library(tidyquant)
library(tidyverse)
jago_stock <- tq_get("ARTO.JK",
get = "stock.prices",
from = "2022-09-01")
lp_jago <- NULL
for (i in seq_len(length(jago_stock$close) - 1)) {
lp_jago[i + 1] <- - (jago_stock$close[i + 1] - jago_stock$close[i])
}
ggplot(as_tibble(lp_jago)) +
geom_density(aes(x = lp_jago))
## Warning: Removed 1 rows containing non-finite values (`stat_density()`).
set.seed(211)
fitted_df <- tibble(lp_norm = rnorm(length(lp_jago), AVERAGE(lp_jago), STDEV(lp_jago)), lp_jago)
fitted_df <- fitted_df |>
pivot_longer(cols = 1:2,
names_to = "dist",
values_to = "lp")
ggplot(fitted_df, aes(x = lp, colour = dist)) +
geom_density()
## Warning: Removed 1 rows containing non-finite values (`stat_density()`).
set.seed(211)
simulated_norm <- rnorm(10000, AVERAGE(lp_jago), STDEV(lp_jago))
ggplot(as_tibble(simulated_norm)) +
geom_density(aes(x = simulated_norm))
var_jago <- quantile(simulated_norm, probs = 0.95)
var_jago
## 95%
## 304.7276