# population
sm_demog %>%
filter(grepl("population", Description)) %>%
bind_rows(
al_demog %>% filter(grepl("population", Description))
) %>%
filter(Description != "Total population") %>%
ggplot(aes(x = NAME, y = estimate, fill = Description)) +
geom_bar(position="stack", stat="identity") +
theme_few() +
xlab("") +
labs(title = "Population Estimate - by sex") +
theme(legend.position = "bottom")
sorry about the rough category – need to think more carefully about how to represent this info – the census has a lot more fine grained data
sm_demog %>%
filter(grepl("B03002", variable)) %>%
bind_rows(
al_demog %>% filter(grepl("B03002", variable))
) %>%
filter(Description != "Total population") %>%
ggplot(aes(x = NAME, y = estimate, fill = Description)) +
geom_bar(position="stack", stat="identity") +
theme_few() +
xlab("") +
labs(title = "Population Estimate - by race and ethnicity ") +
theme(legend.position = "bottom")
“The Census Bureau typically calculates the MOE at a 90% confidence level for the ACS estimates. This means that if you were to draw many samples from the population and calculate the estimate and MOE for each sample, then approximately 90% of those intervals would contain the true population value.”
sm_demog %>%
filter(grepl("B01002_001", variable)) %>%
bind_rows(
al_demog %>% filter(grepl("B01002_001", variable))
) %>%
filter(Description != "Total population") %>%
ggplot(aes(x = NAME, y = estimate, ymin = estimate - moe, ymax = estimate + moe)) +
geom_pointrange() +
theme_few() +
xlab("") +
labs(title = "Population Estimate - age")
bind_rows(
sm_housing, al_housing
) %>%
filter(variable == "B25001_001") %>%
left_join(bind_rows(
sm_demog, al_demog
) %>% filter(variable == "B01001_001") %>%
rename(population_estimate = estimate) %>% select(NAME, population_estimate), by = "NAME") %>%
mutate(
housing_to_person_ratio = estimate / population_estimate
) %>%
select(NAME, estimate, population_estimate, housing_to_person_ratio) %>%
rename(`County Name` = NAME,
`Housing units estimate` = estimate,
`Population estimate` = population_estimate,
`Housing-to-person Ratio` = housing_to_person_ratio) %>%
kbl() %>%
kable_styling()
County Name | Housing units estimate | Population estimate | Housing-to-person Ratio |
---|---|---|---|
San Mateo County, California | 278756 | 765623 | 0.3640904 |
Alameda County, California | 605767 | 1661584 | 0.3645720 |
bind_rows(
sm_housing, al_housing
) %>%
filter(grepl("B25002", variable)) %>%
filter(!grepl("001", variable)) %>%
ggplot(aes(x = NAME, y = estimate, fill = Description)) +
geom_bar(position="fill", stat="identity") +
theme_few() +
xlab("") +
labs(title = "Housing status - By occupancy") +
theme(legend.position = "bottom")
bind_rows(
sm_housing, al_housing
) %>%
filter(grepl("B25004", variable)) %>%
filter(!grepl("001", variable)) %>%
ggplot(aes(x = NAME, y = estimate, fill = Description)) +
geom_bar(position="fill", stat="identity") +
theme_few() +
xlab("") +
labs(title = "Vacancy status - By type") +
theme(legend.position = "bottom")
bind_rows(
sm_housing, al_housing
) %>%
filter(grepl("B25024", variable)) %>%
filter(!grepl("001", variable)) %>%
ggplot(aes(x = NAME, y = estimate, fill = Description)) +
geom_bar(position="fill", stat="identity") +
theme_few() +
xlab("") +
labs(title = "Housing structure - By housing type") +
theme(legend.position = "bottom")