, Rmea2, Rmea3, Rmax1, Rmax2, Rmax3,
              Asem1, Asem2, Asem3, Acos1, Acos2, Acos3, Prod1, Prod2, Prod3, 
              IDPM, ALT, TEM,
              pH, Aci, Al, CE, CIC, MO, 
              N.tot, N.dis, P, P.dis, K, Ca, Mg, S, Na, Fe, Cu, Mn, Zn, B,
              S.Bas, S.Al, S.Ca, S.Mg, S.K, S.Na,
              Ca_Mg, Mg_K, Ca_K, Ca.Mg_K, 
              Ca_B, Fe_Mn, Fe_Zn) )
GR.CUN
##                   Rmed1  Rmed2  Rmed3    Rmea1    Rmea2     Rmea3 Rmax1 Rmax2
## BOGOTA               NA     NA     NA       NA       NA        NA    NA    NA
## CAJICA           20.000 19.510 11.670 20.72727 19.52375 11.670000 30.00 30.00
## CARMEN DE CARUPA 15.000 19.040 13.950 15.99538 19.32875 13.072727 32.57 28.74
## CHIA             17.000 18.000     NA 17.10222 18.21562        NA 18.00 25.00
## CHIPAQUE         14.500 15.670 11.690 14.04067 16.39133 12.450667 20.00 30.00
## CHOACHI          15.000 15.460 14.470 15.53412 15.41750 14.402308 18.00 18.00
## CHOCONTA         20.000 28.945 17.885 22.10111 27.16437 18.355000 30.69 30.71
## COGUA            19.670 20.020 17.890 21.05467 20.84250 12.573333 25.00 25.00
## COTA             23.000 26.000 15.725 23.27875 26.62875 15.612500 40.00 36.37
## CUCUNUBA         15.240 15.685 16.660 15.49250 17.27750 17.330000 18.13 30.00
## EL ROSAL         18.000 18.000 18.000 17.41333 19.28063 17.262500 18.00 24.00
## FACATATIVA       17.220 18.710 17.000 17.77059 19.56312 17.563846 20.00 26.12
## FOSCA            18.000 20.000 15.055 18.87739 20.41937 16.553125 24.00 24.00
## FUNZA            20.000 20.000     NA 19.88385 20.38188        NA 22.00 29.08
## FUQUENE          14.750 17.290 12.000 15.83167 18.04375 12.917692 26.05 26.38
## GRANADA          17.500 19.115 15.000 16.81375 18.24750 15.741875 20.00 20.00
## GUACHETA         16.000 17.400 16.000 15.81579 17.52000 16.074286 18.00 22.00
## GUASCA           18.130 19.635 18.500 21.43800 20.47375 17.543333 34.30 34.30
## GUATAVITA        22.585 28.235 21.250 23.83821 26.98937 19.646250 45.59 38.97
## GUTIERREZ        20.840 20.810     NA 21.58167 19.56000        NA 24.00 24.00
## JUNIN            25.000 15.000     NA 21.17400 17.32500        NA 34.00 34.00
## LA CALERA        16.250 25.000 16.375 19.46875 25.12375 17.336250 30.00 30.00
## LENGUAZAQUE      18.000 17.700 13.710 16.95364 17.19063 13.552500 18.29 19.05
## MACHETA          14.000 14.270  8.810 13.48333 14.69125 10.264286 23.86 20.92
## MADRID           21.000 20.865     NA 20.97182 21.06875        NA 22.50 24.00
## MANTA            12.000 16.070     NA 13.30647 15.33812        NA 28.00 24.21
## PACHO            13.000 18.000 12.000 14.00000 17.40375 12.075625 22.00 24.25
## PASCA            20.000 22.680 10.000 19.39765 21.86812  6.666667 25.00 25.00
## SAN BERNARDO     12.000 16.150     NA 13.51600 15.67000        NA 19.00 25.60
## SAN CAYETANO     16.000 20.000 12.000 15.65789 20.64250 11.510000 20.00 39.15
## SESQUILE         25.000 25.480 17.070 23.17267 26.88812 15.642500 31.59 41.74
## SIBATE           20.000 21.150 18.000 19.87474 21.53063 19.135000 25.74 25.82
## SIMIJACA         14.500 16.775     NA 15.12500 19.41500        NA 18.00 35.00
## SOACHA           14.500 20.000 11.500 15.04167 18.20938 12.923750 20.00 22.00
## SOPO             20.000 20.000 15.000 18.58333 20.46750 13.778889 25.00 33.00
## SUBACHOQUE       21.040 21.535 18.000 21.39148 23.29250 17.883125 46.00 34.36
## SUESCA           23.120 27.105 21.250 23.22571 25.03250 20.425000 32.00 32.00
## SUSA             15.000 19.610 13.850 16.09833 17.41200 12.577778 24.07 22.22
## SUTATAUSA        15.000 15.310     NA 15.95000 17.11437        NA 23.20 26.45
## TABIO            22.000 21.920 17.200 21.98375 21.47250 16.216667 23.00 23.49
## TAUSA            18.000 18.120 14.500 19.33312 19.32000 13.078182 26.65 26.60
## TENJO            23.000 22.265 19.000 21.52727 21.48000 19.472500 23.00 30.00
## UBAQUE           15.000 15.690 12.475 16.18095 16.69625 13.875000 22.00 22.00
## UNE              29.075 29.075 21.670 27.10250 27.47188 21.333750 33.79 33.77
## VILLAPINZON      19.000 25.350 15.650 19.52000 25.34625 18.853636 32.69 31.48
## ZIPACON          12.000 16.960 11.750 15.01545 23.58000 12.394375 43.26 41.46
## ZIPAQUIRA        20.750 24.550 17.500 20.80556 23.01562 17.013000 27.00 25.00
##                  Rmax3      Asem1       Asem2      Asem3      Acos1       Acos2
## BOGOTA              NA         NA          NA         NA         NA          NA
## CAJICA           11.67   20.09091    39.35625  10.000000   12.18182    26.49375
## CARMEN DE CARUPA 20.00  945.23077  2276.43750  77.636364  854.69231  2082.68750
## CHIA                NA  124.66667   189.31250         NA  118.33333   195.31250
## CHIPAQUE         20.00  118.33333   121.30000  38.333333  116.33333   155.50000
## CHOACHI          16.00   41.82353    70.06250  76.538462   41.47059    71.75000
## CHOCONTA         25.64  922.88889  3448.18750 149.562500  858.70370  3091.25000
## COGUA            19.83  792.26667  1308.68750 453.333333  789.00000  1361.68750
## COTA             16.00   71.37500   145.75438  22.000000   71.06250   144.26687
## CUCUNUBA         22.00  157.50000   291.50000  21.250000  157.50000   289.62500
## EL ROSAL         18.00  276.50000   717.56250 459.000000  259.16667   675.43750
## FACATATIVA       22.98  247.05882   703.37500 127.384615  240.76471   674.44375
## FOSCA            32.62  208.91304   448.63125 441.737500  172.39130   428.56875
## FUNZA               NA  491.53846   651.37500         NA  408.46154   585.75000
## FUQUENE          18.33   70.00000   199.95375  20.483077   66.27778   188.57875
## GRANADA          25.00   65.00000   110.61250 100.021250   60.66667   107.45625
## GUACHETA         19.25  198.73684   480.00000  15.142857  163.00000   458.25000
## GUASCA           22.00  396.50000   677.50000  32.500000  333.40000   652.87500
## GUATAVITA        27.61  571.25000  1604.68750 140.437500  567.89286  1632.34375
## GUTIERREZ           NA   44.16667    58.00000         NA   42.00000    50.92000
## JUNIN               NA  188.80000   164.57143         NA  185.00000   152.35714
## LA CALERA        22.00  283.75000  1351.87500 244.312500  275.06250  1257.75000
## LENGUAZAQUE      15.00  528.18182  1002.93750  49.500000  495.54545  1001.12500
## MACHETA          14.00  307.55556   553.06250  46.821429  286.83333   512.18750
## MADRID              NA  426.36364   883.46875         NA  418.27273   864.45625
## MANTA               NA   20.70588    42.25000         NA   18.94118    40.62500
## PACHO            15.00  126.20000   188.43750 291.562500  110.28000   167.93750
## PASCA            10.00  792.94118  1740.62500 100.000000  658.82353  1459.18750
## SAN BERNARDO        NA  172.26667   220.76875         NA  145.73333   198.46875
## SAN CAYETANO     18.00  850.68421  2725.37500  51.785714  838.89474  2616.68750
## SESQUILE         20.00  919.00000  2370.93750 102.500000  915.86667  2330.31250
## SIBATE           25.00  773.42105  1784.50000 725.166667  717.89474  1721.06250
## SIMIJACA            NA  219.12500   347.75000         NA  191.75000   305.31250
## SOACHA           20.00  180.50000   666.43750  61.187500  165.75000   612.06250
## SOPO             20.00   48.75000    78.12500   9.111111   48.75000    86.25000
## SUBACHOQUE       18.00  290.22222   774.12500 193.937500  290.22222   764.37500
## SUESCA           32.00  503.92857  1485.13125  61.583333  478.92857  1458.38125
## SUSA             20.00  546.00000  1138.73333  46.555556  495.00000  1092.73333
## SUTATAUSA           NA  138.23077   267.62500         NA  133.84615   267.18750
## TABIO            23.45   68.93750   143.93750  17.750000   62.31250   129.75000
## TAUSA            18.00 4182.18750 11944.33333 147.727273 4125.68750 11443.80000
## TENJO            24.89  526.18182   877.68750  21.250000  480.90909   784.06250
## UBAQUE           22.00  309.76190   398.00000 335.857143  295.47619   433.42500
## UNE              25.00 1314.16667  2632.78750 476.125000 1261.25000  2564.13750
## VILLAPINZON      50.00 2509.90476  8348.81250  72.336364 2390.28571  7824.12500
## ZIPACON          21.82  106.68182   221.43750 224.312500  103.95455   194.87500
## ZIPAQUIRA        18.91 1027.83333  2580.63125 173.100000  931.72222  2432.50000
##                       Acos3      Prod1       Prod2      Prod3 IDPM  ALT  TEM
## BOGOTA                   NA         NA          NA         NA    3 2625 13.1
## CAJICA            12.000000   250.5455    513.6344   140.0000    3 2558 14.0
## CARMEN DE CARUPA  69.363636 15279.7692  39427.0000   956.2727    1 2600 12.0
## CHIA                     NA  2035.0000   3465.1875         NA    2 2600 14.0
## CHIPAQUE          46.800000  1722.1333   2366.3500   625.2013    3 2400 13.0
## CHOACHI           70.076923   630.7059   1079.5000   987.4615    3 1923 18.0
## CHOCONTA         138.437500 21884.0741  84073.7125  2326.6875    1 2689 10.0
## COGUA            452.333333 15640.6667  27124.3125  8403.3333    1 2600 14.0
## COTA              22.000000  1959.8750   4053.8387   338.5000    2 2566 14.0
## CUCUNUBA          21.250000  2422.5000   4856.0000   352.7500    2 2590 14.0
## EL ROSAL         436.312500  4601.3889  13332.8125  7616.0000    1 2685 12.0
## FACATATIVA       111.519231  4317.4118  13230.1938  1988.0577    1 2586 19.0
## FOSCA            379.300000  3286.2174   8797.2812  6584.6250    2 2713 14.0
## FUNZA                    NA  8160.7692  11779.3125         NA    1 2548 14.0
## FUQUENE           18.121538  1110.8889   3261.5637   231.3046    3 2750 13.0
## GRANADA          105.271250   998.6250   1943.7750  1654.6875    3 2500 11.0
## GUACHETA          14.800000  2740.2632   8267.7500   234.9429    2 2688 13.0
## GUASCA            27.333333  6832.3000  12334.5000   468.5833    2 2710 13.0
## GUATAVITA        136.281250 16392.9286  45677.7500  2889.7812    2 2680 14.0
## GUTIERREZ                NA   917.5000   1060.7193         NA    3 2350 14.0
## JUNIN                    NA  5687.6000   3238.7336         NA    3 2300 16.0
## LA CALERA        219.625000  6261.8125  32573.9375  3992.1562    1 2780 14.0
## LENGUAZAQUE       47.375000  8445.8182  17084.3125   636.0500    1 2589 14.0
## MACHETA           42.892857  4152.7778   7453.4637   461.5000    2 2094 17.0
## MADRID                   NA  8765.1818  18206.2281         NA    1 2554 14.0
## MANTA                    NA   253.9412    627.3750         NA    3 1924 18.0
## PACHO            263.062500  1508.0400   3142.1250  3256.5000    3 2136 19.0
## PASCA             60.000000 13574.1176  31655.1562   600.0000    1 2180 15.0
## SAN BERNARDO             NA  2132.3333   2739.8544         NA    3 1600 20.0
## SAN CAYETANO      43.285714 15864.2105  53816.1875   541.6429    1 2700 12.0
## SESQUILE          86.750000 22788.2667  61495.3125  1205.5000    1 2595 15.0
## SIBATE           669.750000 14651.4737  36672.3375 13957.1667    1 2700 14.0
## SIMIJACA                 NA  2786.5000   5558.2188         NA    2 2559 14.0
## SOACHA            53.437500  2935.4583  11210.9375   719.4375    3 2566 14.0
## SOPO               9.111111  1009.1667   1887.0000   147.3422    3 2650 14.0
## SUBACHOQUE       194.875000  6742.1481  17781.4375  3485.2500    1 2663 13.0
## SUESCA            59.833333 10641.1429  36001.4094  1416.3333    1 2584 14.0
## SUSA              42.444444  7097.4167  18418.8000   655.7778    2 2655 14.0
## SUTATAUSA                NA  2100.3846   4408.2188         NA    2 2550 14.0
## TABIO             14.166667  1366.8750   2765.6250   230.9333    3 2569 14.0
## TAUSA            134.863636 93032.4375 238167.3333  1978.0455    1 2950 12.0
## TENJO             21.250000 10059.1818  16089.6250   440.0000    1 2587 13.0
## UBAQUE           304.464286  4316.0476   7120.9663  4265.2857    3 1867 20.0
## UNE              432.875000 35525.0000  68172.0813  9190.7500    1 2376 16.0
## VILLAPINZON       70.245455 60119.4762 198077.0200  1292.3136    1 2715 13.0
## ZIPACON          201.437500  2015.9545   5975.2500  2702.1250    2 2500 16.0
## ZIPAQUIRA        154.100000 21236.5556  55512.5000  2679.3000    1 2652 12.0
##                        pH        Aci         Al        CE       CIC        MO
## BOGOTA           5.559103 1.48842672 1.14813493 0.4744674 12.685202  9.778200
## CAJICA           5.316000 1.10836635 0.87816355 0.4607279 10.384645  8.094967
## CARMEN DE CARUPA 5.062155 2.06117455 1.63019473 0.3139291  6.417927 12.586212
## CHIA             5.918421 0.08288328 0.05627741 0.8380108 14.984885  7.087336
## CHIPAQUE         5.771273 0.76391403 0.61289557 0.5017144 12.069595  6.234734
## CHOACHI          5.166176 2.69555878 2.17397142 0.2091443  7.574417  6.979696
## CHOCONTA         5.114296 1.57266228 1.31436399 0.3881219  7.185019  9.893829
## COGUA            5.452424 1.13583515 0.94955086 0.3825780  8.582600 10.649070
## COTA             5.014000 1.68571680 1.16897724 1.2191779 11.399998  8.561286
## CUCUNUBA         5.555217 0.50128910 0.36834854 0.3394613  7.801094  6.126479
## EL ROSAL         5.579444 0.47765807 0.34018440 0.6773613 12.920994 20.790809
## FACATATIVA       5.761250 0.32234394 0.21942756 1.2174820 16.797049 13.113757
## FOSCA            5.394667 0.86581904 0.66269228 0.3239092  6.237568  5.311936
## FUNZA            5.595870 0.28513281 0.18055710 1.1689460 13.619075 11.631361
## FUQUENE          5.097600 1.15825959 0.86576309 0.3985827  8.620903  8.077060
## GRANADA          5.335811 0.62158721 0.41788006 0.9952873  9.594231 13.810492
## GUACHETA         5.192105 0.97107427 0.71774410 0.4200620  8.585921  5.944584
## GUASCA           5.509538 0.47896412 0.31924071 0.2686508  5.720285 10.018231
## GUATAVITA        5.104896 2.05703561 1.35063107 0.2192190  5.516139 12.252528
## GUTIERREZ        5.304146 1.36450159 1.09273274 0.3135042  7.407471  7.487618
## JUNIN            5.245667 2.73902422 2.32933987 0.1621760  6.131229  8.237882
## LA CALERA        5.470921 1.46741721 1.15194301 0.4327048  9.397545 11.516739
## LENGUAZAQUE      4.933537 2.64988291 2.24520904 0.3815322  6.748871  7.177118
## MACHETA          5.224000 3.36183015 2.93779138 0.1341186  7.422145  4.311126
## MADRID           5.772353 0.34159585 0.26367691 1.4138369 17.466278 13.073099
## MANTA            5.731957 0.54565071 0.40491772 0.2626550 10.327537  4.042129
## PACHO            5.222105 1.68835696 1.32885948 0.2557147  4.981400 10.007553
## PASCA            5.687200 0.44322089 0.31324232 0.6390085 10.783257 10.289681
## SAN BERNARDO     5.237612 1.79245649 1.44831640 0.3380505  8.861645  6.340610
## SAN CAYETANO     5.159459 2.01875624 1.72941120 0.2280057  6.290645  7.793149
## SESQUILE         5.184222 2.03168523 1.32865996 0.3121670  6.733806 12.484487
## SIBATE           5.218485 1.35931642 0.95480135 0.6461802  8.908929 17.425073
## SIMIJACA         5.044405 1.79354525 1.47046480 0.9808050 11.942048  7.753307
## SOACHA           5.767143 0.60816555 0.46267176 2.1790074 14.701346  8.185902
## SOPO             5.533333 0.74140222 0.55051123 0.4027289  9.028509  5.764675
## SUBACHOQUE       5.296275 1.11352096 0.86840251 0.4407986  7.670090 20.534207
## SUESCA           5.359383 0.72004084 0.50577887 0.2968667  6.033355  6.763315
## SUSA             5.174068 1.93916819 1.51178281 0.2559407  6.598838 11.852425
## SUTATAUSA        5.585789 0.52922592 0.38475114 1.1215687 11.402752  5.880491
## TABIO            5.374000 1.22141038 0.99110769 0.4345830  9.137376 10.278675
## TAUSA            5.010575 3.25329783 2.59302652 0.4933287  7.664277 19.107391
## TENJO            5.531667 0.65449398 0.49054135 0.8992575 11.832478 13.849393
## UBAQUE           5.477308 0.67162119 0.50695938 0.4094572  7.157293 12.631683
## UNE              5.901754 0.56291347 0.45066803 0.4648777 11.402627  6.630656
## VILLAPINZON      5.264062 1.22915100 1.00330076 0.3099199  6.455969 11.234601
## ZIPACON          5.543889 0.25472939 0.16862078 0.3463251  7.790373 13.774041
## ZIPAQUIRA        5.420000 1.29654018 1.03122146 0.4560806  9.809536 13.956820
##                      N.tot     N.dis          P     P.dis         K        Ca
## BOGOTA           0.4889100  73.33650  55.976267 128.18565 0.8372324  7.609837
## CAJICA           0.4047484  60.71225  29.651472  67.90187 0.6229017  6.828402
## CARMEN DE CARUPA 0.6293106  94.39659  50.340103 115.27883 0.6813839  2.703054
## CHIA             0.3543668  53.15502  59.404397 136.03607 1.3264158 10.384599
## CHIPAQUE         0.3117367  46.76050 106.190896 243.17715 0.6996663  8.785649
## CHOACHI          0.3489848  52.34772  20.152388  46.14897 0.4317104  3.117594
## CHOCONTA         0.4946914  74.20372  51.977796 119.02915 0.7592882  3.426372
## COGUA            0.5324535  79.86803  48.109959 110.17181 0.5279060  5.137754
## COTA             0.4280643  64.20965  37.849774  86.67598 1.3810860  5.196928
## CUCUNUBA         0.3063240  45.94859  21.269575  48.70733 0.8593057  4.451287
## EL ROSAL         1.0395405 155.93107  29.548854  67.66688 1.2002920  8.727308
## FACATATIVA       0.6556879  98.35318  52.841052 121.00601 1.1939526 11.861185
## FOSCA            0.2655968  39.83952 111.897412 256.24507 0.5307785  3.943650
## FUNZA            0.5815681  87.23521  72.892387 166.92357 0.7367824  9.049120
## FUQUENE          0.4038530  60.57795  20.479064  46.89706 0.4861748  4.639825
## GRANADA          0.6905246 103.57869  47.339680 108.40787 0.5472834  6.144561
## GUACHETA         0.2972292  44.58438  19.451621  44.54421 0.6005536  4.809975
## GUASCA           0.5009115  75.13673  30.326777  69.44832 0.4989278  3.367402
## GUATAVITA        0.6126264  91.89396  27.265881  62.43887 0.3936100  1.962767
## GUTIERREZ        0.3743809  56.15713  85.814510 196.51523 0.4522899  4.620345
## JUNIN            0.4118941  61.78411  10.967087  25.11463 0.2749652  2.092673
## LA CALERA        0.5758370  86.37555  36.456175  83.48464 0.5700326  5.960935
## LENGUAZAQUE      0.3588559  53.82839  70.195228 160.74707 0.5608173  2.382194
## MACHETA          0.2155563  32.33345  14.103114  32.29613 0.4614810  2.317661
## MADRID           0.6536549  98.04824 100.325374 229.74511 1.9763222 10.806383
## MANTA            0.2021065  30.31597  41.948427  96.06190 0.6681469  7.370387
## PACHO            0.5003776  75.05665   9.316242  21.33420 0.2527059  1.932011
## PASCA            0.5144841  77.17261 105.945881 242.61607 0.7231711  7.924545
## SAN BERNARDO     0.3170305  47.55458  78.964168 180.82794 0.3785195  5.036355
## SAN CAYETANO     0.3896575  58.44862  14.335644  32.82863 0.1826725  2.847023
## SESQUILE         0.6242243  93.63365  43.067545  98.62468 0.5565116  2.827452
## SIBATE           0.8712537 130.68805  60.314884 138.12108 0.6264456  5.325352
## SIMIJACA         0.3876653  58.14980  28.272022  64.74293 0.7921099  6.725803
## SOACHA           0.4092951  61.39426  43.015980  98.50659 0.8523538  9.432303
## SOPO             0.2882337  43.23506  18.998175  43.50582 0.5194166  5.295229
## SUBACHOQUE       1.0267104 154.00656  35.832079  82.05546 0.8484872  4.075166
## SUESCA           0.3381658  50.72486  28.990104  66.38734 0.7465279  3.135905
## SUSA             0.5926213  88.89319  41.254939  94.47381 0.6221803  2.962146
## SUTATAUSA        0.2940245  44.10368  79.172046 181.30399 0.6200010  8.159469
## TABIO            0.5139337  77.09006  21.824843  49.97889 0.8974949  4.789854
## TAUSA            0.9553696 143.30544 100.889183 231.03623 0.6459231  2.759601
## TENJO            0.6924697 103.87045 100.600645 230.37548 1.2233185  7.490951
## UBAQUE           0.6315842  94.73763 110.722670 253.55491 0.7351836  4.676258
## UNE              0.3315328  49.72992 170.414166 390.24844 0.7137648  8.240352
## VILLAPINZON      0.5617301  84.25951  73.303644 167.86534 0.6554738  3.531951
## ZIPACON          0.6887020 103.30530   9.995007  22.88857 0.4305246  5.514894
## ZIPAQUIRA        0.6978410 104.67615  45.832989 104.95754 0.5026438  6.082949
##                         Mg         S         Na        Fe        Cu        Mn
## BOGOTA           1.7951393 10.507277 0.12319214  569.1982 2.3304314  7.651463
## CAJICA           1.5094093 13.102876 0.30956664  668.5700 2.6000000  7.291400
## CARMEN DE CARUPA 0.7181425  8.190727 0.08674512  532.3260 1.5063362  5.883974
## CHIA             2.5320848 31.323270 0.27498420  488.5985 3.5517887  6.985933
## CHIPAQUE         1.4130209 12.127141 0.10290401  669.0530 4.2071258  7.183408
## CHOACHI          0.8909178  6.645534 0.07732360  785.9876 1.3285659  6.952517
## CHOCONTA         0.9684186  8.993108 0.17511828  520.5033 2.5644189  9.027619
## COGUA            1.4431673 15.964870 0.13715575  763.5126 3.8724567  6.770941
## COTA             2.7790936 20.586415 0.35717320  795.6744 4.3288000 10.535400
## CUCUNUBA         1.5760503 11.428284 0.12308086  624.6912 2.7378376  5.479770
## EL ROSAL         2.1647076 17.861430 0.17910686  199.6696 2.7410294  4.981460
## FACATATIVA       2.4470635 39.566737 0.25014833  208.5844 2.4855832  6.010325
## FOSCA            0.7771380  8.819503 0.05958466  506.1218 7.1078333  8.329267
## FUNZA            2.6870710 49.734446 0.40554220  407.3529 3.7286610  6.303742
## FUQUENE          2.0289622 37.360956 0.13548251 1329.7090 3.6976594 14.772262
## GRANADA          1.8123246 46.235197 0.11806982  278.1683 5.1739505  6.424500
## GUACHETA         1.9723353 16.462326 0.15544412  783.8662 3.3075683  8.250854
## GUASCA           1.1208034  8.403813 0.09926487  537.0052 2.6483480  7.249797
## GUATAVITA        0.7815846  7.676379 0.05321787  747.4083 2.6560143  7.999875
## GUTIERREZ        0.7560211  8.590721 0.09168774  503.1262 2.5071049 14.009986
## JUNIN            0.6138866  5.284479 0.07137625  583.6759 1.5084053  6.825052
## LA CALERA        0.9350799  8.644076 0.09284027  625.3544 1.9973696  7.253078
## LENGUAZAQUE      0.7358587 14.960065 0.10778068  876.8909 1.7988788  5.502578
## MACHETA          1.1483899  2.926136 0.08478355  582.2499 0.8968649  6.037654
## MADRID           3.7989980 80.936942 0.52650822  463.1219 2.4339097 11.946925
## MANTA            1.3783723  6.815903 0.13806267  581.0128 4.6780870  7.229685
## PACHO            0.6736951  7.971077 0.06530890  244.4244 1.7057403  3.332639
## PASCA            1.1939198 14.293321 0.12028547  289.0372 8.7542173  4.517080
## SAN BERNARDO     1.0463044  9.607265 0.09865306  540.6916 3.2564606  8.762998
## SAN CAYETANO     0.7954409  5.257374 0.10541479  398.5048 0.8345135  4.030425
## SESQUILE         0.6986989  9.848105 0.05951783  695.0550 2.7688667  8.722667
## SIBATE           1.0166715 14.500787 0.18124861  511.8916 4.2744133  5.963710
## SIMIJACA         2.1156070 76.475056 0.23171513 1174.4268 1.1451890 11.168375
## SOACHA           3.0191177 73.127804 0.77869144  230.1939 3.2276655  4.586873
## SOPO             2.2712253 11.543862 0.19123587  693.6312 1.9216120  5.775189
## SUBACHOQUE       1.1870670 13.485496 0.10165910  424.5978 2.2254359  6.758521
## SUESCA           1.1041059  8.328884 0.08185894  522.3281 2.9441468  8.526384
## SUSA             0.8112063 17.523490 0.08375177  638.3813 2.0400633  5.709596
## SUTATAUSA        1.3669953 34.351701 0.50158465  351.2381 2.3745789  6.667158
## TABIO            1.6674089 13.560286 0.15346145  635.8791 2.8903118  9.193293
## TAUSA            0.6489134 14.953695 0.16554767  470.8931 1.3604383  6.920701
## TENJO            1.8092387 25.496444 0.23576234  380.8290 3.0664202  5.634095
## UBAQUE           0.8740120 11.937510 0.06705591  277.3353 3.3484615  4.772989
## UNE              1.2919375 12.952596 0.10805196  408.8872 7.4151957  5.939497
## VILLAPINZON      0.7974836 14.355854 0.07051152  619.1350 2.9893624  7.328563
## ZIPACON          1.4249624  9.759495 0.08402422  221.0799 2.0710813  7.739677
## ZIPAQUIRA        1.4028510 13.693114 0.14889878  832.1795 3.4091941  6.380285
##                         Zn         B    S.Bas       S.Al     S.Ca      S.Mg
## BOGOTA            5.463535 0.3275570 80.05188 14.7452755 55.16836 13.568203
## CAJICA            6.398600 0.3558244 80.67935 15.4288655 57.30971 13.820678
## CARMEN DE CARUPA  1.920793 0.2525678 66.48783 26.3535645 41.91207 11.137922
## CHIA             11.472134 0.4177221 99.31008  0.4654782 68.81959 16.914227
## CHIPAQUE          5.334073 0.3241120 89.93421  7.9391507 69.18755 12.300763
## CHOACHI           3.222804 0.1310648 59.64343 31.5265113 39.99056 11.456064
## CHOCONTA          2.880188 0.2669020 76.23524 19.5441738 47.32400 13.265068
## COGUA             5.599856 0.2983707 85.37701 12.1882056 59.12271 17.296942
## COTA             28.979400 0.4398446 72.98395 19.4199499 39.26746 19.919034
## CUCUNUBA          2.904986 0.2615827 92.33921  5.3468453 56.74571 20.733591
## EL ROSAL          8.285466 0.3866722 92.95790  4.5533721 64.06779 16.293285
## FACATATIVA        7.419592 0.4082495 95.29772  2.8526592 67.91950 15.139390
## FOSCA             5.703100 0.2029506 83.60708 12.1007762 60.37720 12.313138
## FUNZA            16.565071 0.5769619 96.39223  1.9050203 67.71797 19.312456
## FUQUENE           8.067467 0.2827392 85.86268 10.1669683 52.84402 23.716778
## GRANADA          12.161302 0.5569017 89.18058  7.4281554 62.24793 16.988092
## GUACHETA          6.569300 0.2952467 87.07609  9.5278237 54.84609 21.949058
## GUASCA            2.698380 0.2513500 90.86439  5.9007369 59.06861 19.549113
## GUATAVITA         2.156927 0.1513918 62.78067 23.6880716 38.42958 14.473765
## GUTIERREZ         3.542726 0.3029657 78.26410 17.2662794 59.71984  9.937097
## JUNIN             3.153675 0.1574059 48.76613 41.3027097 32.48146  9.619547
## LA CALERA         3.357971 0.2263380 75.56990 19.0462365 54.81031 10.700277
## LENGUAZAQUE       2.437085 0.3167189 58.54142 34.4287355 35.49699 10.860087
## MACHETA           1.997232 0.1479174 53.18053 40.2219427 30.45249 15.246628
## MADRID           17.849911 0.5474817 94.83883  3.9872994 59.13032 21.197394
## MANTA             3.619380 0.3111185 91.89935  5.9956611 68.42633 13.517769
## PACHO             2.358481 0.1343537 63.66178 27.1144823 40.29819 14.711142
## PASCA             8.738744 0.3379247 91.86695  5.9067966 71.28184 11.334093
## SAN BERNARDO      5.423376 0.2715315 76.61698 18.8071387 57.63528 11.740923
## SAN CAYETANO      2.992689 0.1695861 61.76864 32.0957150 43.08813 12.069240
## SESQUILE          2.790444 0.1569658 65.19560 22.4494314 43.98237 10.160880
## SIBATE            7.047068 0.3672236 82.59789 12.1732038 59.01888 11.282632
## SIMIJACA          7.345060 0.3752028 81.78400 14.8497602 53.48437 17.339228
## SOACHA            7.209866 0.4015325 83.76125 12.2199911 54.18933 15.415347
## SOPO              3.416762 0.2216387 86.61411  9.8155378 59.60813 20.427077
## SUBACHOQUE        6.414248 0.3047218 81.68475 14.0101016 52.21020 15.119114
## SUESCA            2.383673 0.2140021 88.01743  8.2137716 53.25031 18.414799
## SUSA              2.601359 0.2305126 69.28075 23.8886218 42.97241 11.896822
## SUTATAUSA         4.634158 0.3312990 93.87815  4.6078133 66.15861 13.322642
## TABIO             6.293630 0.2634338 85.63516 11.4733695 53.89752 18.701918
## TAUSA             3.686032 0.3908919 55.09451 35.6446294 35.28947  8.315885
## TENJO            11.478407 0.4902641 92.25186  5.8883004 62.00234 15.627753
## UBAQUE            6.073077 0.2824154 88.07622  8.9062406 63.00816 12.359357
## UNE               6.844354 0.3007872 92.26753  6.1445993 71.06692 11.683787
## VILLAPINZON       3.149603 0.3706109 77.13117 18.5653449 50.78021 12.959840
## ZIPACON           6.268119 0.1585402 93.37620  4.1878722 68.12849 17.209582
## ZIPAQUIRA         4.810961 0.3252102 83.87497 12.9462299 60.13385 14.200342
##                        S.K      S.Na    Ca_Mg     Mg_K      Ca_K   Ca.Mg_K
## BOGOTA            7.243108 1.3205465 4.207091 2.613154 10.679175 13.431593
## CAJICA            6.534641 3.0143130 4.650541 4.041579 23.226207 27.267786
## CARMEN DE CARUPA 10.871190 1.3922997 3.952252 1.244362  4.686444  5.946376
## CHIA              8.629590 1.9297157 4.150889 2.791340 13.325539 16.116879
## CHIPAQUE          6.428829 0.9590380 6.157040 2.107519 13.378390 15.714203
## CHOACHI           5.840890 1.1197015 3.475578 2.445354  8.259583 10.737634
## CHOCONTA         10.551657 2.5688854 4.155828 1.600995  5.741427  7.352359
## COGUA             6.084893 1.7734148 4.019314 3.544209 11.898310 15.463167
## COTA             11.360041 2.4374106 2.313750 1.995038  4.270404  6.265442
## CUCUNUBA         11.023580 1.5833355 3.124588 2.223052  5.858726  8.184432
## EL ROSAL          9.434368 1.4263307 3.967007 2.137465  8.895605 11.156403
## FACATATIVA        8.239967 1.8181514 4.796457 2.908115 12.660487 15.894671
## FOSCA             8.690495 0.9819731 5.507378 1.617921  8.436878 10.038924
## FUNZA             5.684595 2.6549998 3.934824 4.798546 16.256570 21.309211
## FUQUENE           6.365412 1.7528772 2.472948 4.510470 10.428636 14.978127
## GRANADA           6.036071 1.3746619 4.352253 4.018939 13.878298 18.540743
## GUACHETA          7.149819 1.7164996 2.674055 3.454300  8.380502 11.837539
## GUASCA            8.595033 1.7770319 3.356945 2.602765  8.178246 10.883756
## GUATAVITA         7.419013 1.0142213 2.997810 2.128698  5.570188  7.815801
## GUTIERREZ         6.166221 1.3169163 6.277940 1.685047 10.524148 12.280181
## JUNIN             4.494838 1.3230160 3.138291 2.259452  7.410669  9.725518
## LA CALERA         6.723682 1.1273306 5.885796 1.808105 11.602960 13.737836
## LENGUAZAQUE       8.791739 1.6002877 3.642946 1.488717  5.048062  6.572472
## MACHETA           6.331221 1.1501939 2.347562 2.590489  5.527744  8.118233
## MADRID           11.975529 2.5355867 3.083577 2.477477  6.803889  9.281366
## MANTA             6.811436 1.3810430 5.179842 2.343526 13.718844 16.265023
## PACHO             5.798944 1.5800767 2.882946 2.764143  7.418826 10.163052
## PASCA             6.807680 1.2746707 6.590371 1.941682 12.042624 13.986523
## SAN BERNARDO      4.405980 1.2651621 5.664800 3.541532 15.819488 19.560620
## SAN CAYETANO      3.248339 1.8336048 3.471815 5.853562 20.444469 26.282011
## SESQUILE          8.930915 0.8623909 4.888239 1.431617  6.061083  7.485572
## SIBATE            7.105849 2.0369629 6.183241 1.944085 11.218633 13.475778
## SIMIJACA          7.509215 1.7331667 3.883233 2.856109 10.373053 13.284027
## SOACHA            8.487468 5.6691042 4.073192 5.181092 16.955785 22.136876
## SOPO              4.901099 1.6778094 3.563062 4.761034 17.480546 22.241580
## SUBACHOQUE       11.150428 1.4575350 3.665545 1.744570  5.916611  7.660675
## SUESCA           12.970238 1.3573717 3.305623 1.729761  4.951949  6.757195
## SUSA             10.109411 1.2026532 3.925609 1.677665  6.286635  7.964299
## SUTATAUSA         5.929483 4.7011573 8.279938 3.162612 30.496932 33.715224
## TABIO             9.687765 1.7414743 2.844602 2.138461  5.969263  8.095845
## TAUSA             8.223951 2.3121699 4.329034 1.366540  5.999341  7.475064
## TENJO            10.758324 1.9886135 4.343637 1.692927  6.630484  8.314953
## UBAQUE           11.123505 0.9724024 5.550376 1.413229  7.516967  8.930196
## UNE               6.700554 1.0261327 6.525925 2.173082 12.742967 15.047349
## VILLAPINZON      10.549304 1.0902017 4.505706 1.602982  6.758757  8.402251
## ZIPACON           5.656838 1.2531240 4.024144 3.559467 16.478456 20.023376
## ZIPAQUIRA         5.070922 1.6184154 4.901222 3.492617 15.869630 19.480282
##                       Ca_B     Fe_Mn     Fe_Zn
## BOGOTA           22.911929  76.11250 159.48352
## CAJICA           22.103206  99.79597 224.82995
## CARMEN DE CARUPA 13.358083 101.88795 348.51124
## CHIA             28.283091  82.06782  44.59346
## CHIPAQUE         31.356669 106.15040 192.95755
## CHOACHI          44.860094 126.77638 463.21697
## CHOCONTA         15.303524  64.50734 279.89002
## COGUA            21.599593 127.99761 231.20179
## COTA             10.596020 137.53683  58.32030
## CUCUNUBA         23.369612 124.07392 283.95300
## EL ROSAL         24.313911  48.45113  31.38065
## FACATATIVA       36.037275  45.69982  39.99380
## FOSCA            20.342930  73.69159 121.38584
## FUNZA            21.154209  76.80013  37.19371
## FUQUENE          17.942565 119.74120 291.30422
## GRANADA          13.619364  57.26523  61.45104
## GUACHETA         18.141728 124.07656 235.46899
## GUASCA           16.317502  82.78848 271.42576
## GUATAVITA        18.490373  99.78590 406.21095
## GUTIERREZ        17.651530  62.19801 181.54670
## JUNIN            13.253069 120.11062 543.41485
## LA CALERA        25.690887 106.75522 252.41292
## LENGUAZAQUE       9.805060 194.46502 604.75564
## MACHETA          33.369561 105.21371 770.00062
## MADRID           23.038606  54.92473  30.35978
## MANTA            26.836958  93.91041 269.76120
## PACHO            15.783438  89.83600 155.79598
## PASCA            24.694176  81.70473  53.13072
## SAN BERNARDO     23.554260  90.54170 174.79516
## SAN CAYETANO     16.708943 151.18552 266.55311
## SESQUILE         22.908559  91.64701 328.82178
## SIBATE           16.078475  98.58501 104.90479
## SIMIJACA         20.374094 146.26137 291.09793
## SOACHA           26.551133  59.29421  60.45141
## SOPO             27.203337 130.78752 387.17109
## SUBACHOQUE       14.552539  74.09232 119.03846
## SUESCA           18.355345  66.46467 266.70547
## SUSA             13.797263 124.09790 355.08541
## SUTATAUSA        28.081424  65.38077 113.22886
## TABIO            19.664735  79.87481 175.23262
## TAUSA             7.764209  81.64860 164.86202
## TENJO            17.833142  71.50533 112.37959
## UBAQUE           17.187490  62.11595  70.69824
## UNE              31.925446  92.23563  85.98830
## VILLAPINZON      11.359261 100.98522 248.48556
## ZIPACON          35.109077  48.52643  74.34853
## ZIPAQUIRA        20.422276 124.80835 229.29622

# Obtener los nombres de las variables
variables <- colnames(GR.CUN)
# Iterar a través de las columnas y crear los gráficos de caja
for (i in variables) {
  # Crear un gráfico de caja para la columna i
  boxplot(x=GR.CUN[, i], main = i, xlab = paste("Valores de", i), horizontal = T)
}

Correlaciones con variables numericas y agrupadas por municipio

names(GR.CUN)
##  [1] "Rmed1"   "Rmed2"   "Rmed3"   "Rmea1"   "Rmea2"   "Rmea3"   "Rmax1"  
##  [8] "Rmax2"   "Rmax3"   "Asem1"   "Asem2"   "Asem3"   "Acos1"   "Acos2"  
## [15] "Acos3"   "Prod1"   "Prod2"   "Prod3"   "IDPM"    "ALT"     "TEM"    
## [22] "pH"      "Aci"     "Al"      "CE"      "CIC"     "MO"      "N.tot"  
## [29] "N.dis"   "P"       "P.dis"   "K"       "Ca"      "Mg"      "S"      
## [36] "Na"      "Fe"      "Cu"      "Mn"      "Zn"      "B"       "S.Bas"  
## [43] "S.Al"    "S.Ca"    "S.Mg"    "S.K"     "S.Na"    "Ca_Mg"   "Mg_K"   
## [50] "Ca_K"    "Ca.Mg_K" "Ca_B"    "Fe_Mn"   "Fe_Zn"
# Mediana
Rmed = cor( data.frame(GR.CUN[1:3], GR.CUN[19:54]), method = "spearman", use = "complete.obs")
corrplot(Rmed, method = 'number', tl.cex = 0.5, number.cex = 0.5)

resumen.Rmed=colMeans(abs(Rmed)); resumen.Rmed
##     Rmed1     Rmed2     Rmed3      IDPM       ALT       TEM        pH       Aci 
## 0.2199837 0.1919973 0.2162040 0.2271984 0.2007124 0.1704436 0.3778719 0.4024098 
##        Al        CE       CIC        MO     N.tot     N.dis         P     P.dis 
## 0.3995615 0.4237473 0.3941915 0.2626628 0.2626628 0.2626628 0.3036068 0.3036068 
##         K        Ca        Mg         S        Na        Fe        Cu        Mn 
## 0.3531328 0.4536474 0.3862067 0.3366827 0.3052603 0.2629259 0.3160893 0.1686968 
##        Zn         B     S.Bas      S.Al      S.Ca      S.Mg       S.K      S.Na 
## 0.4080836 0.3913679 0.3966931 0.3914814 0.4157206 0.2702435 0.2334159 0.2069863 
##     Ca_Mg      Mg_K      Ca_K   Ca.Mg_K      Ca_B     Fe_Mn     Fe_Zn 
## 0.3286142 0.3229608 0.3209722 0.3443807 0.2893246 0.2746610 0.4091090
# Media
Rmea = cor( data.frame(GR.CUN[4:6], GR.CUN[19:54]), method = "spearman", use = "complete.obs")
corrplot(Rmea, method = 'number', tl.cex = 0.5, number.cex = 0.5)

resumen.Rmea=colMeans(abs(Rmea)); resumen.Rmea
##     Rmea1     Rmea2     Rmea3      IDPM       ALT       TEM        pH       Aci 
## 0.2264288 0.1897649 0.2320037 0.2260671 0.2031082 0.1685426 0.3795893 0.4042044 
##        Al        CE       CIC        MO     N.tot     N.dis         P     P.dis 
## 0.4021478 0.4232030 0.3918592 0.2654191 0.2654191 0.2654191 0.3045266 0.3045266 
##         K        Ca        Mg         S        Na        Fe        Cu        Mn 
## 0.3528693 0.4547813 0.3845148 0.3378942 0.3010633 0.2624935 0.3143282 0.1753677 
##        Zn         B     S.Bas      S.Al      S.Ca      S.Mg       S.K      S.Na 
## 0.4085785 0.3905314 0.3968086 0.3926008 0.4173584 0.2672896 0.2353335 0.2058950 
##     Ca_Mg      Mg_K      Ca_K   Ca.Mg_K      Ca_B     Fe_Mn     Fe_Zn 
## 0.3317909 0.3255606 0.3210118 0.3443028 0.2880092 0.2816789 0.4113134
# Maximo
Rmax = cor( data.frame(GR.CUN[7:9], GR.CUN[19:54]), method = "spearman", use = "complete.obs")
corrplot(Rmax, method = 'number', tl.cex = 0.5, number.cex = 0.5)

#
resumen.Rmax=colMeans(abs(Rmax)); resumen.Rmax
##     Rmax1     Rmax2     Rmax3      IDPM       ALT       TEM        pH       Aci 
## 0.1963914 0.1327502 0.2045243 0.2095235 0.2005158 0.1656050 0.3854493 0.4093764 
##        Al        CE       CIC        MO     N.tot     N.dis         P     P.dis 
## 0.4057806 0.4182441 0.4044546 0.2569657 0.2569657 0.2569657 0.2979895 0.2979895 
##         K        Ca        Mg         S        Na        Fe        Cu        Mn 
## 0.3383829 0.4556518 0.3901028 0.3471701 0.3087825 0.2640397 0.3041996 0.1746429 
##        Zn         B     S.Bas      S.Al      S.Ca      S.Mg       S.K      S.Na 
## 0.4088791 0.3864069 0.4010284 0.3956295 0.4215491 0.2675150 0.2247683 0.2085259 
##     Ca_Mg      Mg_K      Ca_K   Ca.Mg_K      Ca_B     Fe_Mn     Fe_Zn 
## 0.3269290 0.3182728 0.3142877 0.3362580 0.2851304 0.2798019 0.4077322
#
head(rbind(resumen.Rmed, resumen.Rmea, resumen.Rmax))
##                  Rmed1     Rmed2     Rmed3      IDPM       ALT       TEM
## resumen.Rmed 0.2199837 0.1919973 0.2162040 0.2271984 0.2007124 0.1704436
## resumen.Rmea 0.2264288 0.1897649 0.2320037 0.2260671 0.2031082 0.1685426
## resumen.Rmax 0.1963914 0.1327502 0.2045243 0.2095235 0.2005158 0.1656050
##                     pH       Aci        Al        CE       CIC        MO
## resumen.Rmed 0.3778719 0.4024098 0.3995615 0.4237473 0.3941915 0.2626628
## resumen.Rmea 0.3795893 0.4042044 0.4021478 0.4232030 0.3918592 0.2654191
## resumen.Rmax 0.3854493 0.4093764 0.4057806 0.4182441 0.4044546 0.2569657
##                  N.tot     N.dis         P     P.dis         K        Ca
## resumen.Rmed 0.2626628 0.2626628 0.3036068 0.3036068 0.3531328 0.4536474
## resumen.Rmea 0.2654191 0.2654191 0.3045266 0.3045266 0.3528693 0.4547813
## resumen.Rmax 0.2569657 0.2569657 0.2979895 0.2979895 0.3383829 0.4556518
##                     Mg         S        Na        Fe        Cu        Mn
## resumen.Rmed 0.3862067 0.3366827 0.3052603 0.2629259 0.3160893 0.1686968
## resumen.Rmea 0.3845148 0.3378942 0.3010633 0.2624935 0.3143282 0.1753677
## resumen.Rmax 0.3901028 0.3471701 0.3087825 0.2640397 0.3041996 0.1746429
##                     Zn         B     S.Bas      S.Al      S.Ca      S.Mg
## resumen.Rmed 0.4080836 0.3913679 0.3966931 0.3914814 0.4157206 0.2702435
## resumen.Rmea 0.4085785 0.3905314 0.3968086 0.3926008 0.4173584 0.2672896
## resumen.Rmax 0.4088791 0.3864069 0.4010284 0.3956295 0.4215491 0.2675150
##                    S.K      S.Na     Ca_Mg      Mg_K      Ca_K   Ca.Mg_K
## resumen.Rmed 0.2334159 0.2069863 0.3286142 0.3229608 0.3209722 0.3443807
## resumen.Rmea 0.2353335 0.2058950 0.3317909 0.3255606 0.3210118 0.3443028
## resumen.Rmax 0.2247683 0.2085259 0.3269290 0.3182728 0.3142877 0.3362580
##                   Ca_B     Fe_Mn     Fe_Zn
## resumen.Rmed 0.2893246 0.2746610 0.4091090
## resumen.Rmea 0.2880092 0.2816789 0.4113134
## resumen.Rmax 0.2851304 0.2798019 0.4077322

Base de datos con rendimiento de la base de datos 1

Boxplot exploratorio

A <- data.frame(GR.CUN[1], GR.CUN[19:54])
# Obtener los nombres de las variables
variables <- colnames(A)
# Iterar a través de las columnas y crear los gráficos de dispersion
for (i in variables) {
  # Crear un gráfico de caja para la columna i
  plot(y = A$Rmed1, x = A[, i], main = i, ylab = "Rendimiento", xlab = i)
}

## Correlogramas ### T O D A S L A S V A R I A B L E S

A.cor  <-  cor( A, method = "spearman", use = "complete.obs"); A.cor
##                Rmed1         IDPM          ALT           TEM           pH
## Rmed1    1.000000000 -0.403015305  0.198689666 -0.1764740770  0.001669041
## IDPM    -0.403015305  1.000000000 -0.470778752  0.3235934753  0.021130286
## ALT      0.198689666 -0.470778752  1.000000000 -0.6733691958 -0.282638874
## TEM     -0.176474077  0.323593475 -0.673369196  1.0000000000  0.211788427
## pH       0.001669041  0.021130286 -0.282638874  0.2117884269  1.000000000
## Aci      0.004636225  0.040279608  0.113499679 -0.0319522314 -0.855565834
## Al      -0.026210124  0.043713279  0.095364404 -0.0309839820 -0.837804502
## CE       0.129196128 -0.190700832  0.004256238 -0.2126921264  0.412149245
## CIC     -0.036657083 -0.039619286 -0.208000498 -0.0006454996  0.586925686
## MO       0.292020340 -0.457998952  0.279431274 -0.2941541790 -0.068270120
## N.tot    0.292020340 -0.457998952  0.279431274 -0.2941541790 -0.068270120
## N.dis    0.292020340 -0.457998952  0.279431274 -0.2941541790 -0.068270120
## P        0.178587375 -0.297804970 -0.059278908 -0.0560939174  0.310391613
## P.dis    0.178587375 -0.297804970 -0.059278908 -0.0560939174  0.310391613
## K        0.224825990 -0.313916813  0.045338187 -0.1598902571  0.376626580
## Ca      -0.029919103 -0.039619286 -0.192455977  0.0163311405  0.751218008
## Mg      -0.033813532  0.079502702 -0.081485367 -0.0930164959  0.513166821
## S        0.048031288 -0.176702018  0.131634954 -0.2472263563  0.225655257
## Na       0.068059779 -0.118593731  0.059710701 -0.2476782060  0.324576010
## Fe       0.083204779  0.148704389  0.204422791 -0.0833340016 -0.494542091
## Cu       0.197935886  0.028790015 -0.062239770 -0.0121353929  0.412519272
## Mn       0.173951151  0.164816232  0.098510319 -0.0545447183 -0.227258711
## Zn       0.129567026 -0.017564550 -0.106159210 -0.0604833148  0.409312365
## B        0.133955986 -0.223188647  0.010363014 -0.3059022722  0.323712612
## S.Bas   -0.013290511 -0.062466408 -0.125959970  0.0034856980  0.817946346
## S.Al    -0.010014245  0.061277830  0.099065481 -0.0061322464 -0.803885291
## S.Ca    -0.052976594  0.006603214 -0.239459648  0.0954693945  0.830527290
## S.Mg    -0.033009920  0.136554474  0.076612283 -0.1580828581  0.247486895
## S.K      0.273660890 -0.336631871  0.284427728 -0.2052688807 -0.040271354
## S.Na     0.087841004 -0.140780531  0.211578206 -0.3309476576  0.044465002
## Ca_Mg   -0.021759348 -0.132064288 -0.133115384  0.0984386928  0.387974098
## Mg_K    -0.289918584  0.337556321 -0.180612532  0.0767499054  0.285723096
## Ca_K    -0.287878646  0.245243383 -0.190975547  0.0949529948  0.516743756
## Ca.Mg_K -0.321753994  0.282485513 -0.212503475  0.1174163818  0.520690718
## Ca_B    -0.277988033  0.143025624 -0.367701949  0.4601766825  0.649337034
## Fe_Mn   -0.074550493  0.051769201  0.165993280 -0.0437648746 -0.478507555
## Fe_Zn   -0.091179086  0.155703796  0.156000374 -0.0182676394 -0.569904409
##                  Aci          Al           CE           CIC          MO
## Rmed1    0.004636225 -0.02621012  0.129196128 -0.0366570833  0.29202034
## IDPM     0.040279608  0.04371328 -0.190700832 -0.0396192865 -0.45799895
## ALT      0.113499679  0.09536440  0.004256238 -0.2080004983  0.27943127
## TEM     -0.031952231 -0.03098398 -0.212692126 -0.0006454996 -0.29415418
## pH      -0.855565834 -0.83780450  0.412149245  0.5869256861 -0.06827012
## Aci      1.000000000  0.99358619 -0.531421523 -0.5708911502 -0.04064138
## Al       0.993586186  1.00000000 -0.523774283 -0.5530064755 -0.06148628
## CE      -0.531421523 -0.52377428  1.000000000  0.8560592044  0.29423373
## CIC     -0.570891150 -0.55300648  0.856059204  1.0000000000  0.05408572
## MO      -0.040641381 -0.06148628  0.294233734  0.0540857231  1.00000000
## N.tot   -0.040641381 -0.06148628  0.294233734  0.0540857231  1.00000000
## N.dis   -0.040641381 -0.06148628  0.294233734  0.0540857231  1.00000000
## P       -0.250200432 -0.24452667  0.440518039  0.3066913352  0.13166821
## P.dis   -0.250200432 -0.24452667  0.440518039  0.3066913352  0.13166821
## K       -0.476657416 -0.46456984  0.681282763  0.6048103608  0.20752390
## Ca      -0.762565526 -0.74270737  0.814246068  0.9340117175  0.05901943
## Mg      -0.658464385 -0.64798027  0.709034844  0.8180696886 -0.02263336
## S       -0.429417206 -0.42238668  0.840518039  0.7006475486  0.30348443
## Na      -0.442614863 -0.41880974  0.808202282  0.8121492445  0.03990133
## Fe       0.520444033  0.50107925 -0.291026827 -0.1840888067 -0.32309590
## Cu      -0.498612396 -0.52291088  0.366265803  0.3491211841 -0.02954055
## Mn       0.118593895  0.08812828 -0.040764724 -0.0233734197 -0.16127043
## Zn      -0.575208141 -0.57039778  0.830157262  0.7952513105  0.24773358
## B       -0.462843047 -0.44791859  0.855195806  0.7573851372  0.30681468
## S.Bas   -0.959050262 -0.95621338  0.569164354  0.6366327475  0.02843047
## S.Al     0.962380512  0.96682084 -0.558310207 -0.6127042862 -0.04804194
## S.Ca    -0.847795251 -0.83533765  0.499105766  0.6104841196 -0.01165587
## S.Mg    -0.506753006 -0.50909652  0.297440641  0.3127351218 -0.07838421
## S.K     -0.114646932 -0.12821462  0.176318224 -0.0281837805  0.24440333
## S.Na    -0.234165896 -0.21270429  0.547456059  0.4269503546  0.11082331
## Ca_Mg   -0.247116867 -0.23786617  0.276842430  0.2823928461  0.08307123
## Mg_K    -0.326919519 -0.30545791  0.197533148  0.3839037928 -0.22417515
## Ca_K    -0.456429232 -0.42584027  0.322232501  0.4894850447 -0.15066297
## Ca.Mg_K -0.467653407 -0.43780450  0.299784150  0.4984890533 -0.20222017
## Ca_B    -0.454455751 -0.45050879  0.161270429  0.5208140611 -0.34542091
## Fe_Mn    0.561023743  0.57113784 -0.351341351 -0.2238051187 -0.35726179
## Fe_Zn    0.675238976  0.66043787 -0.745914277 -0.6185013876 -0.37354302
##               N.tot       N.dis            P        P.dis           K
## Rmed1    0.29202034  0.29202034  0.178587375  0.178587375  0.22482599
## IDPM    -0.45799895 -0.45799895 -0.297804970 -0.297804970 -0.31391681
## ALT      0.27943127  0.27943127 -0.059278908 -0.059278908  0.04533819
## TEM     -0.29415418 -0.29415418 -0.056093917 -0.056093917 -0.15989026
## pH      -0.06827012 -0.06827012  0.310391613  0.310391613  0.37662658
## Aci     -0.04064138 -0.04064138 -0.250200432 -0.250200432 -0.47665742
## Al      -0.06148628 -0.06148628 -0.244526673 -0.244526673 -0.46456984
## CE       0.29423373  0.29423373  0.440518039  0.440518039  0.68128276
## CIC      0.05408572  0.05408572  0.306691335  0.306691335  0.60481036
## MO       1.00000000  1.00000000  0.131668208  0.131668208  0.20752390
## N.tot    1.00000000  1.00000000  0.131668208  0.131668208  0.20752390
## N.dis    1.00000000  1.00000000  0.131668208  0.131668208  0.20752390
## P        0.13166821  0.13166821  1.000000000  1.000000000  0.36577243
## P.dis    0.13166821  0.13166821  1.000000000  1.000000000  0.36577243
## K        0.20752390  0.20752390  0.365772433  0.365772433  1.00000000
## Ca       0.05901943  0.05901943  0.385383904  0.385383904  0.55757015
## Mg      -0.02263336 -0.02263336 -0.046808511 -0.046808511  0.55794018
## S        0.30348443  0.30348443  0.342460685  0.342460685  0.57644157
## Na       0.03990133  0.03990133  0.165340734  0.165340734  0.58310207
## Fe      -0.32309590 -0.32309590 -0.275362319 -0.275362319 -0.22602529
## Cu      -0.02954055 -0.02954055  0.476534073  0.476534073  0.28103608
## Mn      -0.16127043 -0.16127043 -0.027937095 -0.027937095 -0.02682701
## Zn       0.24773358  0.24773358  0.312118409  0.312118409  0.52673451
## B        0.30681468  0.30681468  0.536971940  0.536971940  0.65451742
## S.Bas    0.02843047  0.02843047  0.287203207  0.287203207  0.50823312
## S.Al    -0.04804194 -0.04804194 -0.271908726 -0.271908726 -0.49811903
## S.Ca    -0.01165587 -0.01165587  0.468023435  0.468023435  0.29781067
## S.Mg    -0.07838421 -0.07838421 -0.368115942 -0.368115942  0.31162504
## S.K      0.24440333  0.24440333  0.244279988  0.244279988  0.72482270
## S.Na     0.11082331  0.11082331 -0.022510022 -0.022510022  0.36083873
## Ca_Mg    0.08307123  0.08307123  0.714831946  0.714831946  0.05408572
## Mg_K    -0.22417515 -0.22417515 -0.415726179 -0.415726179 -0.24477336
## Ca_K    -0.15066297 -0.15066297  0.094048720  0.094048720 -0.20629047
## Ca.Mg_K -0.20222017 -0.20222017  0.001171755  0.001171755 -0.21985816
## Ca_B    -0.34542091 -0.34542091 -0.028800493 -0.028800493  0.06074622
## Fe_Mn   -0.35726179 -0.35726179 -0.353931545 -0.353931545 -0.33876041
## Fe_Zn   -0.37354302 -0.37354302 -0.471230342 -0.471230342 -0.51316682
##                  Ca          Mg            S          Na          Fe
## Rmed1   -0.02991910 -0.03381353  0.048031288  0.06805978  0.08320478
## IDPM    -0.03961929  0.07950270 -0.176702018 -0.11859373  0.14870439
## ALT     -0.19245598 -0.08148537  0.131634954  0.05971070  0.20442279
## TEM      0.01633114 -0.09301650 -0.247226356 -0.24767821 -0.08333400
## pH       0.75121801  0.51316682  0.225655257  0.32457601 -0.49454209
## Aci     -0.76256553 -0.65846438 -0.429417206 -0.44261486  0.52044403
## Al      -0.74270737 -0.64798027 -0.422386679 -0.41880974  0.50107925
## CE       0.81424607  0.70903484  0.840518039  0.80820228 -0.29102683
## CIC      0.93401172  0.81806969  0.700647549  0.81214924 -0.18408881
## MO       0.05901943 -0.02263336  0.303484428  0.03990133 -0.32309590
## N.tot    0.05901943 -0.02263336  0.303484428  0.03990133 -0.32309590
## N.dis    0.05901943 -0.02263336  0.303484428  0.03990133 -0.32309590
## P        0.38538390 -0.04680851  0.342460685  0.16534073 -0.27536232
## P.dis    0.38538390 -0.04680851  0.342460685  0.16534073 -0.27536232
## K        0.55757015  0.55794018  0.576441566  0.58310207 -0.22602529
## Ca       1.00000000  0.78834413  0.642183164  0.71557200 -0.31951896
## Mg       0.78834413  1.00000000  0.674375578  0.77008942 -0.06530990
## S        0.64218316  0.67437558  1.000000000  0.70767808 -0.10465618
## Na       0.71557200  0.77008942  0.707678076  1.00000000 -0.11551033
## Fe      -0.31951896 -0.06530990 -0.104656183 -0.11551033  1.00000000
## Cu       0.48356460  0.35195806  0.311995066  0.17422140 -0.05642923
## Mn      -0.02781375  0.07332717 -0.001541782 -0.02917052  0.44286155
## Zn       0.79253777  0.74344743  0.746901018  0.65895776 -0.27634906
## B        0.72050570  0.59728646  0.822386679  0.75750848 -0.24822695
## S.Bas    0.79303114  0.69608387  0.490225100  0.48775825 -0.41991983
## S.Al    -0.77391304 -0.68720321 -0.476164046 -0.46382979  0.42078323
## S.Ca     0.81079248  0.49034844  0.323219241  0.34098057 -0.43953130
## S.Mg     0.31779217  0.77674992  0.401665125  0.43213074  0.06308973
## S.K     -0.04039470  0.06604995  0.220844897  0.05001542 -0.02954055
## S.Na     0.34295405  0.50046253  0.519457293  0.84656183 -0.12883133
## Ca_Mg    0.43324083 -0.15349985  0.076287388  0.03361085 -0.32728955
## Mg_K     0.39821153  0.58347209  0.219118101  0.41634289 -0.03287080
## Ca_K     0.62368178  0.36046870  0.205303731  0.35627505 -0.25932778
## Ca.Mg_K  0.61788467  0.42621030  0.200493370  0.38020352 -0.22627197
## Ca_B     0.55251311  0.43089732 -0.007832254  0.18889917 -0.12143077
## Fe_Mn   -0.35997533 -0.15942029 -0.202960222 -0.12352760  0.79895159
## Fe_Zn   -0.71039161 -0.49244527 -0.555473327 -0.47715079  0.69164354
##                  Cu           Mn          Zn           B        S.Bas
## Rmed1    0.19793589  0.173951151  0.12956703  0.13395599 -0.013290511
## IDPM     0.02879001  0.164816232 -0.01756455 -0.22318865 -0.062466408
## ALT     -0.06223977  0.098510319 -0.10615921  0.01036301 -0.125959970
## TEM     -0.01213539 -0.054544718 -0.06048331 -0.30590227  0.003485698
## pH       0.41251927 -0.227258711  0.40931237  0.32371261  0.817946346
## Aci     -0.49861240  0.118593895 -0.57520814 -0.46284305 -0.959050262
## Al      -0.52291088  0.088128276 -0.57039778 -0.44791859 -0.956213383
## CE       0.36626580 -0.040764724  0.83015726  0.85519581  0.569164354
## CIC      0.34912118 -0.023373420  0.79525131  0.75738514  0.636632747
## MO      -0.02954055 -0.161270429  0.24773358  0.30681468  0.028430466
## N.tot   -0.02954055 -0.161270429  0.24773358  0.30681468  0.028430466
## N.dis   -0.02954055 -0.161270429  0.24773358  0.30681468  0.028430466
## P        0.47653407 -0.027937095  0.31211841  0.53697194  0.287203207
## P.dis    0.47653407 -0.027937095  0.31211841  0.53697194  0.287203207
## K        0.28103608 -0.026827012  0.52673451  0.65451742  0.508233117
## Ca       0.48356460 -0.027813753  0.79253777  0.72050570  0.793031144
## Mg       0.35195806  0.073327166  0.74344743  0.59728646  0.696083873
## S        0.31199507 -0.001541782  0.74690102  0.82238668  0.490225100
## Na       0.17422140 -0.029170521  0.65895776  0.75750848  0.487758249
## Fe      -0.05642923  0.442861548 -0.27634906 -0.24822695 -0.419919827
## Cu       1.00000000  0.092568609  0.52944804  0.40807894  0.504656183
## Mn       0.09256861  1.000000000  0.08701819 -0.03274746 -0.056305890
## Zn       0.52944804  0.087018193  1.00000000  0.75874191  0.598396546
## B        0.40807894 -0.032747456  0.75874191  1.00000000  0.494295405
## S.Bas    0.50465618 -0.056305890  0.59839655  0.49429541  1.000000000
## S.Al    -0.51267345  0.029663891 -0.60505705 -0.48208449 -0.993709528
## S.Ca     0.59198273 -0.111440025  0.56275054  0.43681776  0.871723713
## S.Mg     0.18754240  0.179155103  0.38402714  0.21406105  0.532161579
## S.K      0.09392538  0.107123034  0.04323158  0.21751465  0.105889608
## S.Na    -0.05359235 -0.032254086  0.39290780  0.54412581  0.232439100
## Ca_Mg    0.37193956 -0.113783534  0.17385137  0.28831329  0.249953747
## Mg_K     0.04150478 -0.049892075  0.32864632  0.10638298  0.313598520
## Ca_K     0.23687943 -0.154609929  0.38809744  0.24637681  0.429417206
## Ca.Mg_K  0.21813136 -0.148196115  0.38193031  0.22972556  0.446191798
## Ca_B     0.10206599 -0.031144002  0.18778908 -0.05815603  0.477890842
## Fe_Mn   -0.19654641 -0.028677151 -0.33123651 -0.29435708 -0.497502313
## Fe_Zn   -0.48183780  0.126487820 -0.77835338 -0.66882516 -0.628862165
##                 S.Al         S.Ca        S.Mg         S.K        S.Na
## Rmed1   -0.010014245 -0.052976594 -0.03300992  0.27366089  0.08784100
## IDPM     0.061277830  0.006603214  0.13655447 -0.33663187 -0.14078053
## ALT      0.099065481 -0.239459648  0.07661228  0.28442773  0.21157821
## TEM     -0.006132246  0.095469395 -0.15808286 -0.20526888 -0.33094766
## pH      -0.803885291  0.830527290  0.24748689 -0.04027135  0.04446500
## Aci      0.962380512 -0.847795251 -0.50675301 -0.11464693 -0.23416590
## Al       0.966820845 -0.835337650 -0.50909652 -0.12821462 -0.21270429
## CE      -0.558310207  0.499105766  0.29744064  0.17631822  0.54745606
## CIC     -0.612704286  0.610484120  0.31273512 -0.02818378  0.42695035
## MO      -0.048041936 -0.011655874 -0.07838421  0.24440333  0.11082331
## N.tot   -0.048041936 -0.011655874 -0.07838421  0.24440333  0.11082331
## N.dis   -0.048041936 -0.011655874 -0.07838421  0.24440333  0.11082331
## P       -0.271908726  0.468023435 -0.36811594  0.24427999 -0.02251002
## P.dis   -0.271908726  0.468023435 -0.36811594  0.24427999 -0.02251002
## K       -0.498119026  0.297810669  0.31162504  0.72482270  0.36083873
## Ca      -0.773913043  0.810792476  0.31779217 -0.04039470  0.34295405
## Mg      -0.687203207  0.490348443  0.77674992  0.06604995  0.50046253
## S       -0.476164046  0.323219241  0.40166512  0.22084490  0.51945729
## Na      -0.463829787  0.340980574  0.43213074  0.05001542  0.84656183
## Fe       0.420783225 -0.439531298  0.06308973 -0.02954055 -0.12883133
## Cu      -0.512673451  0.591982732  0.18754240  0.09392538 -0.05359235
## Mn       0.029663891 -0.111440025  0.17915510  0.10712303 -0.03225409
## Zn      -0.605057046  0.562750540  0.38402714  0.04323158  0.39290780
## B       -0.482084490  0.436817761  0.21406105  0.21751465  0.54412581
## S.Bas   -0.993709528  0.871723713  0.53216158  0.10588961  0.23243910
## S.Al     1.000000000 -0.860006167 -0.54079556 -0.12500771 -0.21776133
## S.Ca    -0.860006167  1.000000000  0.18248535 -0.13709528  0.01473944
## S.Mg    -0.540795560  0.182485353  1.00000000  0.15880358  0.40585877
## S.K     -0.125007709 -0.137095282  0.15880358  1.00000000  0.04717854
## S.Na    -0.217761332  0.014739439  0.40585877  0.04717854  1.00000000
## Ca_Mg   -0.233302498  0.605057046 -0.56941104 -0.15596670 -0.19358619
## Mg_K    -0.296330558  0.254147394  0.52944804 -0.64366327  0.39932162
## Ca_K    -0.404872032  0.643909960  0.03102066 -0.68732655  0.18815911
## Ca.Mg_K -0.422510022  0.614431082  0.13697194 -0.71125501  0.22577860
## Ca_B    -0.467036694  0.541042245  0.15374653 -0.31310515 -0.13228492
## Fe_Mn    0.517730496 -0.454332408 -0.07246377 -0.24020968 -0.09182855
## Fe_Zn    0.632439100 -0.634659266 -0.19740981 -0.11662041 -0.31174838
##               Ca_Mg        Mg_K        Ca_K      Ca.Mg_K         Ca_B
## Rmed1   -0.02175935 -0.28991858 -0.28787865 -0.321753994 -0.277988033
## IDPM    -0.13206429  0.33755632  0.24524338  0.282485513  0.143025624
## ALT     -0.13311538 -0.18061253 -0.19097555 -0.212503475 -0.367701949
## TEM      0.09843869  0.07674991  0.09495299  0.117416382  0.460176683
## pH       0.38797410  0.28572310  0.51674376  0.520690718  0.649337034
## Aci     -0.24711687 -0.32691952 -0.45642923 -0.467653407 -0.454455751
## Al      -0.23786617 -0.30545791 -0.42584027 -0.437804502 -0.450508788
## CE       0.27684243  0.19753315  0.32223250  0.299784150  0.161270429
## CIC      0.28239285  0.38390379  0.48948504  0.498489053  0.520814061
## MO       0.08307123 -0.22417515 -0.15066297 -0.202220167 -0.345420907
## N.tot    0.08307123 -0.22417515 -0.15066297 -0.202220167 -0.345420907
## N.dis    0.08307123 -0.22417515 -0.15066297 -0.202220167 -0.345420907
## P        0.71483195 -0.41572618  0.09404872  0.001171755 -0.028800493
## P.dis    0.71483195 -0.41572618  0.09404872  0.001171755 -0.028800493
## K        0.05408572 -0.24477336 -0.20629047 -0.219858156  0.060746223
## Ca       0.43324083  0.39821153  0.62368178  0.617884675  0.552513105
## Mg      -0.15349985  0.58347209  0.36046870  0.426210299  0.430897317
## S        0.07628739  0.21911810  0.20530373  0.200493370 -0.007832254
## Na       0.03361085  0.41634289  0.35627505  0.380203515  0.188899167
## Fe      -0.32728955 -0.03287080 -0.25932778 -0.226271970 -0.121430774
## Cu       0.37193956  0.04150478  0.23687943  0.218131360  0.102065988
## Mn      -0.11378353 -0.04989208 -0.15460993 -0.148196115 -0.031144002
## Zn       0.17385137  0.32864632  0.38809744  0.381930311  0.187789084
## B        0.28831329  0.10638298  0.24637681  0.229725563 -0.058156028
## S.Bas    0.24995375  0.31359852  0.42941721  0.446191798  0.477890842
## S.Al    -0.23330250 -0.29633056 -0.40487203 -0.422510022 -0.467036694
## S.Ca     0.60505705  0.25414739  0.64390996  0.614431082  0.541042245
## S.Mg    -0.56941104  0.52944804  0.03102066  0.136971940  0.153746531
## S.K     -0.15596670 -0.64366327 -0.68732655 -0.711255011 -0.313105150
## S.Na    -0.19358619  0.39932162  0.18815911  0.225778600 -0.132284921
## Ca_Mg    1.00000000 -0.20419365  0.49491212  0.388837496  0.252913969
## Mg_K    -0.20419365  1.00000000  0.70669134  0.796361394  0.426827012
## Ca_K     0.49491212  0.70669134  1.00000000  0.985198890  0.516990441
## Ca.Mg_K  0.38883750  0.79636139  0.98519889  1.000000000  0.549059513
## Ca_B     0.25291397  0.42682701  0.51699044  0.549059513  1.000000000
## Fe_Mn   -0.32062905  0.09417206 -0.10021585 -0.063089732 -0.148936170
## Fe_Zn   -0.35417823 -0.14979957 -0.35898859 -0.324699352 -0.172494604
##               Fe_Mn       Fe_Zn
## Rmed1   -0.07455049 -0.09117909
## IDPM     0.05176920  0.15570380
## ALT      0.16599328  0.15600037
## TEM     -0.04376487 -0.01826764
## pH      -0.47850755 -0.56990441
## Aci      0.56102374  0.67523898
## Al       0.57113784  0.66043787
## CE      -0.35134135 -0.74591428
## CIC     -0.22380512 -0.61850139
## MO      -0.35726179 -0.37354302
## N.tot   -0.35726179 -0.37354302
## N.dis   -0.35726179 -0.37354302
## P       -0.35393154 -0.47123034
## P.dis   -0.35393154 -0.47123034
## K       -0.33876041 -0.51316682
## Ca      -0.35997533 -0.71039161
## Mg      -0.15942029 -0.49244527
## S       -0.20296022 -0.55547333
## Na      -0.12352760 -0.47715079
## Fe       0.79895159  0.69164354
## Cu      -0.19654641 -0.48183780
## Mn      -0.02867715  0.12648782
## Zn      -0.33123651 -0.77835338
## B       -0.29435708 -0.66882516
## S.Bas   -0.49750231 -0.62886216
## S.Al     0.51773050  0.63243910
## S.Ca    -0.45433241 -0.63465927
## S.Mg    -0.07246377 -0.19740981
## S.K     -0.24020968 -0.11662041
## S.Na    -0.09182855 -0.31174838
## Ca_Mg   -0.32062905 -0.35417823
## Mg_K     0.09417206 -0.14979957
## Ca_K    -0.10021585 -0.35898859
## Ca.Mg_K -0.06308973 -0.32469935
## Ca_B    -0.14893617 -0.17249460
## Fe_Mn    1.00000000  0.65957447
## Fe_Zn    0.65957447  1.00000000
# Variables que mas se correlacionan con otras
sort(colMeans(abs(A.cor)))
##        Mn     Rmed1       TEM       ALT      IDPM       S.K        MO     N.tot 
## 0.1219523 0.1667262 0.1796174 0.2010750 0.2136756 0.2390535 0.2449938 0.2449938 
##     N.dis      S.Na     Ca_Mg        Cu        Fe      S.Mg         P     P.dis 
## 0.2449938 0.2647851 0.2850079 0.2912108 0.2931143 0.2980425 0.3031235 0.3031235 
##     Fe_Mn      Ca_B      Mg_K      Ca_K   Ca.Mg_K        Na         K         S 
## 0.3080173 0.3100796 0.3276790 0.3582400 0.3643480 0.3745913 0.3792259 0.3866161 
##        Mg        pH         B        Zn      S.Ca       CIC        Al      S.Al 
## 0.4119308 0.4131707 0.4269159 0.4361608 0.4380561 0.4392280 0.4406023 0.4440413 
##       Aci     S.Bas     Fe_Zn        CE        Ca 
## 0.4465732 0.4495176 0.4538240 0.4557674 0.4879267
#
corrplot(A.cor, method = 'number', tl.cex = 0.5, number.cex = 0.4)

#
corrplot.mixed(A.cor, lower.col = "black", tl.cex = 0.5, number.cex = 0.4)

V A R I A B L E S M A S I M P O R T A N T E S

# Retiro variables que poco aportan al PCA.
names(A)
##  [1] "Rmed1"   "IDPM"    "ALT"     "TEM"     "pH"      "Aci"     "Al"     
##  [8] "CE"      "CIC"     "MO"      "N.tot"   "N.dis"   "P"       "P.dis"  
## [15] "K"       "Ca"      "Mg"      "S"       "Na"      "Fe"      "Cu"     
## [22] "Mn"      "Zn"      "B"       "S.Bas"   "S.Al"    "S.Ca"    "S.Mg"   
## [29] "S.K"     "S.Na"    "Ca_Mg"   "Mg_K"    "Ca_K"    "Ca.Mg_K" "Ca_B"   
## [36] "Fe_Mn"   "Fe_Zn"
B <- A[,-c(1,2,3,4,6,7,11,12,13,20,21,22,28,29,30,31,32,33)];B
##                        pH        CE       CIC        MO     P.dis         K
## BOGOTA           5.559103 0.4744674 12.685202  9.778200 128.18565 0.8372324
## CAJICA           5.316000 0.4607279 10.384645  8.094967  67.90187 0.6229017
## CARMEN DE CARUPA 5.062155 0.3139291  6.417927 12.586212 115.27883 0.6813839
## CHIA             5.918421 0.8380108 14.984885  7.087336 136.03607 1.3264158
## CHIPAQUE         5.771273 0.5017144 12.069595  6.234734 243.17715 0.6996663
## CHOACHI          5.166176 0.2091443  7.574417  6.979696  46.14897 0.4317104
## CHOCONTA         5.114296 0.3881219  7.185019  9.893829 119.02915 0.7592882
## COGUA            5.452424 0.3825780  8.582600 10.649070 110.17181 0.5279060
## COTA             5.014000 1.2191779 11.399998  8.561286  86.67598 1.3810860
## CUCUNUBA         5.555217 0.3394613  7.801094  6.126479  48.70733 0.8593057
## EL ROSAL         5.579444 0.6773613 12.920994 20.790809  67.66688 1.2002920
## FACATATIVA       5.761250 1.2174820 16.797049 13.113757 121.00601 1.1939526
## FOSCA            5.394667 0.3239092  6.237568  5.311936 256.24507 0.5307785
## FUNZA            5.595870 1.1689460 13.619075 11.631361 166.92357 0.7367824
## FUQUENE          5.097600 0.3985827  8.620903  8.077060  46.89706 0.4861748
## GRANADA          5.335811 0.9952873  9.594231 13.810492 108.40787 0.5472834
## GUACHETA         5.192105 0.4200620  8.585921  5.944584  44.54421 0.6005536
## GUASCA           5.509538 0.2686508  5.720285 10.018231  69.44832 0.4989278
## GUATAVITA        5.104896 0.2192190  5.516139 12.252528  62.43887 0.3936100
## GUTIERREZ        5.304146 0.3135042  7.407471  7.487618 196.51523 0.4522899
## JUNIN            5.245667 0.1621760  6.131229  8.237882  25.11463 0.2749652
## LA CALERA        5.470921 0.4327048  9.397545 11.516739  83.48464 0.5700326
## LENGUAZAQUE      4.933537 0.3815322  6.748871  7.177118 160.74707 0.5608173
## MACHETA          5.224000 0.1341186  7.422145  4.311126  32.29613 0.4614810
## MADRID           5.772353 1.4138369 17.466278 13.073099 229.74511 1.9763222
## MANTA            5.731957 0.2626550 10.327537  4.042129  96.06190 0.6681469
## PACHO            5.222105 0.2557147  4.981400 10.007553  21.33420 0.2527059
## PASCA            5.687200 0.6390085 10.783257 10.289681 242.61607 0.7231711
## SAN BERNARDO     5.237612 0.3380505  8.861645  6.340610 180.82794 0.3785195
## SAN CAYETANO     5.159459 0.2280057  6.290645  7.793149  32.82863 0.1826725
## SESQUILE         5.184222 0.3121670  6.733806 12.484487  98.62468 0.5565116
## SIBATE           5.218485 0.6461802  8.908929 17.425073 138.12108 0.6264456
## SIMIJACA         5.044405 0.9808050 11.942048  7.753307  64.74293 0.7921099
## SOACHA           5.767143 2.1790074 14.701346  8.185902  98.50659 0.8523538
## SOPO             5.533333 0.4027289  9.028509  5.764675  43.50582 0.5194166
## SUBACHOQUE       5.296275 0.4407986  7.670090 20.534207  82.05546 0.8484872
## SUESCA           5.359383 0.2968667  6.033355  6.763315  66.38734 0.7465279
## SUSA             5.174068 0.2559407  6.598838 11.852425  94.47381 0.6221803
## SUTATAUSA        5.585789 1.1215687 11.402752  5.880491 181.30399 0.6200010
## TABIO            5.374000 0.4345830  9.137376 10.278675  49.97889 0.8974949
## TAUSA            5.010575 0.4933287  7.664277 19.107391 231.03623 0.6459231
## TENJO            5.531667 0.8992575 11.832478 13.849393 230.37548 1.2233185
## UBAQUE           5.477308 0.4094572  7.157293 12.631683 253.55491 0.7351836
## UNE              5.901754 0.4648777 11.402627  6.630656 390.24844 0.7137648
## VILLAPINZON      5.264062 0.3099199  6.455969 11.234601 167.86534 0.6554738
## ZIPACON          5.543889 0.3463251  7.790373 13.774041  22.88857 0.4305246
## ZIPAQUIRA        5.420000 0.4560806  9.809536 13.956820 104.95754 0.5026438
##                         Ca        Mg         S         Na        Zn         B
## BOGOTA            7.609837 1.7951393 10.507277 0.12319214  5.463535 0.3275570
## CAJICA            6.828402 1.5094093 13.102876 0.30956664  6.398600 0.3558244
## CARMEN DE CARUPA  2.703054 0.7181425  8.190727 0.08674512  1.920793 0.2525678
## CHIA             10.384599 2.5320848 31.323270 0.27498420 11.472134 0.4177221
## CHIPAQUE          8.785649 1.4130209 12.127141 0.10290401  5.334073 0.3241120
## CHOACHI           3.117594 0.8909178  6.645534 0.07732360  3.222804 0.1310648
## CHOCONTA          3.426372 0.9684186  8.993108 0.17511828  2.880188 0.2669020
## COGUA             5.137754 1.4431673 15.964870 0.13715575  5.599856 0.2983707
## COTA              5.196928 2.7790936 20.586415 0.35717320 28.979400 0.4398446
## CUCUNUBA          4.451287 1.5760503 11.428284 0.12308086  2.904986 0.2615827
## EL ROSAL          8.727308 2.1647076 17.861430 0.17910686  8.285466 0.3866722
## FACATATIVA       11.861185 2.4470635 39.566737 0.25014833  7.419592 0.4082495
## FOSCA             3.943650 0.7771380  8.819503 0.05958466  5.703100 0.2029506
## FUNZA             9.049120 2.6870710 49.734446 0.40554220 16.565071 0.5769619
## FUQUENE           4.639825 2.0289622 37.360956 0.13548251  8.067467 0.2827392
## GRANADA           6.144561 1.8123246 46.235197 0.11806982 12.161302 0.5569017
## GUACHETA          4.809975 1.9723353 16.462326 0.15544412  6.569300 0.2952467
## GUASCA            3.367402 1.1208034  8.403813 0.09926487  2.698380 0.2513500
## GUATAVITA         1.962767 0.7815846  7.676379 0.05321787  2.156927 0.1513918
## GUTIERREZ         4.620345 0.7560211  8.590721 0.09168774  3.542726 0.3029657
## JUNIN             2.092673 0.6138866  5.284479 0.07137625  3.153675 0.1574059
## LA CALERA         5.960935 0.9350799  8.644076 0.09284027  3.357971 0.2263380
## LENGUAZAQUE       2.382194 0.7358587 14.960065 0.10778068  2.437085 0.3167189
## MACHETA           2.317661 1.1483899  2.926136 0.08478355  1.997232 0.1479174
## MADRID           10.806383 3.7989980 80.936942 0.52650822 17.849911 0.5474817
## MANTA             7.370387 1.3783723  6.815903 0.13806267  3.619380 0.3111185
## PACHO             1.932011 0.6736951  7.971077 0.06530890  2.358481 0.1343537
## PASCA             7.924545 1.1939198 14.293321 0.12028547  8.738744 0.3379247
## SAN BERNARDO      5.036355 1.0463044  9.607265 0.09865306  5.423376 0.2715315
## SAN CAYETANO      2.847023 0.7954409  5.257374 0.10541479  2.992689 0.1695861
## SESQUILE          2.827452 0.6986989  9.848105 0.05951783  2.790444 0.1569658
## SIBATE            5.325352 1.0166715 14.500787 0.18124861  7.047068 0.3672236
## SIMIJACA          6.725803 2.1156070 76.475056 0.23171513  7.345060 0.3752028
## SOACHA            9.432303 3.0191177 73.127804 0.77869144  7.209866 0.4015325
## SOPO              5.295229 2.2712253 11.543862 0.19123587  3.416762 0.2216387
## SUBACHOQUE        4.075166 1.1870670 13.485496 0.10165910  6.414248 0.3047218
## SUESCA            3.135905 1.1041059  8.328884 0.08185894  2.383673 0.2140021
## SUSA              2.962146 0.8112063 17.523490 0.08375177  2.601359 0.2305126
## SUTATAUSA         8.159469 1.3669953 34.351701 0.50158465  4.634158 0.3312990
## TABIO             4.789854 1.6674089 13.560286 0.15346145  6.293630 0.2634338
## TAUSA             2.759601 0.6489134 14.953695 0.16554767  3.686032 0.3908919
## TENJO             7.490951 1.8092387 25.496444 0.23576234 11.478407 0.4902641
## UBAQUE            4.676258 0.8740120 11.937510 0.06705591  6.073077 0.2824154
## UNE               8.240352 1.2919375 12.952596 0.10805196  6.844354 0.3007872
## VILLAPINZON       3.531951 0.7974836 14.355854 0.07051152  3.149603 0.3706109
## ZIPACON           5.514894 1.4249624  9.759495 0.08402422  6.268119 0.1585402
## ZIPAQUIRA         6.082949 1.4028510 13.693114 0.14889878  4.810961 0.3252102
##                     S.Bas       S.Al     S.Ca   Ca.Mg_K      Ca_B     Fe_Mn
## BOGOTA           80.05188 14.7452755 55.16836 13.431593 22.911929  76.11250
## CAJICA           80.67935 15.4288655 57.30971 27.267786 22.103206  99.79597
## CARMEN DE CARUPA 66.48783 26.3535645 41.91207  5.946376 13.358083 101.88795
## CHIA             99.31008  0.4654782 68.81959 16.116879 28.283091  82.06782
## CHIPAQUE         89.93421  7.9391507 69.18755 15.714203 31.356669 106.15040
## CHOACHI          59.64343 31.5265113 39.99056 10.737634 44.860094 126.77638
## CHOCONTA         76.23524 19.5441738 47.32400  7.352359 15.303524  64.50734
## COGUA            85.37701 12.1882056 59.12271 15.463167 21.599593 127.99761
## COTA             72.98395 19.4199499 39.26746  6.265442 10.596020 137.53683
## CUCUNUBA         92.33921  5.3468453 56.74571  8.184432 23.369612 124.07392
## EL ROSAL         92.95790  4.5533721 64.06779 11.156403 24.313911  48.45113
## FACATATIVA       95.29772  2.8526592 67.91950 15.894671 36.037275  45.69982
## FOSCA            83.60708 12.1007762 60.37720 10.038924 20.342930  73.69159
## FUNZA            96.39223  1.9050203 67.71797 21.309211 21.154209  76.80013
## FUQUENE          85.86268 10.1669683 52.84402 14.978127 17.942565 119.74120
## GRANADA          89.18058  7.4281554 62.24793 18.540743 13.619364  57.26523
## GUACHETA         87.07609  9.5278237 54.84609 11.837539 18.141728 124.07656
## GUASCA           90.86439  5.9007369 59.06861 10.883756 16.317502  82.78848
## GUATAVITA        62.78067 23.6880716 38.42958  7.815801 18.490373  99.78590
## GUTIERREZ        78.26410 17.2662794 59.71984 12.280181 17.651530  62.19801
## JUNIN            48.76613 41.3027097 32.48146  9.725518 13.253069 120.11062
## LA CALERA        75.56990 19.0462365 54.81031 13.737836 25.690887 106.75522
## LENGUAZAQUE      58.54142 34.4287355 35.49699  6.572472  9.805060 194.46502
## MACHETA          53.18053 40.2219427 30.45249  8.118233 33.369561 105.21371
## MADRID           94.83883  3.9872994 59.13032  9.281366 23.038606  54.92473
## MANTA            91.89935  5.9956611 68.42633 16.265023 26.836958  93.91041
## PACHO            63.66178 27.1144823 40.29819 10.163052 15.783438  89.83600
## PASCA            91.86695  5.9067966 71.28184 13.986523 24.694176  81.70473
## SAN BERNARDO     76.61698 18.8071387 57.63528 19.560620 23.554260  90.54170
## SAN CAYETANO     61.76864 32.0957150 43.08813 26.282011 16.708943 151.18552
## SESQUILE         65.19560 22.4494314 43.98237  7.485572 22.908559  91.64701
## SIBATE           82.59789 12.1732038 59.01888 13.475778 16.078475  98.58501
## SIMIJACA         81.78400 14.8497602 53.48437 13.284027 20.374094 146.26137
## SOACHA           83.76125 12.2199911 54.18933 22.136876 26.551133  59.29421
## SOPO             86.61411  9.8155378 59.60813 22.241580 27.203337 130.78752
## SUBACHOQUE       81.68475 14.0101016 52.21020  7.660675 14.552539  74.09232
## SUESCA           88.01743  8.2137716 53.25031  6.757195 18.355345  66.46467
## SUSA             69.28075 23.8886218 42.97241  7.964299 13.797263 124.09790
## SUTATAUSA        93.87815  4.6078133 66.15861 33.715224 28.081424  65.38077
## TABIO            85.63516 11.4733695 53.89752  8.095845 19.664735  79.87481
## TAUSA            55.09451 35.6446294 35.28947  7.475064  7.764209  81.64860
## TENJO            92.25186  5.8883004 62.00234  8.314953 17.833142  71.50533
## UBAQUE           88.07622  8.9062406 63.00816  8.930196 17.187490  62.11595
## UNE              92.26753  6.1445993 71.06692 15.047349 31.925446  92.23563
## VILLAPINZON      77.13117 18.5653449 50.78021  8.402251 11.359261 100.98522
## ZIPACON          93.37620  4.1878722 68.12849 20.023376 35.109077  48.52643
## ZIPAQUIRA        83.87497 12.9462299 60.13385 19.480282 20.422276 124.80835
##                      Fe_Zn
## BOGOTA           159.48352
## CAJICA           224.82995
## CARMEN DE CARUPA 348.51124
## CHIA              44.59346
## CHIPAQUE         192.95755
## CHOACHI          463.21697
## CHOCONTA         279.89002
## COGUA            231.20179
## COTA              58.32030
## CUCUNUBA         283.95300
## EL ROSAL          31.38065
## FACATATIVA        39.99380
## FOSCA            121.38584
## FUNZA             37.19371
## FUQUENE          291.30422
## GRANADA           61.45104
## GUACHETA         235.46899
## GUASCA           271.42576
## GUATAVITA        406.21095
## GUTIERREZ        181.54670
## JUNIN            543.41485
## LA CALERA        252.41292
## LENGUAZAQUE      604.75564
## MACHETA          770.00062
## MADRID            30.35978
## MANTA            269.76120
## PACHO            155.79598
## PASCA             53.13072
## SAN BERNARDO     174.79516
## SAN CAYETANO     266.55311
## SESQUILE         328.82178
## SIBATE           104.90479
## SIMIJACA         291.09793
## SOACHA            60.45141
## SOPO             387.17109
## SUBACHOQUE       119.03846
## SUESCA           266.70547
## SUSA             355.08541
## SUTATAUSA        113.22886
## TABIO            175.23262
## TAUSA            164.86202
## TENJO            112.37959
## UBAQUE            70.69824
## UNE               85.98830
## VILLAPINZON      248.48556
## ZIPACON           74.34853
## ZIPAQUIRA        229.29622
# Mariam: [,-c(1,2,3,4,6,7,11,12,13,20,21,22,28,29,30,31,32,33)]
# Geraldine y Jimer: [,-c(1,2,4,6,7,10,11,13,20,21,22,28,30,31,32,33,36,37)]
# Pedro: [,-c(1,2,4,6,10,11,12,13,20,22,29,30,32,35,36,37)]; B
B.cor  <-  cor( B, method = "spearman", use = "complete.obs"); B.cor
##                  pH         CE         CIC           MO       P.dis           K
## pH       1.00000000  0.4248381  0.60811748 -0.067414431  0.32227105  0.39639223
## CE       0.42483811  1.0000000  0.85534228  0.288390379  0.44357077  0.68466698
## CIC      0.60811748  0.8553423  1.00000000  0.051110083  0.31278908  0.61991212
## MO      -0.06741443  0.2883904  0.05111008  1.000000000  0.12685014  0.20501850
## P.dis    0.32227105  0.4435708  0.31278908  0.126850139  1.00000000  0.35996762
## K        0.39639223  0.6846670  0.61991212  0.205018501  0.35996762  1.00000000
## Ca       0.76607308  0.8154487  0.93605458  0.052960222  0.39396392  0.56868640
## Mg       0.51630435  0.7123034  0.82065217 -0.023473636 -0.04047179  0.56949584
## S        0.22421369  0.8311748  0.67865402  0.298103608  0.33568455  0.56371415
## Na       0.32747456  0.8038853  0.80053191  0.037118409  0.16177151  0.58024977
## Zn       0.41003700  0.8255088  0.77913969  0.243871415  0.30908881  0.52705828
## B        0.33672525  0.8604302  0.75809436  0.302150786  0.53503700  0.65575856
## S.Bas    0.80076318  0.5615171  0.61574931  0.030527290  0.27763645  0.49294635
## S.Al    -0.79209066 -0.5509944 -0.59447271 -0.050763182 -0.26711378 -0.48554579
## S.Ca     0.82192414  0.4925994  0.59481961 -0.008672525  0.46773821  0.28596207
## Ca.Mg_K  0.52197040  0.3036540  0.49757169 -0.201896392  0.01075393 -0.20975948
## Ca_B     0.65633673  0.1680157  0.52636448 -0.344703978 -0.02058279  0.07539315
## Fe_Mn   -0.48369565 -0.3598520 -0.24387142 -0.355342276 -0.35615171 -0.35106383
## Fe_Zn   -0.57539315 -0.7472248 -0.61933395 -0.370721554 -0.47236355 -0.51757632
##                  Ca          Mg           S          Na         Zn           B
## pH       0.76607308  0.51630435  0.22421369  0.32747456  0.4100370  0.33672525
## CE       0.81544866  0.71230342  0.83117484  0.80388529  0.8255088  0.86043016
## CIC      0.93605458  0.82065217  0.67865402  0.80053191  0.7791397  0.75809436
## MO       0.05296022 -0.02347364  0.29810361  0.03711841  0.2438714  0.30215079
## P.dis    0.39396392 -0.04047179  0.33568455  0.16177151  0.3090888  0.53503700
## K        0.56868640  0.56949584  0.56371415  0.58024977  0.5270583  0.65575856
## Ca       1.00000000  0.78630897  0.62615634  0.70733117  0.7800648  0.72120722
## Mg       0.78630897  1.00000000  0.66824699  0.76815449  0.7430620  0.60372340
## S        0.62615634  0.66824699  1.00000000  0.70582794  0.7441027  0.81544866
## Na       0.70733117  0.76815449  0.70582794  1.00000000  0.6546022  0.75555042
## Zn       0.78006475  0.74306198  0.74410268  0.65460222  1.0000000  0.75370028
## B        0.72120722  0.60372340  0.81544866  0.75555042  0.7537003  1.00000000
## S.Bas    0.77624884  0.68316374  0.49572155  0.48566142  0.6000231  0.48496762
## S.Al    -0.75844126 -0.67483811 -0.47768270 -0.45929695 -0.6046485 -0.47294172
## S.Ca     0.79856614  0.47918594  0.32238668  0.33811286  0.5588575  0.43119796
## Ca.Mg_K  0.61667438  0.42391304  0.19946809  0.38031915  0.3792784  0.23485199
## Ca_B     0.56047641  0.42726642 -0.01179463  0.19021739  0.1864015 -0.04752544
## Fe_Mn   -0.37268733 -0.17090657 -0.19067993 -0.12453747 -0.3331406 -0.30238205
## Fe_Zn   -0.71045328 -0.49364015 -0.54833488 -0.47097595 -0.7775208 -0.66894080
##               S.Bas        S.Al         S.Ca     Ca.Mg_K        Ca_B
## pH       0.80076318 -0.79209066  0.821924144  0.52197040  0.65633673
## CE       0.56151711 -0.55099445  0.492599445  0.30365402  0.16801573
## CIC      0.61574931 -0.59447271  0.594819611  0.49757169  0.52636448
## MO       0.03052729 -0.05076318 -0.008672525 -0.20189639 -0.34470398
## P.dis    0.27763645 -0.26711378  0.467738205  0.01075393 -0.02058279
## K        0.49294635 -0.48554579  0.285962072 -0.20975948  0.07539315
## Ca       0.77624884 -0.75844126  0.798566142  0.61667438  0.56047641
## Mg       0.68316374 -0.67483811  0.479185939  0.42391304  0.42726642
## S        0.49572155 -0.47768270  0.322386679  0.19946809 -0.01179463
## Na       0.48566142 -0.45929695  0.338112858  0.38031915  0.19021739
## Zn       0.60002313 -0.60464847  0.558857539  0.37927845  0.18640148
## B        0.48496762 -0.47294172  0.431197965  0.23485199 -0.04752544
## S.Bas    1.00000000 -0.99364015  0.869565217  0.44634598  0.47143848
## S.Al    -0.99364015  1.00000000 -0.858926920 -0.42113784 -0.46172525
## S.Ca     0.86956522 -0.85892692  1.000000000  0.61644311  0.53746531
## Ca.Mg_K  0.44634598 -0.42113784  0.616443108  1.00000000  0.54891304
## Ca_B     0.47143848 -0.46172525  0.537465310  0.54891304  1.00000000
## Fe_Mn   -0.48392692  0.50832562 -0.448543016 -0.06255782 -0.15379278
## Fe_Zn   -0.62129972  0.62789084 -0.630666050 -0.32435245 -0.17819149
##               Fe_Mn      Fe_Zn
## pH      -0.48369565 -0.5753932
## CE      -0.35985199 -0.7472248
## CIC     -0.24387142 -0.6193340
## MO      -0.35534228 -0.3707216
## P.dis   -0.35615171 -0.4723636
## K       -0.35106383 -0.5175763
## Ca      -0.37268733 -0.7104533
## Mg      -0.17090657 -0.4936401
## S       -0.19067993 -0.5483349
## Na      -0.12453747 -0.4709759
## Zn      -0.33314061 -0.7775208
## B       -0.30238205 -0.6689408
## S.Bas   -0.48392692 -0.6212997
## S.Al     0.50832562  0.6278908
## S.Ca    -0.44854302 -0.6306660
## Ca.Mg_K -0.06255782 -0.3243525
## Ca_B    -0.15379278 -0.1781915
## Fe_Mn    1.00000000  0.6607308
## Fe_Zn    0.66073080  1.0000000
# Variables que mas se correlacionan con otras
sort(colMeans(abs(B.cor)))
##        MO     P.dis      Ca_B     Fe_Mn   Ca.Mg_K         K         S        Na 
## 0.2136363 0.3270425 0.3456108 0.3664309 0.3894664 0.4815351 0.5124945 0.5132431 
##        pH      S.Ca        Mg         B     Fe_Zn      S.Al     S.Bas        Zn 
## 0.5290545 0.5558754 0.5581637 0.5652965 0.5797690 0.5821303 0.5890075 0.5900056 
##        CE       CIC        Ca 
## 0.6173377 0.6269779 0.6709370
#
corrplot(B.cor, method = 'number', tl.cex = 0.6, number.cex = 0.5)

#
corrplot.mixed(B.cor, lower.col = "black", tl.cex = 0.6, number.cex = 0.5)

#

Correlograma variables PCA

names(B)
##  [1] "pH"      "CE"      "CIC"     "MO"      "P.dis"   "K"       "Ca"     
##  [8] "Mg"      "S"       "Na"      "Zn"      "B"       "S.Bas"   "S.Al"   
## [15] "S.Ca"    "Ca.Mg_K" "Ca_B"    "Fe_Mn"   "Fe_Zn"
ggpairs(B, title="Correlograma")

# ANALISIS DE COMPONENTES PRINCIPALES ## PCA

names(B)
##  [1] "pH"      "CE"      "CIC"     "MO"      "P.dis"   "K"       "Ca"     
##  [8] "Mg"      "S"       "Na"      "Zn"      "B"       "S.Bas"   "S.Al"   
## [15] "S.Ca"    "Ca.Mg_K" "Ca_B"    "Fe_Mn"   "Fe_Zn"
# 1,2,4,10,11,18,19
res.pca <- PCA(B,  graph = TRUE)

## Extract eigenvalues/variances

get_eig(res.pca)
##         eigenvalue variance.percent cumulative.variance.percent
## Dim.1  9.326873703      49.08880896                    49.08881
## Dim.2  2.702901505      14.22579739                    63.31461
## Dim.3  2.012378503      10.59146580                    73.90607
## Dim.4  1.049145896       5.52182051                    79.42789
## Dim.5  0.984925577       5.18381883                    84.61171
## Dim.6  0.884028482       4.65278148                    89.26449
## Dim.7  0.531048395       2.79499155                    92.05948
## Dim.8  0.468531507       2.46595530                    94.52544
## Dim.9  0.289340903       1.52284686                    96.04829
## Dim.10 0.221145282       1.16392253                    97.21221
## Dim.11 0.148829835       0.78331492                    97.99552
## Dim.12 0.136489484       0.71836571                    98.71389
## Dim.13 0.101570067       0.53457930                    99.24847
## Dim.14 0.053699083       0.28262675                    99.53110
## Dim.15 0.044651139       0.23500599                    99.76610
## Dim.16 0.025557020       0.13451063                    99.90061
## Dim.17 0.012377952       0.06514712                    99.96576
## Dim.18 0.004391232       0.02311175                    99.98887
## Dim.19 0.002114437       0.01112862                   100.00000
# Visualize eigenvalues/variances
factoextra::fviz_screeplot(res.pca, addlabels = TRUE, ylim = c(0, 80))

# Extract the results for variables
var <- get_pca_var(res.pca)
var
## Principal Component Analysis Results for variables
##  ===================================================
##   Name       Description                                    
## 1 "$coord"   "Coordinates for the variables"                
## 2 "$cor"     "Correlations between variables and dimensions"
## 3 "$cos2"    "Cos2 for the variables"                       
## 4 "$contrib" "contributions of the variables"
# Coordinates of variables
var$coord
##              Dim.1       Dim.2       Dim.3        Dim.4         Dim.5
## pH       0.7312956 -0.52506300  0.05290544  0.186083052 -0.0634069748
## CE       0.8181439  0.40756387  0.18592662 -0.162106510 -0.0267239091
## CIC      0.9087339  0.11042047  0.20027652  0.160457788 -0.0492266033
## MO       0.1304721  0.28035762 -0.67886000 -0.274508393 -0.4099349443
## P.dis    0.3732286 -0.15927830 -0.40223526  0.193104030  0.6090742446
## K        0.7298916  0.36208886 -0.18833872  0.454128937 -0.1359704539
## Ca       0.9413509 -0.14309347  0.12155547  0.078868757  0.0006198796
## Mg       0.8339062  0.30424558  0.28045264  0.134943824 -0.1430879576
## S        0.7063383  0.44856320  0.23867077 -0.128524575 -0.0049718627
## Na       0.7196520  0.37233582  0.37528150 -0.207762663 -0.0250547577
## Zn       0.6551702  0.47189942 -0.07359911  0.124037056  0.1384138724
## B        0.7874600  0.38086142 -0.19204859 -0.079294605  0.2499556168
## S.Bas    0.8146526 -0.40357730 -0.14540494 -0.001307045  0.0338664431
## S.Al    -0.8036492  0.39573452  0.17690168  0.012799949  0.0029970207
## S.Ca     0.7455631 -0.59559378 -0.14668631 -0.070704839  0.1359500202
## Ca.Mg_K  0.3851693 -0.36055354  0.50678952 -0.602539569  0.1471373326
## Ca_B     0.3022399 -0.55959373  0.48378999  0.286469180 -0.3222035197
## Fe_Mn   -0.5100111  0.25841091  0.44152978  0.142888411  0.4146354322
## Fe_Zn   -0.7713451  0.09523629  0.42832828  0.259093577 -0.0217499331
# Contribution of variables
var$contrib
##             Dim.1      Dim.2      Dim.3        Dim.4        Dim.5
## pH      5.7338963 10.1998223  0.1390884 3.300485e+00 4.081978e-01
## CE      7.1766758  6.1455553  1.7178035 2.504754e+00 7.250977e-02
## CIC     8.8539564  0.4510960  1.9931977 2.454063e+00 2.460347e-01
## MO      0.1825152  2.9080007 22.9008061 7.182496e+00 1.706186e+01
## P.dis   1.4935292  0.9386054  8.0398991 3.554240e+00 3.766492e+01
## K       5.7119010  4.8506519  1.7626641 1.965724e+01 1.877093e+00
## Ca      9.5009496  0.7575467  0.7342422 5.928900e-01 3.901318e-05
## Mg      7.4558701  3.4246668  3.9084935 1.735682e+00 2.078752e+00
## S       5.3492066  7.4441833  2.8306671 1.574478e+00 2.509775e-03
## Na      5.5527610  5.1290794  6.9984948 4.114330e+00 6.373485e-02
## Zn      4.6022707  8.2388894  0.2691755 1.466449e+00 1.945162e+00
## B       6.6484572  5.3666558  1.8327894 5.993098e-01 6.343404e+00
## S.Bas   7.1155545  6.0259183  1.0506272 1.628341e-04 1.164490e-01
## S.Al    6.9246364  5.7939887  1.5550853 1.561639e-02 9.119606e-04
## S.Ca    5.9598141 13.1241167  1.0692260 4.764994e-01 1.876528e+00
## Ca.Mg_K 1.5906231  4.8096038 12.7627889 3.460471e+01 2.198074e+00
## Ca_B    0.9794166 11.5855183 11.6306526 7.822038e+00 1.054040e+01
## Fe_Mn   2.7888371  2.4705377  9.6874690 1.946069e+00 1.745538e+01
## Fe_Zn   6.3791289  0.3355635  9.1168294 6.398489e+00 4.802998e-02
# Graph of variables: default plot
fviz_pca_var(res.pca, col.var = "black",
             repel = TRUE) # Avoid text overlapping)

# Control variable colors using their contributions
fviz_pca_var(res.pca, col.var="contrib",
             gradient.cols = c("darkred", "#E7B800", "darkgreen"),
             repel = TRUE # Avoid text overlapping
             )

# Contributions of variables to PC1
fviz_contrib(res.pca, choice = "var", axes = 1, top = 20)

# Contributions of variables to PC2
fviz_contrib(res.pca, choice = "var", axes = 2, top = 20)

# Extract the results for individuals
ind <- get_pca_ind(res.pca)
ind
## Principal Component Analysis Results for individuals
##  ===================================================
##   Name       Description                       
## 1 "$coord"   "Coordinates for the individuals" 
## 2 "$cos2"    "Cos2 for the individuals"        
## 3 "$contrib" "contributions of the individuals"
# Coordinates of individuals
ind$coord
##                        Dim.1        Dim.2       Dim.3       Dim.4       Dim.5
## BOGOTA            1.01772946 -0.516508702 -0.12748165  0.65535617 -0.38937405
## CAJICA            0.60951915 -0.380939247  1.56460970 -1.46947871  0.33350119
## CARMEN DE CARUPA -3.31756664  1.200810890 -1.07342807  0.15639112 -0.16628864
## CHIA              5.14182261 -0.788375662  0.63286494  1.39170961 -0.06649251
## CHIPAQUE          1.81643055 -2.443695706  0.46587356  1.26287240  1.23718286
## CHOACHI          -3.79549832 -0.614636265  2.47836306  1.43297178 -1.30440058
## CHOCONTA         -1.82657205  0.536307323 -1.03527185  0.06795718 -0.38187429
## COGUA            -0.31571992 -0.653171223  0.25781454 -0.22342458  0.47605227
## COTA              2.01160704  5.341691806  0.08829582  1.27561954  0.97870850
## CUCUNUBA         -0.46491561 -1.027126691  0.47587027  1.29046983 -0.19174801
## EL ROSAL          3.27304191 -0.012116979 -1.99870832  0.08301658 -2.37718211
## FACATATIVA        5.51878689 -0.743120210  0.35062511  0.65923016 -1.74230279
## FOSCA            -0.97880966 -1.710371643 -1.20627173  0.45940584  1.36585426
## FUNZA             5.46159071  1.001322336  0.33451880 -1.19565352  0.83299631
## FUQUENE          -0.48312954  0.660724147  0.96457200 -0.49354896  0.22217076
## GRANADA           2.53186927  1.021472443 -1.24681274 -2.00406128  0.34272977
## GUACHETA         -0.50064686  0.180446267  0.76566857  0.14635855  0.36172736
## GUASCA           -1.16275901 -1.387138287 -0.87571096 -0.33486669 -0.32330994
## GUATAVITA        -4.15010714  0.531706722 -0.28204762 -0.08615468 -0.91051374
## GUTIERREZ        -1.09727180 -1.106984317 -1.09288202 -0.34946474  0.87018340
## JUNIN            -5.40181192  1.337546873  1.08556804  0.06748114 -0.27689075
## LA CALERA        -1.08700820 -0.890904158  0.25566963  0.08277641 -0.56680619
## LENGUAZAQUE      -4.63409165  2.617567472  1.01334755  0.93164833  2.26160830
## MACHETA          -5.03149198  0.458611554  2.77047009  1.96614071 -1.23228016
## MADRID            8.06727022  3.340936940 -0.10762632  1.88299341 -0.54550166
## MANTA             0.83701163 -2.535562030  0.91353710  0.74527459  0.34744771
## PACHO            -3.86981999  0.121524731 -0.34136377 -0.98842844 -0.87130733
## PASCA             2.18489215 -1.787598761 -1.12700221  0.36918126  0.97325015
## SAN BERNARDO     -0.93183840 -1.174005574  0.34851617 -0.61429833  1.08360637
## SAN CAYETANO     -3.84606245 -0.009094151  1.87350769 -1.92832802  0.73368784
## SESQUILE         -3.13252094  0.116784993 -0.51596290  0.29132497 -0.94893412
## SIBATE            0.19326043  0.490348124 -1.65643715 -1.22828077  0.06549932
## SIMIJACA          1.23910630  2.436412697  2.04629668 -0.14331413  0.54067858
## SOACHA            5.94897950  2.124574727  3.21507402 -1.74531540 -0.98735328
## SOPO             -0.20839152 -1.450534609  2.47379440 -0.05848120 -0.02944852
## SUBACHOQUE       -0.53865585  0.802637643 -2.63934716 -0.59315837 -1.44692494
## SUESCA           -1.48686548 -0.992164200 -0.78256984  0.57762848 -0.65929097
## SUSA             -3.09787153  1.000102638 -0.43454872  0.11164170  0.04289014
## SUTATAUSA         3.44950779 -1.646857428  2.11444363 -2.30054950  0.77984205
## TABIO            -0.05290202  0.065282147 -0.57632818  0.53939670 -1.00918398
## TAUSA            -2.55240733  2.811240186 -2.60381798 -1.01544149  0.33774631
## TENJO             3.26328566  0.904889426 -1.89589858  0.83430376  0.48567925
## UBAQUE            0.17059865 -1.174317898 -2.60861595  0.10822587  0.63323393
## UNE               2.38615024 -3.013945664 -0.57500128  1.51759045  2.13570387
## VILLAPINZON      -1.75607536  0.469888457 -1.55436679 -0.08595649  0.91894365
## ZIPACON           0.58653726 -2.966659952 -0.24895155 -1.09814771 -2.17898625
## ZIPAQUIRA         0.01181375 -0.547001186  0.11715198 -0.95061353  0.24547070
# Graph of individuals
# 1. Use repel = TRUE to avoid overplotting
# 2. Control automatically the color of individuals using the cos2
    # cos2 = the quality of the individuals on the factor map
    # Use points only
# 3. Use gradient color
fviz_pca_ind(res.pca, col.ind = "cos2",
             gradient.cols = c("#FC4E07", "#E7B800", "#00AFBB"),
             repel = TRUE # Avoid text overlapping (slow if many points)
             )

# Biplot of individuals and variables
fviz_pca_biplot(res.pca, repel = TRUE )

# Analisis de componentes principales usando la clasificacion IDPM

GR.CUN$IDPM <- as.factor(GR.CUN$IDPM)
str(GR.CUN)
## 'data.frame':    47 obs. of  54 variables:
##  $ Rmed1  : num  NA 20 15 17 14.5 ...
##  $ Rmed2  : num  NA 19.5 19 18 15.7 ...
##  $ Rmed3  : num  NA 11.7 13.9 NA 11.7 ...
##  $ Rmea1  : num  NA 20.7 16 17.1 14 ...
##  $ Rmea2  : num  NA 19.5 19.3 18.2 16.4 ...
##  $ Rmea3  : num  NA 11.7 13.1 NA 12.5 ...
##  $ Rmax1  : num  NA 30 32.6 18 20 ...
##  $ Rmax2  : num  NA 30 28.7 25 30 ...
##  $ Rmax3  : num  NA 11.7 20 NA 20 ...
##  $ Asem1  : num  NA 20.1 945.2 124.7 118.3 ...
##  $ Asem2  : num  NA 39.4 2276.4 189.3 121.3 ...
##  $ Asem3  : num  NA 10 77.6 NA 38.3 ...
##  $ Acos1  : num  NA 12.2 854.7 118.3 116.3 ...
##  $ Acos2  : num  NA 26.5 2082.7 195.3 155.5 ...
##  $ Acos3  : num  NA 12 69.4 NA 46.8 ...
##  $ Prod1  : num  NA 251 15280 2035 1722 ...
##  $ Prod2  : num  NA 514 39427 3465 2366 ...
##  $ Prod3  : num  NA 140 956 NA 625 ...
##  $ IDPM   : Factor w/ 3 levels "1","2","3": 3 3 1 2 3 3 1 1 2 2 ...
##  $ ALT    : num  2625 2558 2600 2600 2400 ...
##  $ TEM    : num  13.1 14 12 14 13 18 10 14 14 14 ...
##  $ pH     : num  5.56 5.32 5.06 5.92 5.77 ...
##  $ Aci    : num  1.4884 1.1084 2.0612 0.0829 0.7639 ...
##  $ Al     : num  1.1481 0.8782 1.6302 0.0563 0.6129 ...
##  $ CE     : num  0.474 0.461 0.314 0.838 0.502 ...
##  $ CIC    : num  12.69 10.38 6.42 14.98 12.07 ...
##  $ MO     : num  9.78 8.09 12.59 7.09 6.23 ...
##  $ N.tot  : num  0.489 0.405 0.629 0.354 0.312 ...
##  $ N.dis  : num  73.3 60.7 94.4 53.2 46.8 ...
##  $ P      : num  56 29.7 50.3 59.4 106.2 ...
##  $ P.dis  : num  128.2 67.9 115.3 136 243.2 ...
##  $ K      : num  0.837 0.623 0.681 1.326 0.7 ...
##  $ Ca     : num  7.61 6.83 2.7 10.38 8.79 ...
##  $ Mg     : num  1.795 1.509 0.718 2.532 1.413 ...
##  $ S      : num  10.51 13.1 8.19 31.32 12.13 ...
##  $ Na     : num  0.1232 0.3096 0.0867 0.275 0.1029 ...
##  $ Fe     : num  569 669 532 489 669 ...
##  $ Cu     : num  2.33 2.6 1.51 3.55 4.21 ...
##  $ Mn     : num  7.65 7.29 5.88 6.99 7.18 ...
##  $ Zn     : num  5.46 6.4 1.92 11.47 5.33 ...
##  $ B      : num  0.328 0.356 0.253 0.418 0.324 ...
##  $ S.Bas  : num  80.1 80.7 66.5 99.3 89.9 ...
##  $ S.Al   : num  14.745 15.429 26.354 0.465 7.939 ...
##  $ S.Ca   : num  55.2 57.3 41.9 68.8 69.2 ...
##  $ S.Mg   : num  13.6 13.8 11.1 16.9 12.3 ...
##  $ S.K    : num  7.24 6.53 10.87 8.63 6.43 ...
##  $ S.Na   : num  1.321 3.014 1.392 1.93 0.959 ...
##  $ Ca_Mg  : num  4.21 4.65 3.95 4.15 6.16 ...
##  $ Mg_K   : num  2.61 4.04 1.24 2.79 2.11 ...
##  $ Ca_K   : num  10.68 23.23 4.69 13.33 13.38 ...
##  $ Ca.Mg_K: num  13.43 27.27 5.95 16.12 15.71 ...
##  $ Ca_B   : num  22.9 22.1 13.4 28.3 31.4 ...
##  $ Fe_Mn  : num  76.1 99.8 101.9 82.1 106.2 ...
##  $ Fe_Zn  : num  159.5 224.8 348.5 44.6 193 ...
names(GR.CUN)
##  [1] "Rmed1"   "Rmed2"   "Rmed3"   "Rmea1"   "Rmea2"   "Rmea3"   "Rmax1"  
##  [8] "Rmax2"   "Rmax3"   "Asem1"   "Asem2"   "Asem3"   "Acos1"   "Acos2"  
## [15] "Acos3"   "Prod1"   "Prod2"   "Prod3"   "IDPM"    "ALT"     "TEM"    
## [22] "pH"      "Aci"     "Al"      "CE"      "CIC"     "MO"      "N.tot"  
## [29] "N.dis"   "P"       "P.dis"   "K"       "Ca"      "Mg"      "S"      
## [36] "Na"      "Fe"      "Cu"      "Mn"      "Zn"      "B"       "S.Bas"  
## [43] "S.Al"    "S.Ca"    "S.Mg"    "S.K"     "S.Na"    "Ca_Mg"   "Mg_K"   
## [50] "Ca_K"    "Ca.Mg_K" "Ca_B"    "Fe_Mn"   "Fe_Zn"
# Visualize
# Use habillage to specify groups for coloring
fviz_pca_ind(res.pca,
             label = "none", # hide individual labels
             habillage = GR.CUN$IDPM, # color by groups
             palette = c("#00AFBB", "#E7B800", "#FC4E07"),
             addEllipses = TRUE # Concentration ellipses
             )

# Grafico de codo
es <- scale(B); es
##                           pH         CE         CIC          MO        P.dis
## BOGOTA            0.68036621 -0.1881421  1.12337439 -0.08344961  0.095413550
## CAJICA           -0.27908607 -0.2225784  0.36144570 -0.50258889 -0.656286960
## CARMEN DE CARUPA -1.28093116 -0.5905123 -0.95230461  0.61576896 -0.065526271
## CHIA              2.09847893  0.7230361  1.88501400 -0.75349767  0.193303277
## CHIPAQUE          1.51773112 -0.1198508  0.91948977 -0.96580267  1.529284652
## CHOACHI          -0.87039206 -0.8531429 -0.56928298 -0.78030077 -0.927531863
## CHOCONTA         -1.07514873 -0.4045566 -0.69824909 -0.05465716 -0.018762182
## COGUA             0.25933719 -0.4184518 -0.23537964  0.13340437 -0.129207684
## COTA             -1.47098437  1.6783861  0.69772360 -0.38647150 -0.422185704
## CUCUNUBA          0.66502917 -0.5265186 -0.49420904 -0.99275902 -0.895630758
## EL ROSAL          0.76064567  0.3203875  1.20146729  2.65878301 -0.659217212
## FACATATIVA        1.47817459  1.6741356  2.48519057  0.74713221  0.005887965
## FOSCA             0.03138634 -0.5654982 -1.01203817 -1.19558717  1.692233325
## FUNZA             0.82547042  1.5524858  1.43266684  0.37800309  0.578450783
## FUQUENE          -1.14104166 -0.3783380 -0.22269384 -0.50704795 -0.918203676
## GRANADA          -0.20089789  1.1172310  0.09966569  0.92062504 -0.151202869
## GUACHETA         -0.76805933 -0.3245026 -0.23427963 -1.03805251 -0.947542155
## GUASCA            0.48474891 -0.7039967 -1.18335904 -0.02367999 -0.637003734
## GUATAVITA        -1.11224732 -0.8278918 -1.25097064  0.53267888 -0.724407153
## GUTIERREZ        -0.32586870 -0.5915770 -0.62457423 -0.65382399  0.947440029
## JUNIN            -0.55666944 -0.9708633 -1.04725701 -0.46700197 -1.189816747
## LA CALERA         0.33233824 -0.2928151  0.03452473  0.34946128 -0.461979714
## LENGUAZAQUE      -1.78854797 -0.4210731 -0.84269833 -0.73114100  0.501433826
## MACHETA          -0.64218091 -1.0411859 -0.61971437 -1.44479718 -1.100267972
## MADRID            1.52199438  2.1662756  2.70683452  0.73700789  1.361795562
## MANTA             1.36256251 -0.7190246  0.34253186 -1.51177971 -0.305149304
## PACHO            -0.64965884 -0.7364196 -1.42807259 -0.02633890 -1.236956360
## PASCA             1.18592271  0.2242606  0.49346303  0.04391347  1.522288271
## SAN BERNARDO     -0.58845890 -0.5300547 -0.14296175 -0.93943854  0.751829560
## SAN CAYETANO     -0.89690197 -0.8058690 -0.99445964 -0.57774412 -1.093628105
## SESQUILE         -0.79917120 -0.5949287 -0.84768754  0.59043854 -0.273193060
## SIBATE           -0.66394747  0.2422357 -0.12730156  1.82068631  0.219302095
## SIMIJACA         -1.35098641  1.0809327  0.87724699 -0.58766521 -0.695676959
## SOACHA            1.50143183  4.0840844  1.79110778 -0.47994537 -0.274665474
## SOPO              0.57865973 -0.3679461 -0.08769742 -1.08285132 -0.960490245
## SUBACHOQUE       -0.35693632 -0.2725288 -0.53759659  2.59488694 -0.479800677
## SUESCA           -0.10786823 -0.6332772 -1.07967244 -0.83418149 -0.675172242
## SUSA             -0.83924750 -0.7358532 -0.89238808  0.43304991 -0.324951739
## SUTATAUSA         0.78568749  1.4337403  0.69863577 -1.05401223  0.757765493
## TABIO            -0.05017845 -0.2881076 -0.05164165  0.04117270 -0.879775167
## TAUSA            -1.48450289 -0.1408685 -0.53952201  2.23959771  1.377895025
## TENJO             0.57208193  0.8765438  0.84095819  0.93031177  1.369655877
## UBAQUE            0.35754428 -0.3510823 -0.70743146  0.62709176  1.658688761
## UNE               2.03270088 -0.2121774  0.69859446 -0.86721462  3.363170341
## VILLAPINZON      -0.48406692 -0.6005606 -0.93970546  0.27920655  0.590194153
## ZIPACON           0.62031916 -0.5093153 -0.49775981  0.91154832 -1.217574334
## ZIPAQUIRA         0.13136898 -0.2342263  0.17097347  0.95706186 -0.194226225
##                             K          Ca           Mg           S          Na
## BOGOTA            0.429154680  0.83736291  0.479152756 -0.48172324 -0.32706552
## CAJICA           -0.231347396  0.53346413  0.086089895 -0.34124332  0.98692514
## CARMEN DE CARUPA -0.051122819 -1.07087483 -1.002411528 -0.60710032 -0.58402693
## CHIA              1.936668999  1.91646165  1.492927391  0.64488720  0.74310957
## CHIPAQUE          0.005217857  1.29463339 -0.046506212 -0.39405239 -0.47010233
## CHOACHI          -0.820540645 -0.90966122 -0.764734238 -0.69072984 -0.65045119
## CHOCONTA          0.188954297 -0.78957810 -0.658120631 -0.56367361  0.03902779
## COGUA            -0.524095119 -0.12402502 -0.005035424 -0.18634550 -0.22861833
## COTA              2.105145886 -0.10101237  1.832723633  0.06378341  1.32256427
## CUCUNUBA          0.497177999 -0.39099081  0.177764252 -0.43187615 -0.32785010
## EL ROSAL          1.547993803  1.27194469  0.987547184 -0.08369920  0.06714839
## FACATATIVA        1.528457756  2.49070285  1.375968422  1.09104299  0.56800996
## FOSCA            -0.515242936 -0.58840970 -0.921254692 -0.57306953 -0.77551550
## FUNZA             0.119598456  1.39709703  1.706133212  1.64134329  1.66357881
## FUQUENE          -0.652697835 -0.31766852  0.800809794  0.97166096 -0.24041514
## GRANADA          -0.464379800  0.26752012  0.502793565  1.45195570 -0.36317932
## GUACHETA         -0.300217224 -0.25149751  0.722911341 -0.15942199 -0.09968038
## GUASCA           -0.613397152 -0.81251132 -0.448493469 -0.59556764 -0.49575931
## GUATAVITA        -0.937954299 -1.35877093 -0.915137777 -0.63493809 -0.82040309
## GUTIERREZ        -0.757120753 -0.32524426 -0.950304045 -0.58545173 -0.54918008
## JUNIN            -1.303581665 -1.30825071 -1.145830456 -0.76439331 -0.69238161
## LA CALERA        -0.394273839  0.19610828 -0.703982907 -0.58256404 -0.54105442
## LENGUAZAQUE      -0.422672612 -1.19565679 -0.978040253 -0.24072790 -0.43572052
## MACHETA          -0.728796527 -1.22075353 -0.410544249 -0.89203235 -0.59785649
## MADRID            3.939482385  2.08049273  3.235749033  3.33009564  2.51642202
## MANTA            -0.091915203  0.74424132 -0.094170365 -0.68150906 -0.22222429
## PACHO            -1.372178011 -1.37073185 -1.063555277 -0.61898832 -0.73515803
## PASCA             0.077652343  0.95975192 -0.347911345 -0.27681364 -0.34755837
## SAN BERNARDO     -0.984458743 -0.16345885 -0.550977537 -0.53043396 -0.50007271
## SAN CAYETANO     -1.587999446 -1.01488568 -0.896076464 -0.76586031 -0.45240067
## SESQUILE         -0.435941396 -1.02249662 -1.029158973 -0.51739916 -0.77598666
## SIBATE           -0.220426025 -0.05106857 -0.591741897 -0.26558509  0.08224827
## SIMIJACA          0.290100944  0.49356376  0.920002217  3.08860787  0.43805091
## SOACHA            0.475754168  1.54611602  2.162911332  2.90744677  4.29438200
## SOPO             -0.550256669 -0.06278332  1.134077546 -0.42562081  0.15266119
## SUBACHOQUE        0.463838545 -0.53726323 -0.357338368 -0.32053501 -0.47887929
## SUESCA            0.149631143 -0.90254009 -0.471463214 -0.59962299 -0.61847582
## SUSA             -0.233570337 -0.97011467 -0.874388800 -0.10198929 -0.60513083
## SUTATAUSA        -0.240286222  1.05111328 -0.109821021  0.80879300  2.34070408
## TABIO             0.614865194 -0.25932254  0.303441184 -0.31648722 -0.11365872
## TAUSA            -0.160402394 -1.04888401 -1.097646043 -0.24107266 -0.02844759
## TENJO             1.618954433  0.79112803  0.498548429  0.32952572  0.46658481
## UBAQUE            0.114671453 -0.30349999 -0.787990552 -0.40431567 -0.72284114
## UNE               0.048665088  1.08256856 -0.213073848 -0.34937682 -0.43380792
## VILLAPINZON      -0.130970045 -0.74851872 -0.893266362 -0.27342922 -0.69847814
## ZIPACON          -0.824194948  0.02264370 -0.030078938 -0.52219494 -0.60320998
## ZIPAQUIRA        -0.601945370  0.24355939 -0.060496302 -0.30929826 -0.14582678
##                           Zn            B       S.Bas        S.Al        S.Ca
## BOGOTA           -0.15146889  0.212636691 -0.03299549 -0.02067705  0.05475604
## CAJICA            0.03907862  0.469790311  0.01536918  0.04437992  0.24782114
## CARMEN DE CARUPA -0.87340839 -0.469553953 -1.07849583  1.08407881 -1.14043789
## CHIA              1.07296288  1.032885505  1.45140308 -1.37967921  1.28555675
## CHIPAQUE         -0.17785063  0.181297259  0.72872280 -0.66841301  1.31873244
## CHOACHI          -0.60808470 -1.574890229 -1.60605377  1.57638593 -1.31368197
## CHOCONTA         -0.67790305 -0.339153582 -0.32717733  0.43603204 -0.65249502
## COGUA            -0.12368937 -0.052876341  0.37745941 -0.26403229  0.41128129
## COTA              4.64059161  1.234138577 -0.57778264  0.42420970 -1.37887648
## CUCUNUBA         -0.67284970 -0.387544150  0.91409734 -0.91512160  0.19697055
## EL ROSAL          0.42358392  0.750419126  0.96178506 -0.99063610  0.85713234
## FACATATIVA        0.24713634  0.946711595  1.14213525 -1.15249222  1.20440447
## FOSCA            -0.10265029 -0.920931360  0.24103522 -0.27235291  0.52438686
## FUNZA             2.11080102  2.481520532  1.22649929 -1.24267861  1.18623466
## FUQUENE           0.37916014 -0.195079628  0.41489418 -0.45639257 -0.15480828
## GRANADA           1.21340135  2.299028719  0.67063407 -0.71704421  0.69305298
## GUACHETA          0.07386385 -0.081296598  0.50842209 -0.51721969  0.02569983
## GUASCA           -0.71495187 -0.480632848  0.80041978 -0.86240798  0.40640417
## GUATAVITA        -0.82528903 -1.389971259 -1.36423878  0.83040500 -1.45442006
## GUTIERREZ        -0.54289108 -0.011075293 -0.17079543  0.21924580  0.46511948
## JUNIN            -0.62217190 -1.335259898 -2.44446281  2.50678252 -1.99070521
## LA CALERA        -0.58054053 -0.708172170 -0.37846064  0.38864356  0.02247362
## LENGUAZAQUE      -0.76819841  0.114040814 -1.69099483  1.85258935 -1.71882390
## MACHETA          -0.85783159 -1.421579150 -2.10420613  2.40392639 -2.17363880
## MADRID            2.37262561  2.213333160  1.10676466 -1.04450900  0.41196750
## MANTA            -0.52727044  0.063092203  0.88019372 -0.85337408  1.25010016
## PACHO            -0.78421642 -1.544970780 -1.29632372  1.15649503 -1.28594530
## PASCA             0.51595301  0.306953552  0.87769596 -0.86183127  1.50755392
## SAN BERNARDO     -0.15965245 -0.297038150 -0.29775332  0.36588872  0.27717456
## SAN CAYETANO     -0.65497750 -1.224454622 -1.44224534  1.63055680 -1.03440319
## SESQUILE         -0.69619093 -1.339263596 -1.17809889  0.71252415 -0.95377799
## SIBATE            0.17122343  0.573491200  0.16324812 -0.26546001  0.40192033
## SIMIJACA          0.23194809  0.646079832  0.10051445 -0.01073328 -0.09707363
## SOACHA            0.20439841  0.885605828  0.25291843 -0.26100728 -0.03351424
## SOPO             -0.56855995 -0.750921963  0.47281389 -0.48983806  0.45504728
## SUBACHOQUE        0.04226739  0.004900947  0.09286422 -0.09064323 -0.21195325
## SUESCA           -0.77908275 -0.820394116  0.58097940 -0.64227746 -0.11817667
## SUSA             -0.73472271 -0.670194609 -0.86322040  0.84949127 -1.04483669
## SUTATAUSA        -0.32047920  0.246677950  1.03271689 -0.98545496  1.04564126
## TABIO             0.01768794 -0.370704638  0.39735731 -0.33206293 -0.05982394
## TAUSA            -0.51368816  0.788806049 -1.95667915  1.96830546 -1.73753457
## TENJO             1.07424121  1.692814279  0.90736472 -0.86359155  0.67091069
## UBAQUE           -0.02725644 -0.198024685  0.58551153 -0.57637549  0.76159597
## UNE               0.12991424 -0.030893108  0.90857250 -0.83919970  1.48817722
## VILLAPINZON      -0.62300160  0.604306103 -0.25811965  0.34287731 -0.34088182
## ZIPACON           0.01248925 -1.324941326  0.99402732 -1.02542057  1.22324693
## ZIPAQUIRA        -0.28445036  0.191287820  0.26168429 -0.19189144  0.50244648
##                      Ca.Mg_K        Ca_B       Fe_Mn       Fe_Zn
## BOGOTA            0.02004431  0.21803742 -0.59001040 -0.37205131
## CAJICA            2.23442806  0.11069168  0.16742528  0.03937189
## CARMEN DE CARUPA -1.17791112 -1.05009160  0.23433007  0.81807321
## CHIA              0.44980515  0.93097813 -0.39954958 -1.09540279
## CHIPAQUE          0.38535974  1.33894930  0.37064998 -0.16129775
## CHOACHI          -0.41110449  3.13132540  1.03030218  1.54026416
## CHOCONTA         -0.95289362 -0.79186366 -0.96116227  0.38603184
## COGUA             0.34518318  0.04384462  1.06935911  0.07948919
## COTA             -1.12684691 -1.41671381  1.37443891 -1.00897816
## CUCUNUBA         -0.81972625  0.27878797  0.94387308  0.41161248
## EL ROSAL         -0.34408352  0.40412935 -1.47466560 -1.17859109
## FACATATIVA        0.41424244  1.96022920 -1.56265701 -1.12436239
## FOSCA            -0.52292810 -0.12295846 -0.66743506 -0.61191551
## FUNZA             1.28080073 -0.01527334 -0.56801909 -1.14199186
## FUQUENE           0.26755599 -0.44157074  0.80530573  0.45789600
## GRANADA           0.83772729 -1.01541047 -1.19277663 -0.98926696
## GUACHETA         -0.23507258 -0.41513482  0.94395770  0.10635565
## GUASCA           -0.38771872 -0.65727330 -0.37650189  0.33274057
## GUATAVITA        -0.87872299 -0.36885749  0.16710318  1.18135247
## GUTIERREZ        -0.16423088 -0.48020123 -1.03501848 -0.23314084
## JUNIN            -0.57308645 -1.06403064  0.81712046  2.04519258
## LA CALERA         0.06905635  0.58690214  0.38999319  0.21303517
## LENGUAZAQUE      -1.07770894 -1.52170182  3.19509428  2.43139616
## MACHETA          -0.83032091  1.60613041  0.34069324  3.47178379
## MADRID           -0.64416980  0.23485188 -1.26762952 -1.18501852
## MANTA             0.47351456  0.73902587 -0.02080442  0.32226049
## PACHO            -0.50306231 -0.72816231 -0.15111086 -0.39526816
## PASCA             0.10885695  0.45460385 -0.41116188 -1.04165194
## SAN BERNARDO      1.00095128  0.30329713 -0.12854150 -0.27564874
## SAN CAYETANO      2.07666189 -0.60531545  1.81094588  0.30206222
## SESQUILE         -0.93157385  0.21759008 -0.09319185  0.69410779
## SIBATE            0.02711576 -0.68900054  0.12869665 -0.71568074
## SIMIJACA         -0.00357249 -0.11882189  1.65346378  0.45659721
## SOACHA            1.41326273  0.70108689 -1.12788648 -0.99556066
## SOPO              1.43001976  0.78765718  1.15858485  1.06147689
## SUBACHOQUE       -0.90354987 -0.89154549 -0.65461907 -0.62669472
## SUESCA           -1.04814530 -0.38678042 -0.89856357  0.30302151
## SUSA             -0.85495693 -0.99179709  0.94464012  0.85946444
## SUTATAUSA         3.26629440  0.90420998 -0.93322839 -0.66327210
## TABIO            -0.83390405 -0.21297860 -0.46968558 -0.27289448
## TAUSA            -0.93325553 -1.79259404 -0.41295717 -0.33818812
## TENJO            -0.79883737 -0.45609502 -0.73735516 -0.66861915
## UBAQUE           -0.70037210 -0.54179552 -1.03764263 -0.93104626
## UNE               0.27863454  1.41444588 -0.07436677 -0.83477957
## VILLAPINZON      -0.78486586 -1.31540511  0.20545941  0.18830837
## ZIPACON           1.07501203  1.83702496 -1.47225758 -0.90806394
## ZIPAQUIRA         0.98809377 -0.11242644  0.96736135  0.06749169
## attr(,"scaled:center")
##          pH          CE         CIC          MO       P.dis           K 
##   5.3867141   0.5495326   9.2933016  10.1133280 120.5338152   0.6979731 
##          Ca          Mg           S          Na          Zn           B 
##   5.4566684   1.4468277  19.4079112   0.1695826   6.2068312   0.3041831 
##       S.Bas        S.Al        S.Ca     Ca.Mg_K        Ca_B       Fe_Mn 
##  80.4799505  14.9625408  54.5610466  13.3063494  21.2692759  94.5609261 
##       Fe_Zn 
## 218.5765045 
## attr(,"scaled:scale")
##          pH          CE         CIC          MO       P.dis           K 
##   0.2533773   0.3989817   3.0193853   4.0159281  80.1965399   0.3244967 
##          Ca          Mg           S          Na          Zn           B 
##   2.5713690   0.7269322  18.4766558   0.1418385   4.9072555   0.1099241 
##       S.Bas        S.Al        S.Ca     Ca.Mg_K        Ca_B       Fe_Mn 
##  12.9737394  10.5075605  11.0913369   6.2483266   7.5338124  31.2679642 
##       Fe_Zn 
## 158.8302005
fviz_nbclust(x=es, FUNcluster=kmeans, method="wss", k.max=15, diss=get_dist(es, method="euclidean") )

# Optimal number of clusters for k-means
library("factoextra")
fviz_nbclust(es, kmeans, method = "gap_stat")

fviz_nbclust(es, FUN = hcut, method = "silhouette")

# Compute hierarchical clustering and cut into 4 clusters
res <- hcut(es, k = 4, stand = TRUE)
res$cluster
##           BOGOTA           CAJICA CARMEN DE CARUPA             CHIA 
##                1                1                2                3 
##         CHIPAQUE          CHOACHI         CHOCONTA            COGUA 
##                1                4                2                1 
##             COTA         CUCUNUBA         EL ROSAL       FACATATIVA 
##                3                1                3                3 
##            FOSCA            FUNZA          FUQUENE          GRANADA 
##                1                3                1                3 
##         GUACHETA           GUASCA        GUATAVITA        GUTIERREZ 
##                1                1                2                1 
##            JUNIN        LA CALERA      LENGUAZAQUE          MACHETA 
##                4                1                4                4 
##           MADRID            MANTA            PACHO            PASCA 
##                3                1                2                1 
##     SAN BERNARDO     SAN CAYETANO         SESQUILE           SIBATE 
##                1                4                2                2 
##         SIMIJACA           SOACHA             SOPO       SUBACHOQUE 
##                3                3                1                2 
##           SUESCA             SUSA        SUTATAUSA            TABIO 
##                1                2                3                1 
##            TAUSA            TENJO           UBAQUE              UNE 
##                2                3                1                1 
##      VILLAPINZON          ZIPACON        ZIPAQUIRA 
##                2                1                1
# Visualize
fviz_dend(res, rect = TRUE, cex = 0.5,
          k_colors = c("#00AFBB","#E7B800", "#FC4E07","#9E1FDE", "#9D9FDE"))

# Agrupamiento por

# 2. Compute k-means
set.seed(123)
km.res <- kmeans(es, 4, nstart = 10)
# 3. Visualize
library("factoextra")
fviz_cluster(km.res, data = es,
             palette = c("#00AFBB","#E7B800", "#FC4E07","#9E1FDE", "#9D9FDE"),
             ggtheme = theme_classic(),
             main = "Partitioning Clustering Plot",
             repel = TRUE 
             )

km.res$cluster
##           BOGOTA           CAJICA CARMEN DE CARUPA             CHIA 
##                2                2                3                4 
##         CHIPAQUE          CHOACHI         CHOCONTA            COGUA 
##                4                3                2                2 
##             COTA         CUCUNUBA         EL ROSAL       FACATATIVA 
##                1                2                4                4 
##            FOSCA            FUNZA          FUQUENE          GRANADA 
##                2                1                2                4 
##         GUACHETA           GUASCA        GUATAVITA        GUTIERREZ 
##                2                2                3                2 
##            JUNIN        LA CALERA      LENGUAZAQUE          MACHETA 
##                3                2                3                3 
##           MADRID            MANTA            PACHO            PASCA 
##                1                2                3                4 
##     SAN BERNARDO     SAN CAYETANO         SESQUILE           SIBATE 
##                2                3                3                2 
##         SIMIJACA           SOACHA             SOPO       SUBACHOQUE 
##                1                1                2                2 
##           SUESCA             SUSA        SUTATAUSA            TABIO 
##                2                3                4                2 
##            TAUSA            TENJO           UBAQUE              UNE 
##                3                4                2                4 
##      VILLAPINZON          ZIPACON        ZIPAQUIRA 
##                2                2                2
#
Gr.clus=data.frame(Grupo=km.res$cluster, MUN=row.names( data.frame(km.res$cluster) ) ); Gr.clus
##                  Grupo              MUN
## BOGOTA               2           BOGOTA
## CAJICA               2           CAJICA
## CARMEN DE CARUPA     3 CARMEN DE CARUPA
## CHIA                 4             CHIA
## CHIPAQUE             4         CHIPAQUE
## CHOACHI              3          CHOACHI
## CHOCONTA             2         CHOCONTA
## COGUA                2            COGUA
## COTA                 1             COTA
## CUCUNUBA             2         CUCUNUBA
## EL ROSAL             4         EL ROSAL
## FACATATIVA           4       FACATATIVA
## FOSCA                2            FOSCA
## FUNZA                1            FUNZA
## FUQUENE              2          FUQUENE
## GRANADA              4          GRANADA
## GUACHETA             2         GUACHETA
## GUASCA               2           GUASCA
## GUATAVITA            3        GUATAVITA
## GUTIERREZ            2        GUTIERREZ
## JUNIN                3            JUNIN
## LA CALERA            2        LA CALERA
## LENGUAZAQUE          3      LENGUAZAQUE
## MACHETA              3          MACHETA
## MADRID               1           MADRID
## MANTA                2            MANTA
## PACHO                3            PACHO
## PASCA                4            PASCA
## SAN BERNARDO         2     SAN BERNARDO
## SAN CAYETANO         3     SAN CAYETANO
## SESQUILE             3         SESQUILE
## SIBATE               2           SIBATE
## SIMIJACA             1         SIMIJACA
## SOACHA               1           SOACHA
## SOPO                 2             SOPO
## SUBACHOQUE           2       SUBACHOQUE
## SUESCA               2           SUESCA
## SUSA                 3             SUSA
## SUTATAUSA            4        SUTATAUSA
## TABIO                2            TABIO
## TAUSA                3            TAUSA
## TENJO                4            TENJO
## UBAQUE               2           UBAQUE
## UNE                  4              UNE
## VILLAPINZON          2      VILLAPINZON
## ZIPACON              2          ZIPACON
## ZIPAQUIRA            2        ZIPAQUIRA
#
str(RAS.CUN)
## tibble [3,054 × 57] (S3: tbl_df/tbl/data.frame)
##  $ MUN    : Factor w/ 47 levels "BOGOTA","CAJICA",..: 14 1 4 3 3 3 3 3 3 3 ...
##  $ CUL    : Factor w/ 109 levels "agrosilvopastoril",..: 107 86 64 86 86 86 86 18 88 88 ...
##  $ Acos1  : num [1:3054] 408 NA 118 855 855 ...
##  $ Acos2  : num [1:3054] 586 NA 195 2083 2083 ...
##  $ Acos3  : num [1:3054] NA NA NA 69.4 69.4 ...
##  $ ALT    : num [1:3054] 2548 2625 2600 2600 2600 ...
##  $ Asem1  : num [1:3054] 492 NA 125 945 945 ...
##  $ Asem2  : num [1:3054] 651 NA 189 2276 2276 ...
##  $ Asem3  : num [1:3054] NA NA NA 77.6 77.6 ...
##  $ IDPM   : num [1:3054] 1 3 2 1 1 1 1 1 1 1 ...
##  $ Prod1  : num [1:3054] 8161 NA 2035 15280 15280 ...
##  $ Prod2  : num [1:3054] 11779 NA 3465 39427 39427 ...
##  $ Prod3  : num [1:3054] NA NA NA 956 956 ...
##  $ Rmax1  : num [1:3054] 22 NA 18 32.6 32.6 ...
##  $ Rmax2  : num [1:3054] 29.1 NA 25 28.7 28.7 ...
##  $ Rmax3  : num [1:3054] NA NA NA 20 20 20 20 20 20 20 ...
##  $ Rmea1  : num [1:3054] 19.9 NA 17.1 16 16 ...
##  $ Rmea2  : num [1:3054] 20.4 NA 18.2 19.3 19.3 ...
##  $ Rmea3  : num [1:3054] NA NA NA 13.1 13.1 ...
##  $ Rmed1  : num [1:3054] 20 NA 17 15 15 15 15 15 15 15 ...
##  $ Rmed2  : num [1:3054] 20 NA 18 19 19 ...
##  $ Rmed3  : num [1:3054] NA NA NA 13.9 13.9 ...
##  $ TEM    : num [1:3054] 14 13.1 14 12 12 12 12 12 12 12 ...
##  $ pH     : num [1:3054] 5.66 4.87 6.42 4.78 4.88 4.63 4.3 5.39 5.05 5.16 ...
##  $ CIC    : num [1:3054] 6.29 8.08 22.47 4.9 5.46 ...
##  $ CE     : num [1:3054] 0.224 0.374 1.418 0.197 0.386 ...
##  $ MO     : num [1:3054] 9.71 16.04 6.83 8.9 14.82 ...
##  $ P      : num [1:3054] 5.62 64.2 61.74 19.16 9.09 ...
##  $ K      : num [1:3054] 0.205 0.313 0.659 0.148 0.332 ...
##  $ Ca     : num [1:3054] 4.97 2.23 19.49 1.22 1.88 ...
##  $ S      : num [1:3054] 4.35 5.52 81.94 11.93 6.67 ...
##  $ Mg     : num [1:3054] 0.979 0.347 1.819 0.285 0.455 ...
##  $ Na     : num [1:3054] 0.146 0.156 0.502 0.11 0.17 ...
##  $ Fe     : num [1:3054] 184.1 1685.4 53.8 1030.1 495.7 ...
##  $ Cu     : num [1:3054] 0.5 4.12 2.07 0.5 0.5 ...
##  $ Mn     : num [1:3054] 2.88 17.62 2.64 1.18 2.01 ...
##  $ Zn     : num [1:3054] 3.46 8.57 7.03 0.5 0.5 ...
##  $ B      : num [1:3054] 0.109 0.303 0.496 0.195 0.281 ...
##  $ Aci    : num [1:3054] 0 5.03 0 3.13 2.62 ...
##  $ Al     : num [1:3054] 0 4.64 0 2.8 2.36 ...
##  $ P.dis  : num [1:3054] 12.9 147 141.4 43.9 20.8 ...
##  $ N.tot  : num [1:3054] 0.485 0.802 0.342 0.445 0.741 ...
##  $ N.dis  : num [1:3054] 72.8 120.3 51.2 66.7 111.1 ...
##  $ S.Bas  : num [1:3054] 100 37.8 100 36.1 52 ...
##  $ S.Al   : num [1:3054] 0 57.5 0 57 43.2 ...
##  $ S.Ca   : num [1:3054] 78.9 27.7 86.7 25 34.4 ...
##  $ S.Mg   : num [1:3054] 15.55 4.29 8.1 5.82 8.34 ...
##  $ S.K    : num [1:3054] 3.25 3.88 2.93 3.02 6.08 ...
##  $ S.Na   : num [1:3054] 2.32 1.94 2.23 2.25 3.11 ...
##  $ Ca_Mg  : num [1:3054] 5.07 6.45 10.71 4.29 4.13 ...
##  $ Mg_K   : num [1:3054] 4.79 1.11 2.76 1.93 1.37 ...
##  $ Ca_K   : num [1:3054] 24.28 7.14 29.58 8.28 5.67 ...
##  $ Ca.Mg_K: num [1:3054] 29.06 8.24 32.34 10.2 7.04 ...
##  $ Ca_B   : num [1:3054] 45.37 7.39 39.32 6.27 6.68 ...
##  $ Fe_Mn  : num [1:3054] 64 95.7 20.3 870.8 246.7 ...
##  $ P_Zn   : num [1:3054] 1.62 7.49 8.78 38.33 18.17 ...
##  $ Fe_Zn  : num [1:3054] 53.18 196.73 7.65 2060.27 991.34 ...
# # Dataframe sin agrupar por municipios con grupos
DF.cluster.tot <- RAS.CUN %>% left_join(., y=Gr.clus) ; DF.cluster.tot
## Joining with `by = join_by(MUN)`
## # A tibble: 3,054 × 58
##    MUN       CUL   Acos1 Acos2 Acos3   ALT Asem1 Asem2 Asem3  IDPM  Prod1  Prod2
##    <chr>     <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>
##  1 FUNZA     Uchu…  408.  586.  NA    2548  492.  651.  NA       1  8161. 11779.
##  2 BOGOTA    Papa…   NA    NA   NA    2625   NA    NA   NA       3    NA     NA 
##  3 CHIA      Frut…  118.  195.  NA    2600  125.  189.  NA       2  2035   3465.
##  4 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  5 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  6 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  7 CARMEN D… Papa…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  8 CARMEN D… Arve…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
##  9 CARMEN D… Past…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
## 10 CARMEN D… Past…  855. 2083.  69.4  2600  945. 2276.  77.6     1 15280. 39427 
## # ℹ 3,044 more rows
## # ℹ 46 more variables: Prod3 <dbl>, Rmax1 <dbl>, Rmax2 <dbl>, Rmax3 <dbl>,
## #   Rmea1 <dbl>, Rmea2 <dbl>, Rmea3 <dbl>, Rmed1 <dbl>, Rmed2 <dbl>,
## #   Rmed3 <dbl>, TEM <dbl>, pH <dbl>, CIC <dbl>, CE <dbl>, MO <dbl>, P <dbl>,
## #   K <dbl>, Ca <dbl>, S <dbl>, Mg <dbl>, Na <dbl>, Fe <dbl>, Cu <dbl>,
## #   Mn <dbl>, Zn <dbl>, B <dbl>, Aci <dbl>, Al <dbl>, P.dis <dbl>, N.tot <dbl>,
## #   N.dis <dbl>, S.Bas <dbl>, S.Al <dbl>, S.Ca <dbl>, S.Mg <dbl>, S.K <dbl>, …
# Dataframe agrupado por municipios con grupos
A1 <- tibble::rownames_to_column(A, "MUN")
DF.cluster.agru <- A1 %>% left_join(., y=Gr.clus) ; DF.cluster.agru
## Joining with `by = join_by(MUN)`
##                 MUN  Rmed1 IDPM  ALT  TEM       pH        Aci         Al
## 1            BOGOTA     NA    3 2625 13.1 5.559103 1.48842672 1.14813493
## 2            CAJICA 20.000    3 2558 14.0 5.316000 1.10836635 0.87816355
## 3  CARMEN DE CARUPA 15.000    1 2600 12.0 5.062155 2.06117455 1.63019473
## 4              CHIA 17.000    2 2600 14.0 5.918421 0.08288328 0.05627741
## 5          CHIPAQUE 14.500    3 2400 13.0 5.771273 0.76391403 0.61289557
## 6           CHOACHI 15.000    3 1923 18.0 5.166176 2.69555878 2.17397142
## 7          CHOCONTA 20.000    1 2689 10.0 5.114296 1.57266228 1.31436399
## 8             COGUA 19.670    1 2600 14.0 5.452424 1.13583515 0.94955086
## 9              COTA 23.000    2 2566 14.0 5.014000 1.68571680 1.16897724
## 10         CUCUNUBA 15.240    2 2590 14.0 5.555217 0.50128910 0.36834854
## 11         EL ROSAL 18.000    1 2685 12.0 5.579444 0.47765807 0.34018440
## 12       FACATATIVA 17.220    1 2586 19.0 5.761250 0.32234394 0.21942756
## 13            FOSCA 18.000    2 2713 14.0 5.394667 0.86581904 0.66269228
## 14            FUNZA 20.000    1 2548 14.0 5.595870 0.28513281 0.18055710
## 15          FUQUENE 14.750    3 2750 13.0 5.097600 1.15825959 0.86576309
## 16          GRANADA 17.500    3 2500 11.0 5.335811 0.62158721 0.41788006
## 17         GUACHETA 16.000    2 2688 13.0 5.192105 0.97107427 0.71774410
## 18           GUASCA 18.130    2 2710 13.0 5.509538 0.47896412 0.31924071
## 19        GUATAVITA 22.585    2 2680 14.0 5.104896 2.05703561 1.35063107
## 20        GUTIERREZ 20.840    3 2350 14.0 5.304146 1.36450159 1.09273274
## 21            JUNIN 25.000    3 2300 16.0 5.245667 2.73902422 2.32933987
## 22        LA CALERA 16.250    1 2780 14.0 5.470921 1.46741721 1.15194301
## 23      LENGUAZAQUE 18.000    1 2589 14.0 4.933537 2.64988291 2.24520904
## 24          MACHETA 14.000    2 2094 17.0 5.224000 3.36183015 2.93779138
## 25           MADRID 21.000    1 2554 14.0 5.772353 0.34159585 0.26367691
## 26            MANTA 12.000    3 1924 18.0 5.731957 0.54565071 0.40491772
## 27            PACHO 13.000    3 2136 19.0 5.222105 1.68835696 1.32885948
## 28            PASCA 20.000    1 2180 15.0 5.687200 0.44322089 0.31324232
## 29     SAN BERNARDO 12.000    3 1600 20.0 5.237612 1.79245649 1.44831640
## 30     SAN CAYETANO 16.000    1 2700 12.0 5.159459 2.01875624 1.72941120
## 31         SESQUILE 25.000    1 2595 15.0 5.184222 2.03168523 1.32865996
## 32           SIBATE 20.000    1 2700 14.0 5.218485 1.35931642 0.95480135
## 33         SIMIJACA 14.500    2 2559 14.0 5.044405 1.79354525 1.47046480
## 34           SOACHA 14.500    3 2566 14.0 5.767143 0.60816555 0.46267176
## 35             SOPO 20.000    3 2650 14.0 5.533333 0.74140222 0.55051123
## 36       SUBACHOQUE 21.040    1 2663 13.0 5.296275 1.11352096 0.86840251
## 37           SUESCA 23.120    1 2584 14.0 5.359383 0.72004084 0.50577887
## 38             SUSA 15.000    2 2655 14.0 5.174068 1.93916819 1.51178281
## 39        SUTATAUSA 15.000    2 2550 14.0 5.585789 0.52922592 0.38475114
## 40            TABIO 22.000    3 2569 14.0 5.374000 1.22141038 0.99110769
## 41            TAUSA 18.000    1 2950 12.0 5.010575 3.25329783 2.59302652
## 42            TENJO 23.000    1 2587 13.0 5.531667 0.65449398 0.49054135
## 43           UBAQUE 15.000    3 1867 20.0 5.477308 0.67162119 0.50695938
## 44              UNE 29.075    1 2376 16.0 5.901754 0.56291347 0.45066803
## 45      VILLAPINZON 19.000    1 2715 13.0 5.264062 1.22915100 1.00330076
## 46          ZIPACON 12.000    2 2500 16.0 5.543889 0.25472939 0.16862078
## 47        ZIPAQUIRA 20.750    1 2652 12.0 5.420000 1.29654018 1.03122146
##           CE       CIC        MO     N.tot     N.dis          P     P.dis
## 1  0.4744674 12.685202  9.778200 0.4889100  73.33650  55.976267 128.18565
## 2  0.4607279 10.384645  8.094967 0.4047484  60.71225  29.651472  67.90187
## 3  0.3139291  6.417927 12.586212 0.6293106  94.39659  50.340103 115.27883
## 4  0.8380108 14.984885  7.087336 0.3543668  53.15502  59.404397 136.03607
## 5  0.5017144 12.069595  6.234734 0.3117367  46.76050 106.190896 243.17715
## 6  0.2091443  7.574417  6.979696 0.3489848  52.34772  20.152388  46.14897
## 7  0.3881219  7.185019  9.893829 0.4946914  74.20372  51.977796 119.02915
## 8  0.3825780  8.582600 10.649070 0.5324535  79.86803  48.109959 110.17181
## 9  1.2191779 11.399998  8.561286 0.4280643  64.20965  37.849774  86.67598
## 10 0.3394613  7.801094  6.126479 0.3063240  45.94859  21.269575  48.70733
## 11 0.6773613 12.920994 20.790809 1.0395405 155.93107  29.548854  67.66688
## 12 1.2174820 16.797049 13.113757 0.6556879  98.35318  52.841052 121.00601
## 13 0.3239092  6.237568  5.311936 0.2655968  39.83952 111.897412 256.24507
## 14 1.1689460 13.619075 11.631361 0.5815681  87.23521  72.892387 166.92357
## 15 0.3985827  8.620903  8.077060 0.4038530  60.57795  20.479064  46.89706
## 16 0.9952873  9.594231 13.810492 0.6905246 103.57869  47.339680 108.40787
## 17 0.4200620  8.585921  5.944584 0.2972292  44.58438  19.451621  44.54421
## 18 0.2686508  5.720285 10.018231 0.5009115  75.13673  30.326777  69.44832
## 19 0.2192190  5.516139 12.252528 0.6126264  91.89396  27.265881  62.43887
## 20 0.3135042  7.407471  7.487618 0.3743809  56.15713  85.814510 196.51523
## 21 0.1621760  6.131229  8.237882 0.4118941  61.78411  10.967087  25.11463
## 22 0.4327048  9.397545 11.516739 0.5758370  86.37555  36.456175  83.48464
## 23 0.3815322  6.748871  7.177118 0.3588559  53.82839  70.195228 160.74707
## 24 0.1341186  7.422145  4.311126 0.2155563  32.33345  14.103114  32.29613
## 25 1.4138369 17.466278 13.073099 0.6536549  98.04824 100.325374 229.74511
## 26 0.2626550 10.327537  4.042129 0.2021065  30.31597  41.948427  96.06190
## 27 0.2557147  4.981400 10.007553 0.5003776  75.05665   9.316242  21.33420
## 28 0.6390085 10.783257 10.289681 0.5144841  77.17261 105.945881 242.61607
## 29 0.3380505  8.861645  6.340610 0.3170305  47.55458  78.964168 180.82794
## 30 0.2280057  6.290645  7.793149 0.3896575  58.44862  14.335644  32.82863
## 31 0.3121670  6.733806 12.484487 0.6242243  93.63365  43.067545  98.62468
## 32 0.6461802  8.908929 17.425073 0.8712537 130.68805  60.314884 138.12108
## 33 0.9808050 11.942048  7.753307 0.3876653  58.14980  28.272022  64.74293
## 34 2.1790074 14.701346  8.185902 0.4092951  61.39426  43.015980  98.50659
## 35 0.4027289  9.028509  5.764675 0.2882337  43.23506  18.998175  43.50582
## 36 0.4407986  7.670090 20.534207 1.0267104 154.00656  35.832079  82.05546
## 37 0.2968667  6.033355  6.763315 0.3381658  50.72486  28.990104  66.38734
## 38 0.2559407  6.598838 11.852425 0.5926213  88.89319  41.254939  94.47381
## 39 1.1215687 11.402752  5.880491 0.2940245  44.10368  79.172046 181.30399
## 40 0.4345830  9.137376 10.278675 0.5139337  77.09006  21.824843  49.97889
## 41 0.4933287  7.664277 19.107391 0.9553696 143.30544 100.889183 231.03623
## 42 0.8992575 11.832478 13.849393 0.6924697 103.87045 100.600645 230.37548
## 43 0.4094572  7.157293 12.631683 0.6315842  94.73763 110.722670 253.55491
## 44 0.4648777 11.402627  6.630656 0.3315328  49.72992 170.414166 390.24844
## 45 0.3099199  6.455969 11.234601 0.5617301  84.25951  73.303644 167.86534
## 46 0.3463251  7.790373 13.774041 0.6887020 103.30530   9.995007  22.88857
## 47 0.4560806  9.809536 13.956820 0.6978410 104.67615  45.832989 104.95754
##            K        Ca        Mg         S         Na        Fe        Cu
## 1  0.8372324  7.609837 1.7951393 10.507277 0.12319214  569.1982 2.3304314
## 2  0.6229017  6.828402 1.5094093 13.102876 0.30956664  668.5700 2.6000000
## 3  0.6813839  2.703054 0.7181425  8.190727 0.08674512  532.3260 1.5063362
## 4  1.3264158 10.384599 2.5320848 31.323270 0.27498420  488.5985 3.5517887
## 5  0.6996663  8.785649 1.4130209 12.127141 0.10290401  669.0530 4.2071258
## 6  0.4317104  3.117594 0.8909178  6.645534 0.07732360  785.9876 1.3285659
## 7  0.7592882  3.426372 0.9684186  8.993108 0.17511828  520.5033 2.5644189
## 8  0.5279060  5.137754 1.4431673 15.964870 0.13715575  763.5126 3.8724567
## 9  1.3810860  5.196928 2.7790936 20.586415 0.35717320  795.6744 4.3288000
## 10 0.8593057  4.451287 1.5760503 11.428284 0.12308086  624.6912 2.7378376
## 11 1.2002920  8.727308 2.1647076 17.861430 0.17910686  199.6696 2.7410294
## 12 1.1939526 11.861185 2.4470635 39.566737 0.25014833  208.5844 2.4855832
## 13 0.5307785  3.943650 0.7771380  8.819503 0.05958466  506.1218 7.1078333
## 14 0.7367824  9.049120 2.6870710 49.734446 0.40554220  407.3529 3.7286610
## 15 0.4861748  4.639825 2.0289622 37.360956 0.13548251 1329.7090 3.6976594
## 16 0.5472834  6.144561 1.8123246 46.235197 0.11806982  278.1683 5.1739505
## 17 0.6005536  4.809975 1.9723353 16.462326 0.15544412  783.8662 3.3075683
## 18 0.4989278  3.367402 1.1208034  8.403813 0.09926487  537.0052 2.6483480
## 19 0.3936100  1.962767 0.7815846  7.676379 0.05321787  747.4083 2.6560143
## 20 0.4522899  4.620345 0.7560211  8.590721 0.09168774  503.1262 2.5071049
## 21 0.2749652  2.092673 0.6138866  5.284479 0.07137625  583.6759 1.5084053
## 22 0.5700326  5.960935 0.9350799  8.644076 0.09284027  625.3544 1.9973696
## 23 0.5608173  2.382194 0.7358587 14.960065 0.10778068  876.8909 1.7988788
## 24 0.4614810  2.317661 1.1483899  2.926136 0.08478355  582.2499 0.8968649
## 25 1.9763222 10.806383 3.7989980 80.936942 0.52650822  463.1219 2.4339097
## 26 0.6681469  7.370387 1.3783723  6.815903 0.13806267  581.0128 4.6780870
## 27 0.2527059  1.932011 0.6736951  7.971077 0.06530890  244.4244 1.7057403
## 28 0.7231711  7.924545 1.1939198 14.293321 0.12028547  289.0372 8.7542173
## 29 0.3785195  5.036355 1.0463044  9.607265 0.09865306  540.6916 3.2564606
## 30 0.1826725  2.847023 0.7954409  5.257374 0.10541479  398.5048 0.8345135
## 31 0.5565116  2.827452 0.6986989  9.848105 0.05951783  695.0550 2.7688667
## 32 0.6264456  5.325352 1.0166715 14.500787 0.18124861  511.8916 4.2744133
## 33 0.7921099  6.725803 2.1156070 76.475056 0.23171513 1174.4268 1.1451890
## 34 0.8523538  9.432303 3.0191177 73.127804 0.77869144  230.1939 3.2276655
## 35 0.5194166  5.295229 2.2712253 11.543862 0.19123587  693.6312 1.9216120
## 36 0.8484872  4.075166 1.1870670 13.485496 0.10165910  424.5978 2.2254359
## 37 0.7465279  3.135905 1.1041059  8.328884 0.08185894  522.3281 2.9441468
## 38 0.6221803  2.962146 0.8112063 17.523490 0.08375177  638.3813 2.0400633
## 39 0.6200010  8.159469 1.3669953 34.351701 0.50158465  351.2381 2.3745789
## 40 0.8974949  4.789854 1.6674089 13.560286 0.15346145  635.8791 2.8903118
## 41 0.6459231  2.759601 0.6489134 14.953695 0.16554767  470.8931 1.3604383
## 42 1.2233185  7.490951 1.8092387 25.496444 0.23576234  380.8290 3.0664202
## 43 0.7351836  4.676258 0.8740120 11.937510 0.06705591  277.3353 3.3484615
## 44 0.7137648  8.240352 1.2919375 12.952596 0.10805196  408.8872 7.4151957
## 45 0.6554738  3.531951 0.7974836 14.355854 0.07051152  619.1350 2.9893624
## 46 0.4305246  5.514894 1.4249624  9.759495 0.08402422  221.0799 2.0710813
## 47 0.5026438  6.082949 1.4028510 13.693114 0.14889878  832.1795 3.4091941
##           Mn        Zn         B    S.Bas       S.Al     S.Ca      S.Mg
## 1   7.651463  5.463535 0.3275570 80.05188 14.7452755 55.16836 13.568203
## 2   7.291400  6.398600 0.3558244 80.67935 15.4288655 57.30971 13.820678
## 3   5.883974  1.920793 0.2525678 66.48783 26.3535645 41.91207 11.137922
## 4   6.985933 11.472134 0.4177221 99.31008  0.4654782 68.81959 16.914227
## 5   7.183408  5.334073 0.3241120 89.93421  7.9391507 69.18755 12.300763
## 6   6.952517  3.222804 0.1310648 59.64343 31.5265113 39.99056 11.456064
## 7   9.027619  2.880188 0.2669020 76.23524 19.5441738 47.32400 13.265068
## 8   6.770941  5.599856 0.2983707 85.37701 12.1882056 59.12271 17.296942
## 9  10.535400 28.979400 0.4398446 72.98395 19.4199499 39.26746 19.919034
## 10  5.479770  2.904986 0.2615827 92.33921  5.3468453 56.74571 20.733591
## 11  4.981460  8.285466 0.3866722 92.95790  4.5533721 64.06779 16.293285
## 12  6.010325  7.419592 0.4082495 95.29772  2.8526592 67.91950 15.139390
## 13  8.329267  5.703100 0.2029506 83.60708 12.1007762 60.37720 12.313138
## 14  6.303742 16.565071 0.5769619 96.39223  1.9050203 67.71797 19.312456
## 15 14.772262  8.067467 0.2827392 85.86268 10.1669683 52.84402 23.716778
## 16  6.424500 12.161302 0.5569017 89.18058  7.4281554 62.24793 16.988092
## 17  8.250854  6.569300 0.2952467 87.07609  9.5278237 54.84609 21.949058
## 18  7.249797  2.698380 0.2513500 90.86439  5.9007369 59.06861 19.549113
## 19  7.999875  2.156927 0.1513918 62.78067 23.6880716 38.42958 14.473765
## 20 14.009986  3.542726 0.3029657 78.26410 17.2662794 59.71984  9.937097
## 21  6.825052  3.153675 0.1574059 48.76613 41.3027097 32.48146  9.619547
## 22  7.253078  3.357971 0.2263380 75.56990 19.0462365 54.81031 10.700277
## 23  5.502578  2.437085 0.3167189 58.54142 34.4287355 35.49699 10.860087
## 24  6.037654  1.997232 0.1479174 53.18053 40.2219427 30.45249 15.246628
## 25 11.946925 17.849911 0.5474817 94.83883  3.9872994 59.13032 21.197394
## 26  7.229685  3.619380 0.3111185 91.89935  5.9956611 68.42633 13.517769
## 27  3.332639  2.358481 0.1343537 63.66178 27.1144823 40.29819 14.711142
## 28  4.517080  8.738744 0.3379247 91.86695  5.9067966 71.28184 11.334093
## 29  8.762998  5.423376 0.2715315 76.61698 18.8071387 57.63528 11.740923
## 30  4.030425  2.992689 0.1695861 61.76864 32.0957150 43.08813 12.069240
## 31  8.722667  2.790444 0.1569658 65.19560 22.4494314 43.98237 10.160880
## 32  5.963710  7.047068 0.3672236 82.59789 12.1732038 59.01888 11.282632
## 33 11.168375  7.345060 0.3752028 81.78400 14.8497602 53.48437 17.339228
## 34  4.586873  7.209866 0.4015325 83.76125 12.2199911 54.18933 15.415347
## 35  5.775189  3.416762 0.2216387 86.61411  9.8155378 59.60813 20.427077
## 36  6.758521  6.414248 0.3047218 81.68475 14.0101016 52.21020 15.119114
## 37  8.526384  2.383673 0.2140021 88.01743  8.2137716 53.25031 18.414799
## 38  5.709596  2.601359 0.2305126 69.28075 23.8886218 42.97241 11.896822
## 39  6.667158  4.634158 0.3312990 93.87815  4.6078133 66.15861 13.322642
## 40  9.193293  6.293630 0.2634338 85.63516 11.4733695 53.89752 18.701918
## 41  6.920701  3.686032 0.3908919 55.09451 35.6446294 35.28947  8.315885
## 42  5.634095 11.478407 0.4902641 92.25186  5.8883004 62.00234 15.627753
## 43  4.772989  6.073077 0.2824154 88.07622  8.9062406 63.00816 12.359357
## 44  5.939497  6.844354 0.3007872 92.26753  6.1445993 71.06692 11.683787
## 45  7.328563  3.149603 0.3706109 77.13117 18.5653449 50.78021 12.959840
## 46  7.739677  6.268119 0.1585402 93.37620  4.1878722 68.12849 17.209582
## 47  6.380285  4.810961 0.3252102 83.87497 12.9462299 60.13385 14.200342
##          S.K      S.Na    Ca_Mg     Mg_K      Ca_K   Ca.Mg_K      Ca_B
## 1   7.243108 1.3205465 4.207091 2.613154 10.679175 13.431593 22.911929
## 2   6.534641 3.0143130 4.650541 4.041579 23.226207 27.267786 22.103206
## 3  10.871190 1.3922997 3.952252 1.244362  4.686444  5.946376 13.358083
## 4   8.629590 1.9297157 4.150889 2.791340 13.325539 16.116879 28.283091
## 5   6.428829 0.9590380 6.157040 2.107519 13.378390 15.714203 31.356669
## 6   5.840890 1.1197015 3.475578 2.445354  8.259583 10.737634 44.860094
## 7  10.551657 2.5688854 4.155828 1.600995  5.741427  7.352359 15.303524
## 8   6.084893 1.7734148 4.019314 3.544209 11.898310 15.463167 21.599593
## 9  11.360041 2.4374106 2.313750 1.995038  4.270404  6.265442 10.596020
## 10 11.023580 1.5833355 3.124588 2.223052  5.858726  8.184432 23.369612
## 11  9.434368 1.4263307 3.967007 2.137465  8.895605 11.156403 24.313911
## 12  8.239967 1.8181514 4.796457 2.908115 12.660487 15.894671 36.037275
## 13  8.690495 0.9819731 5.507378 1.617921  8.436878 10.038924 20.342930
## 14  5.684595 2.6549998 3.934824 4.798546 16.256570 21.309211 21.154209
## 15  6.365412 1.7528772 2.472948 4.510470 10.428636 14.978127 17.942565
## 16  6.036071 1.3746619 4.352253 4.018939 13.878298 18.540743 13.619364
## 17  7.149819 1.7164996 2.674055 3.454300  8.380502 11.837539 18.141728
## 18  8.595033 1.7770319 3.356945 2.602765  8.178246 10.883756 16.317502
## 19  7.419013 1.0142213 2.997810 2.128698  5.570188  7.815801 18.490373
## 20  6.166221 1.3169163 6.277940 1.685047 10.524148 12.280181 17.651530
## 21  4.494838 1.3230160 3.138291 2.259452  7.410669  9.725518 13.253069
## 22  6.723682 1.1273306 5.885796 1.808105 11.602960 13.737836 25.690887
## 23  8.791739 1.6002877 3.642946 1.488717  5.048062  6.572472  9.805060
## 24  6.331221 1.1501939 2.347562 2.590489  5.527744  8.118233 33.369561
## 25 11.975529 2.5355867 3.083577 2.477477  6.803889  9.281366 23.038606
## 26  6.811436 1.3810430 5.179842 2.343526 13.718844 16.265023 26.836958
## 27  5.798944 1.5800767 2.882946 2.764143  7.418826 10.163052 15.783438
## 28  6.807680 1.2746707 6.590371 1.941682 12.042624 13.986523 24.694176
## 29  4.405980 1.2651621 5.664800 3.541532 15.819488 19.560620 23.554260
## 30  3.248339 1.8336048 3.471815 5.853562 20.444469 26.282011 16.708943
## 31  8.930915 0.8623909 4.888239 1.431617  6.061083  7.485572 22.908559
## 32  7.105849 2.0369629 6.183241 1.944085 11.218633 13.475778 16.078475
## 33  7.509215 1.7331667 3.883233 2.856109 10.373053 13.284027 20.374094
## 34  8.487468 5.6691042 4.073192 5.181092 16.955785 22.136876 26.551133
## 35  4.901099 1.6778094 3.563062 4.761034 17.480546 22.241580 27.203337
## 36 11.150428 1.4575350 3.665545 1.744570  5.916611  7.660675 14.552539
## 37 12.970238 1.3573717 3.305623 1.729761  4.951949  6.757195 18.355345
## 38 10.109411 1.2026532 3.925609 1.677665  6.286635  7.964299 13.797263
## 39  5.929483 4.7011573 8.279938 3.162612 30.496932 33.715224 28.081424
## 40  9.687765 1.7414743 2.844602 2.138461  5.969263  8.095845 19.664735
## 41  8.223951 2.3121699 4.329034 1.366540  5.999341  7.475064  7.764209
## 42 10.758324 1.9886135 4.343637 1.692927  6.630484  8.314953 17.833142
## 43 11.123505 0.9724024 5.550376 1.413229  7.516967  8.930196 17.187490
## 44  6.700554 1.0261327 6.525925 2.173082 12.742967 15.047349 31.925446
## 45 10.549304 1.0902017 4.505706 1.602982  6.758757  8.402251 11.359261
## 46  5.656838 1.2531240 4.024144 3.559467 16.478456 20.023376 35.109077
## 47  5.070922 1.6184154 4.901222 3.492617 15.869630 19.480282 20.422276
##        Fe_Mn     Fe_Zn Grupo
## 1   76.11250 159.48352     2
## 2   99.79597 224.82995     2
## 3  101.88795 348.51124     3
## 4   82.06782  44.59346     4
## 5  106.15040 192.95755     4
## 6  126.77638 463.21697     3
## 7   64.50734 279.89002     2
## 8  127.99761 231.20179     2
## 9  137.53683  58.32030     1
## 10 124.07392 283.95300     2
## 11  48.45113  31.38065     4
## 12  45.69982  39.99380     4
## 13  73.69159 121.38584     2
## 14  76.80013  37.19371     1
## 15 119.74120 291.30422     2
## 16  57.26523  61.45104     4
## 17 124.07656 235.46899     2
## 18  82.78848 271.42576     2
## 19  99.78590 406.21095     3
## 20  62.19801 181.54670     2
## 21 120.11062 543.41485     3
## 22 106.75522 252.41292     2
## 23 194.46502 604.75564     3
## 24 105.21371 770.00062     3
## 25  54.92473  30.35978     1
## 26  93.91041 269.76120     2
## 27  89.83600 155.79598     3
## 28  81.70473  53.13072     4
## 29  90.54170 174.79516     2
## 30 151.18552 266.55311     3
## 31  91.64701 328.82178     3
## 32  98.58501 104.90479     2
## 33 146.26137 291.09793     1
## 34  59.29421  60.45141     1
## 35 130.78752 387.17109     2
## 36  74.09232 119.03846     2
## 37  66.46467 266.70547     2
## 38 124.09790 355.08541     3
## 39  65.38077 113.22886     4
## 40  79.87481 175.23262     2
## 41  81.64860 164.86202     3
## 42  71.50533 112.37959     4
## 43  62.11595  70.69824     2
## 44  92.23563  85.98830     4
## 45 100.98522 248.48556     2
## 46  48.52643  74.34853     2
## 47 124.80835 229.29622     2

col=c("#00AFBB","#E7B800", "#FC4E07","#9E1FDE", "#9D9FDE")
library(ggplot2)
#
DF.cluster.tot$Grupo <- as.factor(DF.cluster.tot$Grupo)
ggplot(DF.cluster.tot, aes(x=Grupo, y=pH, colour=Grupo) ) +
  geom_jitter(alpha=0.1)+
  geom_boxplot(outlier.shape = NA, alpha=0.8)+
  scale_fill_manual(values = col) +
  scale_color_manual(values = col)+
  theme_classic()+
  theme(legend.position = "none")

#
DF.cluster.agru$Grupo <- as.factor(DF.cluster.agru$Grupo)
ggplot(DF.cluster.agru, aes(x=Grupo, y=pH, colour=Grupo) ) +
  geom_point(alpha=0.4)+
  geom_boxplot(outlier.shape = NA, alpha=0.4)+
  scale_fill_manual(values = col) +
  scale_color_manual(values = col)+
  theme_classic()+
  theme(legend.position = "none")

#

col <- c("#00AFBB", "#E7B800", "#FC4E07", "#9E1FDE", "#9D9FDE")

# Obtener los nombres de las variables
variables <- colnames(A)[-c(1:2)]
variables
##  [1] "ALT"     "TEM"     "pH"      "Aci"     "Al"      "CE"      "CIC"    
##  [8] "MO"      "N.tot"   "N.dis"   "P"       "P.dis"   "K"       "Ca"     
## [15] "Mg"      "S"       "Na"      "Fe"      "Cu"      "Mn"      "Zn"     
## [22] "B"       "S.Bas"   "S.Al"    "S.Ca"    "S.Mg"    "S.K"     "S.Na"   
## [29] "Ca_Mg"   "Mg_K"    "Ca_K"    "Ca.Mg_K" "Ca_B"    "Fe_Mn"   "Fe_Zn"
# Iterar a través de las columnas y crear los gráficos de caja
for (i in variables) {
  # Crear un gráfico de caja para la columna i
  p <- ggplot(DF.cluster.agru, aes(x = Grupo, y = .data[[i]], colour = Grupo)) +
    geom_jitter(alpha = 0.1) +
    geom_boxplot(alpha = 0.8)
  print(p)  # Agregar esta línea para imprimir el gráfico en cada iteración
}

#

names(DF.cluster.agru)
##  [1] "MUN"     "Rmed1"   "IDPM"    "ALT"     "TEM"     "pH"      "Aci"    
##  [8] "Al"      "CE"      "CIC"     "MO"      "N.tot"   "N.dis"   "P"      
## [15] "P.dis"   "K"       "Ca"      "Mg"      "S"       "Na"      "Fe"     
## [22] "Cu"      "Mn"      "Zn"      "B"       "S.Bas"   "S.Al"    "S.Ca"   
## [29] "S.Mg"    "S.K"     "S.Na"    "Ca_Mg"   "Mg_K"    "Ca_K"    "Ca.Mg_K"
## [36] "Ca_B"    "Fe_Mn"   "Fe_Zn"   "Grupo"
# Datos agrupados
ggbetweenstats(
  data = DF.cluster.agru,
  x = Grupo,
  y = Ca,
  type = "p",
  var.equal = F,
  mean.ci = F, 
  pairwise.comparisons = TRUE,
  p.adjust.method = "bonferroni",
  messages = F,
  notch = F
)

# Datos totales
ggbetweenstats(
  data = DF.cluster.tot,
  x = Grupo,
  y = Ca,
  type = "p",
  var.equal = F,
  mean.ci = F, 
  pairwise.comparisons = TRUE,
  p.adjust.method = "bonferroni",
  messages = F,
  notch = F
)