In Text Mining with R, Chapter 2 looks at Sentiment Analysis. In this assignment, you should start by getting the primary example code from chapter 2 working in an R Markdown document. You should provide a citation to this base code. You’re then asked to extend the code in two ways:
As usual, please submit links to both an .Rmd file posted in your GitHub repository and to your code on rpubs.com. You make work on a small team on this assignment.
Possibly needed Libraries
library(httr)
library(tidytext)
## Warning: package 'tidytext' was built under R version 4.3.2
library(readtext)
## Warning: package 'readtext' was built under R version 4.3.2
library(textdata)
## Warning: package 'textdata' was built under R version 4.3.2
##
## Attaching package: 'textdata'
## The following object is masked from 'package:httr':
##
## cache_info
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(stringr)
library(janeaustenr)
## Warning: package 'janeaustenr' was built under R version 4.3.2
library(tidyr)
library(ggplot2)
library(wordcloud)
## Warning: package 'wordcloud' was built under R version 4.3.2
## Loading required package: RColorBrewer
library(reshape2)
## Warning: package 'reshape2' was built under R version 4.3.2
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
In Text Mining with R, Chapter 2 deals with Sentiment Analysis. (https://www.tidytextmining.com/sentiment.html) It has 3 sentiment datasets; AFINN, bing, and nrc
get_sentiments("afinn")
## # A tibble: 2,477 × 2
## word value
## <chr> <dbl>
## 1 abandon -2
## 2 abandoned -2
## 3 abandons -2
## 4 abducted -2
## 5 abduction -2
## 6 abductions -2
## 7 abhor -3
## 8 abhorred -3
## 9 abhorrent -3
## 10 abhors -3
## # ℹ 2,467 more rows
get_sentiments("bing")
## # A tibble: 6,786 × 2
## word sentiment
## <chr> <chr>
## 1 2-faces negative
## 2 abnormal negative
## 3 abolish negative
## 4 abominable negative
## 5 abominably negative
## 6 abominate negative
## 7 abomination negative
## 8 abort negative
## 9 aborted negative
## 10 aborts negative
## # ℹ 6,776 more rows
get_sentiments("nrc")
## # A tibble: 13,872 × 2
## word sentiment
## <chr> <chr>
## 1 abacus trust
## 2 abandon fear
## 3 abandon negative
## 4 abandon sadness
## 5 abandoned anger
## 6 abandoned fear
## 7 abandoned negative
## 8 abandoned sadness
## 9 abandonment anger
## 10 abandonment fear
## # ℹ 13,862 more rows
Let’s perform sentiment analysis on the example cited- books written by Jane Austen
tidy_books <- austen_books() %>%
group_by(book) %>%
mutate(
linenumber = row_number(),
chapter = cumsum(str_detect(text,
regex("^chapter [\\divxlc]",
ignore_case = TRUE)))) %>%
ungroup() %>%
unnest_tokens(word, text)
#-------------------------------------------------------------------------------
nrc_joy <- get_sentiments("nrc") %>%
filter(sentiment == "joy")
#-------------------------------------------------------------------------------
tidy_books %>%
filter(book == "Emma") %>%
inner_join(nrc_joy) %>%
count(word, sort = TRUE)
## Joining with `by = join_by(word)`
## # A tibble: 301 × 2
## word n
## <chr> <int>
## 1 good 359
## 2 friend 166
## 3 hope 143
## 4 happy 125
## 5 love 117
## 6 deal 92
## 7 found 92
## 8 present 89
## 9 kind 82
## 10 happiness 76
## # ℹ 291 more rows
Now let’s examine the overall sentiment for her books using bing
ja_sentiments <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(book, index = linenumber %/% 80, sentiment) %>%
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
mutate(sentiment = positive - negative)
## Joining with `by = join_by(word)`
## Warning in inner_join(., get_sentiments("bing")): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 435434 of `x` matches multiple rows in `y`.
## ℹ Row 5051 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
ja_sentiments
## # A tibble: 920 × 5
## book index negative positive sentiment
## <fct> <dbl> <int> <int> <int>
## 1 Sense & Sensibility 0 16 32 16
## 2 Sense & Sensibility 1 19 53 34
## 3 Sense & Sensibility 2 12 31 19
## 4 Sense & Sensibility 3 15 31 16
## 5 Sense & Sensibility 4 16 34 18
## 6 Sense & Sensibility 5 16 51 35
## 7 Sense & Sensibility 6 24 40 16
## 8 Sense & Sensibility 7 23 51 28
## 9 Sense & Sensibility 8 30 40 10
## 10 Sense & Sensibility 9 15 19 4
## # ℹ 910 more rows
And visualize it
ggplot(ja_sentiments, aes(index, sentiment, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 3, scales = "free_x") +
ggtitle("Overall Sentiment of Jane Austen Books")
Comparing the three sentiment dictionaries
pride_prejudice <- tidy_books %>%
filter(book == "Pride & Prejudice")
pride_prejudice
## # A tibble: 122,204 × 4
## book linenumber chapter word
## <fct> <int> <int> <chr>
## 1 Pride & Prejudice 1 0 pride
## 2 Pride & Prejudice 1 0 and
## 3 Pride & Prejudice 1 0 prejudice
## 4 Pride & Prejudice 3 0 by
## 5 Pride & Prejudice 3 0 jane
## 6 Pride & Prejudice 3 0 austen
## 7 Pride & Prejudice 7 1 chapter
## 8 Pride & Prejudice 7 1 1
## 9 Pride & Prejudice 10 1 it
## 10 Pride & Prejudice 10 1 is
## # ℹ 122,194 more rows
And visualize them for Pride and Prejudice
afinn <- pride_prejudice %>%
inner_join(get_sentiments("afinn")) %>%
group_by(index = linenumber %/% 80) %>%
summarise(sentiment = sum(value)) %>%
mutate(method = "AFINN")
## Joining with `by = join_by(word)`
bing_and_nrc <- bind_rows(
pride_prejudice %>%
inner_join(get_sentiments("bing")) %>%
mutate(method = "Bing et al."),
pride_prejudice %>%
inner_join(get_sentiments("nrc") %>%
filter(sentiment %in% c("positive",
"negative"))
) %>%
mutate(method = "NRC")) %>%
count(method, index = linenumber %/% 80, sentiment) %>%
pivot_wider(names_from = sentiment,
values_from = n,
values_fill = 0) %>%
mutate(sentiment = positive - negative)
## Joining with `by = join_by(word)`
## Joining with `by = join_by(word)`
## Warning in inner_join(., get_sentiments("nrc") %>% filter(sentiment %in% : Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 215 of `x` matches multiple rows in `y`.
## ℹ Row 5178 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
bind_rows(afinn,
bing_and_nrc) %>%
ggplot(aes(index, sentiment, fill = method)) +
geom_col(show.legend = FALSE) +
facet_wrap(~method, ncol = 1, scales = "free_y")
get_sentiments("nrc") %>%
filter(sentiment %in% c("positive", "negative")) %>%
count(sentiment)
## # A tibble: 2 × 2
## sentiment n
## <chr> <int>
## 1 negative 3316
## 2 positive 2308
#-------------------------------------------------------------------------------
get_sentiments("bing") %>%
count(sentiment)
## # A tibble: 2 × 2
## sentiment n
## <chr> <int>
## 1 negative 4781
## 2 positive 2005
Most common positive and negative words
bing_word_counts <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
## Joining with `by = join_by(word)`
## Warning in inner_join(., get_sentiments("bing")): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 435434 of `x` matches multiple rows in `y`.
## ℹ Row 5051 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
bing_word_counts
## # A tibble: 2,585 × 3
## word sentiment n
## <chr> <chr> <int>
## 1 miss negative 1855
## 2 well positive 1523
## 3 good positive 1380
## 4 great positive 981
## 5 like positive 725
## 6 better positive 639
## 7 enough positive 613
## 8 happy positive 534
## 9 love positive 495
## 10 pleasure positive 462
## # ℹ 2,575 more rows
#-------------------------------------------------------------------------------
# Visualized
bing_word_counts %>%
group_by(sentiment) %>%
slice_max(n, n = 10) %>%
ungroup() %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(n, word, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(x = "Contribution to sentiment",
y = NULL)
Stop words we ignore
custom_stop_words <- bind_rows(tibble(word = c("miss"),
lexicon = c("custom")),
stop_words)
custom_stop_words
## # A tibble: 1,150 × 2
## word lexicon
## <chr> <chr>
## 1 miss custom
## 2 a SMART
## 3 a's SMART
## 4 able SMART
## 5 about SMART
## 6 above SMART
## 7 according SMART
## 8 accordingly SMART
## 9 across SMART
## 10 actually SMART
## # ℹ 1,140 more rows
Wordcloud to get most common words
library(wordcloud)
tidy_books %>%
anti_join(stop_words) %>%
count(word) %>%
with(wordcloud(word, n, max.words = 100))
## Joining with `by = join_by(word)`
#-------------------------------------------------------------------------------
# Reshaped
library(reshape2)
tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
acast(word ~ sentiment, value.var = "n", fill = 0) %>%
comparison.cloud(colors = c("red", "blue"),
max.words = 100)
## Joining with `by = join_by(word)`
## Warning in inner_join(., get_sentiments("bing")): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 435434 of `x` matches multiple rows in `y`.
## ℹ Row 5051 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
Now to perform additional analysis on another topic: Let’s use Project gutenbergr which has public books and authors. (https://github.com/ropensci/gutenbergr) (https://bookdown.org/Maxine/tidy-text-mining/the-gutenbergr-package.html)
devtools::install_github("ropensci/gutenbergr")
## Skipping install of 'gutenbergr' from a github remote, the SHA1 (f5ab38be) has not changed since last install.
## Use `force = TRUE` to force installation
Package is loaded, can be used
library(gutenbergr)
# List of all authors in package: https://www.gutenberg.org/ebooks/
# Lets use Charles Dickens: https://www.gutenberg.org/ebooks/author/37
dickens_books <- gutenberg_works(author == 'Dickens, Charles')
head(dickens_books)
## # A tibble: 6 × 8
## gutenberg_id title author gutenberg_author_id language gutenberg_bookshelf
## <int> <chr> <chr> <int> <chr> <chr>
## 1 46 A Christ… Dicke… 37 en "Children's Litera…
## 2 564 The Myst… Dicke… 37 en "Mystery Fiction"
## 3 580 The Pick… Dicke… 37 en "Best Books Ever L…
## 4 699 A Child'… Dicke… 37 en "Children's Histor…
## 5 700 The Old … Dicke… 37 en ""
## 6 730 Oliver T… Dicke… 37 en ""
## # ℹ 2 more variables: rights <chr>, has_text <lgl>
Tidying the data
tidy_dickens <- dickens_books %>%
gutenberg_download(meta_fields = 'title') %>%
group_by(gutenberg_id) %>%
mutate(linenumber = row_number()) %>%
ungroup() %>%
unnest_tokens(word, text)
## Determining mirror for Project Gutenberg from https://www.gutenberg.org/robot/harvest
## Using mirror http://aleph.gutenberg.org
## Warning: ! Could not download a book at http://aleph.gutenberg.org/1/0/2/1023/1023.zip.
## ℹ The book may have been archived.
## ℹ Alternatively, You may need to select a different mirror.
## → See https://www.gutenberg.org/MIRRORS.ALL for options.
Analyzing sentiment
lines_per_index <- 80
dickens_sentiment <- tidy_dickens %>%
inner_join(get_sentiments('bing'), by = 'word') %>%
count(title, index = linenumber %/% lines_per_index, sentiment) %>%
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
mutate(sentiment = positive - negative)
## Warning in inner_join(., get_sentiments("bing"), by = "word"): Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 64373 of `x` matches multiple rows in `y`.
## ℹ Row 1236 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
dickens_sentiment %>%
ggplot(aes(index, sentiment, fill = title)) +
geom_col(show.legend = FALSE) +
facet_wrap(~title, ncol = 10, scales = "free_x")
Let’s choose just one book and see how the 3 sentiment analyzers from before compare;
# A Christmas Carol
a_christmas_carol <- tidy_dickens %>%
filter(title == "A Christmas Carol in Prose; Being a Ghost Story of Christmas")
#-------------------------------------------------------------------------------
carol_afinn <- a_christmas_carol %>%
inner_join(get_sentiments('afinn'), by = 'word') %>%
group_by(index = linenumber %/% lines_per_index) %>%
summarize(sentiment = sum(value)) %>%
mutate(method = "AFINN")
carol_bing_and_nrc <- bind_rows(
a_christmas_carol %>%
inner_join(get_sentiments('bing'), by = 'word') %>%
mutate(method = "Bing et al."),
a_christmas_carol %>%
inner_join(get_sentiments('nrc') %>%
filter(sentiment %in% c('positive','negative')), by = 'word') %>%
mutate(method = 'NRC')
) %>%
count(method, index = linenumber %/% lines_per_index, sentiment) %>%
pivot_wider(names_from = sentiment, values_from = n, values_fill = 0) %>%
mutate(sentiment = positive - negative)
## Warning in inner_join(., get_sentiments("nrc") %>% filter(sentiment %in% : Detected an unexpected many-to-many relationship between `x` and `y`.
## ℹ Row 621 of `x` matches multiple rows in `y`.
## ℹ Row 4814 of `y` matches multiple rows in `x`.
## ℹ If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
bind_rows(carol_afinn, carol_bing_and_nrc) %>%
ggplot(aes(index, sentiment, fill = method)) +
geom_col(show.legend = FALSE) +
facet_wrap(~method, ncol = 1, scales = 'free_y')
Most common positive and negative words in our example
christmas_carol_word_counts <- a_christmas_carol %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
## Joining with `by = join_by(word)`
christmas_carol_word_counts
## # A tibble: 788 × 3
## word sentiment n
## <chr> <chr> <int>
## 1 good positive 67
## 2 like positive 61
## 3 great positive 36
## 4 merry positive 34
## 5 poor negative 30
## 6 cold negative 28
## 7 well positive 25
## 8 enough positive 23
## 9 dark negative 21
## 10 dead negative 18
## # ℹ 778 more rows
#-------------------------------------------------------------------------------
# Visualized
christmas_carol_word_counts %>%
group_by(sentiment) %>%
slice_max(n, n = 10) %>%
ungroup() %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(n, word, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(x = "Contribution to sentiment",
y = NULL)