data <- wooldridge::econmath
head(data,10)
## age work study econhs colgpa hsgpa acteng actmth act mathscr male calculus
## 1 23 15.0 10.0 0 3.4909 3.355 24 26 27 10 1 1
## 2 23 0.0 22.5 1 2.1000 3.219 23 20 24 9 1 0
## 3 21 25.0 12.0 0 3.0851 3.306 21 24 21 8 1 1
## 4 22 30.0 40.0 0 2.6805 3.977 31 28 31 10 0 1
## 5 22 25.0 15.0 1 3.7454 3.890 28 31 32 8 1 1
## 6 22 0.0 30.0 0 3.0555 3.500 25 30 28 10 1 1
## 7 22 20.0 25.0 1 2.1666 3.000 15 19 18 9 0 1
## 8 22 20.0 15.0 0 3.2544 3.770 28 30 32 9 1 1
## 9 22 28.0 7.0 0 3.1298 3.927 28 28 30 6 0 0
## 10 21 22.5 25.0 0 2.2424 2.770 18 19 17 9 0 1
## attexc attgood fathcoll mothcoll score
## 1 0 0 1 1 84.43
## 2 0 0 0 1 57.38
## 3 1 0 0 1 66.39
## 4 0 1 1 1 81.15
## 5 0 1 0 1 95.90
## 6 1 0 0 1 83.61
## 7 0 1 0 0 76.23
## 8 1 0 1 1 84.43
## 9 1 0 0 1 79.51
## 10 0 1 0 0 46.72
Logically, min value is 0 and max value is 100. However, in the data min is 19.53 and max is 98.44
min(data$score)
## [1] 19.53
max(data$score)
## [1] 98.44
MLR6 cannot hold for the error term u because the score doesn’t have normal distribution. The consequences is we cannot reject H0: B3=0
model <- lm( score~ colgpa+actmth+acteng, data= data)
summary(model)
##
## Call:
## lm(formula = score ~ colgpa + actmth + acteng, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.855 -6.215 0.444 6.812 32.670
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.17402 2.80044 5.776 1.09e-08 ***
## colgpa 12.36620 0.71506 17.294 < 2e-16 ***
## actmth 0.88335 0.11220 7.873 1.11e-14 ***
## acteng 0.05176 0.11106 0.466 0.641
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.35 on 810 degrees of freedom
## (42 observations deleted due to missingness)
## Multiple R-squared: 0.3972, Adjusted R-squared: 0.395
## F-statistic: 177.9 on 3 and 810 DF, p-value: < 2.2e-16
For the statement “You cannot trust p-value because clearly the error term in the equation cannot have a normal cannot have a normal distribution”:
I think it is not strong enough to make the certain inference without MLR6. However, with 4 assumption satisfied, we still can have unbiased estimators and. And with the additional of MLR.5, it is the best linear unbiased estimator with a finite sample property.