# csv file
jobs_gender <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-03-05/jobs_gender.csv")
jobs_gender$occupation
str_detect(jobs_gender$occupation, "Computer programmers")
sum(str_detect(jobs_gender$occupation, "Computer programmers"))
jobs_gender %>%
summarise(num_Computerprogrammers = sum(str_detect(occupation, "Computer programmers")))
jobs_gender %>%
mutate(col_computerprogrammers = str_extract(occupation, "Computer Programmers")) %>%
select(occupation, col_computerprogrammers) %>%
filter(!is.na(col_computerprogrammers))
jobs_gender %>%
mutate(col_ComputerProgramming = str_replace(occupation, "Computer Programmers", "Computer Programming")) %>%
select(occupation, col_ComputerProgramming)