Library:
> # install.packages("knitr")
> # install.packages("rmarkdown")
> # install.packages("prettydoc")
> # install.packages("equatiomatic")
Penyakit kardiovaskular adalah penyebab utama kematian di seluruh dunia. Ini mencakup berbagai kondisi seperti penyakit jantung koroner, stroke, dan penyakit pembuluh darah lainnya. Studi epidemiologi menunjukkan bahwa banyak faktor berkontribusi terhadap risiko seseorang terkena penyakit kardiovaskular. Beberapa faktor ini termasuk tekanan darah, kolesterol, obesitas, merokok, minum minuman keras, umur, dan banyak lainnya.
Identifikasi faktor-faktor risiko yang berkontribusi terhadap penyakit kardiovaskular adalah langkah baik dalam upaya pencegahan dan pengelolaan penyakit ini. Memahami faktor-faktor ini memungkinkan untuk mengembangkan strategi pencegahan yang lebih efektif dan merancang program intervensi yang tepat.
Dalama penelitian kasus ini akan menggunakan metode PCA. Principal Component Analysis (PCA) adalah teknik statistik yang digunakan untuk mereduksi dimensi data, mengidentifikasi pola, dan mengidentifikasi hubungan antarvariabel. Dalam konteks penyakit kardiovaskular, PCA dapat membantu mengidentifikasi faktor-faktor yang paling kuat mempengaruhi risiko penyakit dan hubungan antara variabel-variabel ini.
Tujuan dari penelitian ini adalah untuk menjalankan analisis PCA pada data faktor risiko penyakit kardiovaskular. PCA akan membantu kita mengidentifikasi faktor-faktor utama yang berkorelasi dengan risiko penyakit kardiovaskular dan memberikan pemahaman lebih dalam tentang bagaimana variabel-variabel ini berinteraksi.
Principal Component Analysis (PCA) atau disebut Analisis Komponen Utama (AKU) adalah suatu teknik statistik multivariat yang secara linear mengubah bentuk sekumpulan variabel asli menjadi kumpulan variabel yang lebih kecil yang tidak berkorelasi yang dapat mewakili informasi dari kumpulan variabel asli (Radiarta, dkk. 2013). Metode PCA menjadi efektif saat dihadapkan pada data dengan jumlah variabel yang besar dan memiliki korelasi yang signifikan antara variabel-variabelnya. Metode analisis komponen utama ini didasarkan pada perhitungan nilai eigen dan vektor eigen yang menyatakan penyebaran data dari suatu dataset. Nilai eigen mengukur sejauh mana komponen utama menjelaskan variasi dalam data, sedangkan vektor eigen menggambarkan arah komponen utama dalam ruang data asli. Menurut Johnson dan Wichern, dengan menggunakan PCA, variabel yang tadinya sebanyak n variabel akan direduksi menjadi k variabel baru (principal component) dengan jumlah k lebih sedikit dari n dan dengan hanya menggunakan k principal component akan menghasilkan nilai yang sama dengan menggunakan n variabel. Untuk penentuan banyaknya principal component yang digunakan terdapat 2 cara:
\[ \frac {\left(\sum_{i=1}^{k} \lambda_i\right)} {\left(\sum_{i=1}^{p} \lambda_i\right)} \geq 0.75 \]
Terdapat beberapa tujuan dari dilakukannya Principal Component Analysis (PCA), diantaranya:
Berikut adalah beberapa algoritma dan teknik terkait Principal Component Analysis (PCA):
Data yang digunakan berasal dari kaggle yang merupakan kumpulan data 462 individu yang memiliki resiko penyakit kardiovaskular di Western Cape, Afrika Selatan. Namun, dalam penelitian mengenai faktor-faktor yang menyebabkan seseorang terkena penyakit kardiovaskular ini hanya digunakan 150 sampel. Dataset yang digunakan mengandung 9 variabel, diantaranya:
X1 sbp (Systolic Blood Pressure)
X2 tobacco (Cumulative tobacco (kg))
X3 ldl (Low density lipoprotein cholesterol)
X4 adiposity
X5 typea (Type A behavior)
X6 obesity
X7 alcohol (Current alcohol consumption)
X8 age (Age on onset)
X9 chd (response, cardiovaskular disease)
> library(readxl)
> library(corrplot)
> library(factoextra)
> library(FactoMineR)
> library(readxl)
> kardiovaskular = read_excel("C:/Users/user/Documents/AA/kardiovaskular.xlsx",
+ col_types = c("numeric", "numeric", "numeric",
+ "numeric", "numeric", "text",
+ "numeric", "numeric", "numeric",
+ "numeric", "numeric"))
> kardiovaskular = subset(kardiovaskular, select = -c(1,6))
> kardiovaskular = head(kardiovaskular, 150)
> View(kardiovaskular)
> summary(kardiovaskular)
> library(corrplot)
> korelasi = cor(kardiovaskular)
> corrplot(korelasi, method="number")
> sc = scale(kardiovaskular)
> sc
>
> s = cov(sc)
> s_eigen = eigen(s)
> s_eigen
> plot(s_eigen$values, xlab="Eigenvalue Number",
+ ylab="Eigenvalue Size", main="Scree Plot")
> lines(s_eigen$values)
> for (eg in s_eigen$values)
+ {
+ print(eg/sum(s_eigen$values))
+ }
> s_eigen$vectors[,1:5]
> kor_eigen = eigen(korelasi)
> kor_eigen
> plot(kor_eigen$values, xlab="Eigenvalue Number",
+ ylab="Eigenvalue Size", main="Scree Plot")
> lines(kor_eigen$values)
> for (cor in kor_eigen$values)
+ {
+ print(cor/sum(kor_eigen$values))
+ }
> kor_eigen$vectors[,1:5]
> pca1 = prcomp(x=kardiovaskular, scale=T, center=T)
> pca1
> print(pca1$rotation[,1:3],digits=4)
> summary(pca1)
> library(factoextra)
> library(FactoMineR)
> pca2 = princomp(x=kardiovaskular, cor=T)
> summary(pca2)
> print(pca2$loadings, digits=4, cutoff=0.1)
> plot(pca2)
> pca_contrib = get_pca_var(pca2)
> pca_contrib$contrib
> pca3 = PCA(kardiovaskular, scale.unit=T, graph=FALSE)
> pca3$eig
> fviz_pca_var(pca3, col.var="contrib", gradient.cols=c("#00AFBB",
+ "#E7B800","#FC4E07"),
+ axes=c(1,2), repel=T)
> fviz_pca_ind(pca3, title="Individual ~ PCA", axes=c(1,2))
> fviz_pca_biplot(pca3, axes=c(1,2), repel=TRUE, col.var = "#2E9FDF",
+ col.ind = "#696969")
tibble [150 × 9] (S3: tbl_df/tbl/data.frame)
$ sbp : num [1:150] 160 144 118 170 134 132 142 114 114 132 ...
$ tobacco : num [1:150] 12 0.01 0.08 7.5 13.6 6.2 4.05 4.08 0 0 ...
$ ldl : num [1:150] 5.73 4.41 3.48 6.41 3.5 6.47 3.38 4.59 3.83 5.8 ...
$ adiposity: num [1:150] 23.1 28.6 32.3 38 27.8 ...
$ typea : num [1:150] 49 55 52 51 60 62 59 62 49 69 ...
$ obesity : num [1:150] 25.3 28.9 29.1 32 26 ...
$ alcohol : num [1:150] 97.2 2.06 3.81 24.26 57.34 ...
$ age : num [1:150] 52 63 46 58 49 45 38 58 29 53 ...
$ chd : num [1:150] 1 1 0 1 1 0 0 1 0 1 ...
sbp tobacco ldl adiposity
Min. :103.0 Min. : 0.000 Min. : 1.070 Min. : 9.39
1st Qu.:121.2 1st Qu.: 0.325 1st Qu.: 3.380 1st Qu.:19.45
Median :131.0 Median : 2.560 Median : 4.520 Median :25.66
Mean :133.7 Mean : 3.917 Mean : 4.958 Mean :25.17
3rd Qu.:142.0 3rd Qu.: 5.997 3rd Qu.: 6.082 3rd Qu.:30.90
Max. :206.0 Max. :31.200 Max. :15.330 Max. :42.49
typea obesity alcohol age
Min. :13.00 Min. :17.75 Min. : 0.000 Min. :15.00
1st Qu.:49.00 1st Qu.:22.88 1st Qu.: 0.680 1st Qu.:32.00
Median :55.00 Median :25.80 Median : 6.575 Median :45.00
Mean :54.68 Mean :26.16 Mean : 14.887 Mean :42.91
3rd Qu.:61.00 3rd Qu.:28.72 3rd Qu.: 21.575 3rd Qu.:54.75
Max. :78.00 Max. :46.58 Max. :108.000 Max. :64.00
chd
Min. :0.00
1st Qu.:0.00
Median :0.00
Mean :0.38
3rd Qu.:1.00
Max. :1.00
Berdasarkan data yang digunakan terlihat bahwa setiap variabel memiliki rentang nilai yang jauh, sehingga akan diperlukan standarisasi.
Dari ouput yang telah disajikan di atas dapat diketahui nilai korelasi
antar variabel dalam dataset. Terdapat korelasi positif moderat dengan
nilai korelasi antara 0.40 hingga 0.70, seperti pada antara variabel
X1 dan X8, X2 dan X8,
X3 dan X4, dan lain-lain. Terdapat korelasi
positif lemah dengan nilai korelasi antara 0.20 hingga 0.40, seperti
pada antara variabel X1 dan X2, X1 dan
X4, X1 dan X7, dan lain-lain. Terdapat
korelasi positif sangat lemah dengan nilai korelasi antara 0 hingga
0.20, seperti pada antara variabel X1 dan X3,
X1 dan X5, X1 dan X6, dan
lain-lain. Selain itu, terdapat juga korelasi negatif yang sangat lemah
dengan nilai korelasi antara -0.20 hingga 0, seperti X3 dan
X7, X4 dan X5, dan lain-lain.
sbp tobacco ldl adiposity typea
[1,] 1.54388947 1.731302084 0.34318888 -0.26642955 -0.59773052
[2,] 0.60392632 -0.836884779 -0.24350943 0.44394593 0.03367496
[3,] -0.92351379 -0.821891194 -0.65686507 0.91796011 -0.28202778
[4,] 2.13136643 0.767428783 0.64542741 1.66062538 -0.38726202
[5,] 0.01644936 2.074012591 -0.64797570 0.33674381 0.55984619
[6,] -0.10104604 0.488976496 0.67209552 1.42555568 0.77031468
[7,] 0.48643093 0.028459252 -0.70131191 -1.15891947 0.45461194
[8,] -1.15850458 0.034885074 -0.16350512 -1.36557416 0.77031468
[9,] -1.15850458 -0.839026720 -0.50130112 -0.74561010 -0.59773052
[10,] -0.10104604 -0.839026720 0.37430167 0.74747000 1.50695440
[11,] 4.24628351 0.446137682 -0.89243333 0.91666852 1.82265714
[12,] 0.01644936 2.181109625 -0.23017538 -0.35942416 1.08601742
[13,] -0.92351379 -0.839026720 -1.36801454 -1.95324842 0.45461194
[14,] -0.10104604 -0.839026720 -1.37245922 -1.02846870 -0.59773052
[15,] -1.27599997 1.227946027 -1.18578249 -1.02976029 -0.07155929
[16,] -0.98226149 -0.511309797 -1.11911222 0.48786005 -2.07100996
[17,] -0.80601840 0.767428783 4.61008573 -0.40979624 0.55984619
[18,] 0.72142171 1.410010984 1.48102804 1.31577038 2.45406261
[19,] 1.42639407 -0.282122145 1.11211925 1.14915504 0.66508043
[20,] -0.57102761 2.159690218 0.56542310 1.39326589 -1.01866750
[21,] -1.62848615 -0.494174272 -1.43024012 -1.66005708 2.03312563
[22,] -0.10104604 0.853106410 -0.93688017 0.17142006 -0.38726202
[23,] 0.95641250 -0.774768499 0.63209336 1.13882230 0.77031468
[24,] 0.25144014 -0.710510279 -0.51019049 0.45040389 -0.07155929
[25,] 0.48643093 3.059305299 -0.27462222 -0.10239740 0.66508043
[26,] -0.57102761 0.017749548 3.31668263 0.79009252 -0.07155929
[27,] -0.92351379 0.446137682 2.08550510 1.12848957 0.55984619
[28,] 0.66267402 1.110139290 0.12539936 0.30703720 0.45461194
[29,] 0.60392632 0.037027014 0.26318457 0.80430003 0.55984619
[30,] 0.72142171 -0.839026720 0.73876578 0.06680113 0.55984619
[31,] 0.13394475 -0.299257671 -0.44796491 0.05905158 -0.38726202
[32,] 1.42639407 -0.620548771 0.60986994 -0.16697699 1.19125166
[33,] -0.68852300 0.574654122 0.27651862 1.39197429 -0.17679353
[34,] -0.45353222 1.035171366 0.69876362 1.14269708 -0.59773052
[35,] 0.83891711 0.339040649 0.95211062 0.01772064 0.13890920
[36,] -0.68852300 0.073440006 -0.23017538 -1.56706248 0.24414345
[37,] 0.36893553 -0.003669858 1.04989368 -0.01586075 -0.80819901
[38,] -1.39349536 0.154833751 -0.18128385 0.68289041 -0.70296476
[39,] -0.21854143 -0.839026720 -0.95021422 -0.71590349 1.61218865
[40,] 0.13394475 1.559946831 0.37874636 0.86242166 2.13835988
[41,] -0.92351379 -0.779052381 0.37430167 1.10136614 0.55984619
[42,] 0.60392632 -0.830458957 -0.70131191 -0.20184996 -2.59718119
[43,] -0.80601840 -0.839026720 -1.72803396 -1.18216812 -0.80819901
[44,] -0.21854143 -0.279980205 -0.99466107 -0.28192865 -0.38726202
[45,] -1.15850458 -0.839026720 -0.87465459 -1.99328776 -0.07155929
[46,] -0.33603682 0.156975692 -0.73242470 -0.31421845 0.77031468
[47,] 1.66138486 0.746009376 1.59658983 -0.06752442 0.98078317
[48,] -1.04100918 -0.429916052 1.15656610 0.16496210 -0.28202778
[49,] -1.15850458 -0.839026720 -1.34134643 -1.82796401 -0.07155929
[50,] -0.45353222 -0.025089265 -0.47907770 0.85467211 0.24414345
[51,] -0.68852300 -0.839026720 0.35207825 0.73972044 -0.91343325
[52,] 0.01644936 -0.303541552 -0.57686075 0.73972044 -0.28202778
[53,] 1.07390789 -0.646252059 1.84993683 0.65318380 0.13890920
[54,] 0.01644936 0.891661342 -1.51468912 -0.99101254 0.13890920
[55,] 1.30889868 -0.196444519 -1.39468265 0.30703720 0.55984619
[56,] 1.07390789 0.443995742 1.34768752 0.94379195 -1.01866750
[57,] -0.92351379 -0.839026720 -0.87465459 -1.16279425 -0.59773052
[58,] -0.45353222 0.253363022 -0.88798864 0.17142006 0.03367496
[59,] -1.80472924 -0.832600898 -0.33240312 -0.80244014 -0.70296476
[60,] -0.74727070 -0.667671466 0.14762278 -0.80373173 -0.80819901
[61,] 0.48643093 -0.779052381 -1.40357201 -0.53508064 0.24414345
[62,] 0.25144014 -0.592703543 0.05872909 0.34836813 0.66508043
[63,] 1.07390789 1.324333357 -0.11016891 -0.06752442 1.08601742
[64,] 0.36893553 -0.742639389 -0.29240096 -0.10885536 -1.43960448
[65,] -0.21854143 -0.839026720 -1.39468265 -1.90158475 0.24414345
[66,] 0.13394475 0.737441613 -1.23022933 0.37936634 0.66508043
[67,] -0.57102761 0.193388683 -0.76353749 -0.52603950 -0.70296476
[68,] -1.27599997 -0.751207152 -1.36801454 -1.92225021 -1.65007298
[69,] -0.92351379 0.116278819 1.02767025 0.51110870 -0.70296476
[70,] -0.68852300 -0.839026720 -0.70575659 -1.17183539 1.29648591
[71,] -0.92351379 -0.839026720 -0.57241606 -1.68459733 -0.38726202
[72,] -0.21854143 -0.470612924 -1.02132917 -1.91062589 1.40172016
[73,] -0.21854143 0.360460055 -0.70575659 -0.04815054 0.34937770
[74,] -0.45353222 -0.819749253 0.03206099 -1.53735586 -0.49249627
[75,] -0.33603682 -0.753349093 0.53875499 0.15204618 0.98078317
[76,] 0.13394475 -0.839026720 -0.37240528 -1.00134528 -0.28202778
[77,] 0.01644936 -0.839026720 0.41874852 0.73197089 -0.59773052
[78,] 0.36893553 -0.710510279 0.26762925 1.06132680 0.34937770
[79,] 2.01387104 0.124846582 0.76543388 0.42586364 -1.22913599
[80,] -1.51099075 -0.753349093 0.42319320 -0.29096980 0.24414345
[81,] -1.15850458 -0.196444519 0.92544252 -0.32713437 0.03367496
[82,] 0.36893553 0.904512986 -0.01238585 2.23667532 -0.17679353
[83,] 0.83891711 0.189104802 0.50319752 1.46946980 0.87554893
[84,] 0.83891711 1.774140897 -0.51907985 1.15948777 0.24414345
[85,] -0.33603682 -0.839026720 -1.12355691 -1.55285497 0.87554893
[86,] -0.21854143 -0.719078042 -0.73686938 0.73455408 -0.59773052
[87,] -0.45353222 1.410010984 -0.20795196 -1.01296960 1.29648591
[88,] 0.36893553 -0.839026720 0.05428441 0.27862218 -1.43960448
[89,] -0.45353222 -0.646252059 0.30318673 -0.95484797 0.03367496
[90,] -0.68852300 -0.684806991 -0.40796275 0.93087603 -2.17624420
[91,] -1.04100918 -0.618406831 -0.94576954 -1.84992107 -1.01866750
[92,] -0.80601840 -0.046508672 -0.41685212 1.87115484 0.66508043
[93,] 0.54517862 -0.740497449 -1.13689096 -0.29742776 0.77031468
[94,] -0.92351379 0.017749548 -0.44796491 -0.80244014 -0.07155929
[95,] 3.54131115 -0.474896806 0.60542525 1.09749137 -0.80819901
[96,] 0.01644936 -0.196444519 -0.26128817 -0.27159592 0.13890920
[97,] 0.25144014 -0.376367535 -0.02571991 -0.04427577 -1.65007298
[98,] 0.13394475 -0.839026720 0.01872694 0.31091197 -0.59773052
[99,] -0.68852300 -0.153605705 2.82776736 1.31577038 0.03367496
[100,] 1.77888025 1.731302084 -0.46574364 -0.72106986 -0.38726202
[101,] 0.13394475 0.874525816 1.28546194 -0.17601813 -0.38726202
[102,] 1.89637564 -0.824033135 -0.41240743 0.53177417 -0.17679353
[103,] -0.92351379 -0.839026720 -0.27462222 0.63897629 -0.28202778
[104,] -0.33603682 -0.749065211 -0.15906043 0.19466871 -1.43960448
[105,] -0.92351379 -0.517735619 0.18762494 0.08617500 0.98078317
[106,] 1.42639407 -0.067928078 -0.88354396 0.63768469 0.87554893
[107,] -1.51099075 -0.517735619 -0.27906691 -0.02361030 1.19125166
[108,] 2.13136643 0.788848189 0.24096115 1.63479355 -1.33437024
[109,] -0.92351379 -0.624832653 0.35652294 -0.39688032 0.77031468
[110,] -0.57102761 -0.839026720 -0.85243117 -1.01296960 -0.59773052
[111,] -1.15850458 -0.839026720 1.35657689 -0.45629354 1.19125166
[112,] 2.01387104 1.088719883 1.58770047 -0.08948148 1.50695440
[113,] 0.01644936 -0.410638586 -0.57686075 -1.35394983 -0.28202778
[114,] 2.36635722 -0.839026720 1.55658768 1.28218899 -2.07100996
[115,] -1.04100918 5.843828170 -0.79465028 -1.31520208 -0.80819901
[116,] -0.33603682 -0.839026720 2.49886073 0.85725530 -0.91343325
[117,] 0.36893553 0.124846582 -0.16350512 -0.92514136 0.87554893
[118,] 1.19140329 -0.689090873 0.42319320 -0.02231871 -4.38616337
[119,] 0.95641250 -0.089347485 0.90321910 0.02805337 -0.49249627
[120,] -0.21854143 -0.839026720 -0.46129896 0.04871884 1.40172016
[121,] -0.33603682 -0.410638586 0.52097625 -0.49891607 1.19125166
[122,] -0.80601840 -0.539155026 0.57431246 -0.60740978 0.55984619
[123,] -0.80601840 -0.839026720 0.02317162 0.12363117 0.98078317
[124,] 0.25144014 0.124846582 -0.93688017 0.63768469 0.03367496
[125,] 1.13265559 0.831687003 -0.44352022 0.07196749 -0.07155929
[126,] -0.62977531 1.003042256 2.76109710 1.30543764 1.61218865
[127,] 0.83891711 0.026317311 -0.43018617 -0.57899476 0.55984619
[128,] 0.13394475 0.009181786 -0.97688233 0.65964175 -0.49249627
[129,] 0.01644936 1.045881070 1.08989583 0.21533418 -2.07100996
[130,] 1.07390789 1.769857016 -0.40796275 1.63479355 0.87554893
[131,] 1.42639407 2.052593185 0.03650567 0.72551293 -0.07155929
[132,] -0.10104604 -0.410638586 -0.83465243 1.31964515 -1.01866750
[133,] 0.01644936 -0.517735619 -0.54574796 -0.47050105 -1.43960448
[134,] 0.48643093 0.754577139 0.24985052 1.13623912 -0.80819901
[135,] 0.01644936 0.446137682 -0.73686938 0.42328046 1.08601742
[136,] -0.68852300 0.056304480 1.81882404 0.52919098 -1.12390175
[137,] -1.04100918 -0.260702739 -0.56352670 -1.50506607 0.03367496
[138,] -0.33603682 -0.731929686 -0.55908201 -1.59676909 1.19125166
[139,] -0.80601840 -0.839026720 -0.56797138 -1.67038982 -0.38726202
[140,] -0.57102761 -0.839026720 -0.44796491 1.44363796 0.45461194
[141,] 1.54388947 2.159690218 0.41874852 1.54309053 0.34937770
[142,] -0.21854143 -0.243567213 -0.03016459 -2.03849347 0.87554893
[143,] -0.33603682 -0.239283332 0.25429520 -1.40561350 0.98078317
[144,] -0.21854143 0.124846582 0.40096978 1.58312988 0.66508043
[145,] -1.45224306 -0.581993839 0.52542094 0.52789939 -0.80819901
[146,] 0.60392632 -0.839026720 -0.49685643 -0.83343834 0.13890920
[147,] -0.92351379 -0.614122949 -0.79909496 -1.57481203 -0.91343325
[148,] 0.13394475 -0.097915248 0.63209336 0.91408533 -1.22913599
[149,] 0.13394475 -0.517735619 0.48986346 0.17658643 -0.07155929
[150,] -0.57102761 2.480981318 0.04095036 -0.14372833 -0.91343325
obesity alcohol age chd
[1,] -0.1871027961 3.94949329 0.661775355 1.2730679
[2,] 0.5936464232 -0.61546116 1.462310058 1.2730679
[3,] 0.6526946835 -0.53149364 0.225120062 -0.7802674
[4,] 1.2759818754 0.44972686 1.098430647 1.2730679
[5,] -0.0362016865 2.03695299 0.443447708 1.2730679
[6,] 1.0091712178 -0.03584534 0.152344180 -0.7802674
[7,] -1.1690534949 -0.58859156 -0.357086995 -0.7802674
[8,] -0.6660497962 -0.39186764 1.098430647 1.2730679
[9,] -0.2833295906 -0.59482914 -1.012069934 -0.7802674
[10,] 0.8648310260 -0.71430294 0.734551237 1.2730679
[11,] 0.1431300670 1.97553674 1.243982411 1.2730679
[12,] -0.6704237414 -0.71430294 -0.211535231 1.2730679
[13,] -1.0028435771 -0.71430294 -1.885380519 -0.7802674
[14,] -0.5523272208 -0.66776094 -2.030932283 -0.7802674
[15,] -0.5741969468 -0.68167555 0.734551237 -0.7802674
[16,] -0.0580714125 0.72657979 0.225120062 -0.7802674
[17,] -0.1849158235 0.94057702 0.443447708 -0.7802674
[18,] 1.4378178480 -0.04784070 0.734551237 1.2730679
[19,] 0.6876862451 1.84214833 1.389534176 1.2730679
[20,] 0.8604570808 -0.71430294 1.171206529 1.2730679
[21,] -1.1449967963 -0.07279105 -1.667052873 1.2730679
[22,] 0.0009768478 0.51929996 0.079568298 -0.7802674
[23,] -0.3314429879 -0.71430294 0.516223590 -0.7802674
[24,] 0.5564678889 -0.64425003 1.098430647 -0.7802674
[25,] 0.0075377656 -0.71430294 0.516223590 -0.7802674
[26,] -0.6398061249 -0.61546116 -0.065983466 1.2730679
[27,] 2.7653102181 -0.71430294 0.370671826 -0.7802674
[28,] -1.1362489058 0.32209623 1.316758294 1.2730679
[29,] 0.7161168890 -0.44800593 0.952878883 -0.7802674
[30,] 0.4186886150 -0.31941566 1.462310058 1.2730679
[31,] -0.9394213716 -0.71430294 0.152344180 1.2730679
[32,] -0.8803731113 0.48475332 0.225120062 1.2730679
[33,] 0.4186886150 -0.11213583 1.171206529 1.2730679
[34,] 0.8954486424 -0.71430294 -0.138759349 1.2730679
[35,] 0.8057827657 -0.54156974 0.370671826 -0.7802674
[36,] -1.4577338785 1.63630794 -1.084845816 1.2730679
[37,] 0.2634135601 1.04997471 -0.793742287 -0.7802674
[38,] 1.0376018616 0.01597462 0.225120062 -0.7802674
[39,] -0.2833295906 -0.71430294 -1.012069934 -0.7802674
[40,] 0.3333966834 0.38639136 1.098430647 1.2730679
[41,] 1.0550976425 -0.71430294 -0.138759349 1.2730679
[42,] -0.5260835496 -0.49070941 -0.939294052 -0.7802674
[43,] -0.8759991661 -0.71430294 -2.030932283 -0.7802674
[44,] 0.0294074916 -0.07279105 0.588999472 1.2730679
[45,] 4.4667749033 -0.71430294 -1.885380519 -0.7802674
[46,] -0.7010413578 -0.68983240 0.370671826 -0.7802674
[47,] -0.0974369194 -0.43313168 1.098430647 1.2730679
[48,] 0.8429613000 -0.54156974 -0.720966405 1.2730679
[49,] -1.3090197415 1.15601370 -1.958156401 -0.7802674
[50,] 0.9566838753 -0.71430294 -0.939294052 -0.7802674
[51,] 0.6242640396 -0.51709921 -0.065983466 -0.7802674
[52,] 0.2262350259 0.42093800 0.443447708 -0.7802674
[53,] 0.5433460533 -0.69654980 -0.065983466 1.2730679
[54,] -0.7666505359 2.48366022 -0.866518170 1.2730679
[55,] -0.4910919879 1.87669497 0.734551237 -0.7802674
[56,] 0.0906427245 4.09919539 0.370671826 -0.7802674
[57,] -0.5085877688 -0.55980269 -1.084845816 -0.7802674
[58,] -0.1389893988 -0.12221193 -0.357086995 1.2730679
[59,] -0.7032283304 -0.58859156 -1.812604637 -0.7802674
[60,] -0.7972681524 -0.71430294 1.316758294 -0.7802674
[61,] -0.5479532756 -0.57371731 -0.720966405 -0.7802674
[62,] -0.1105587550 -0.60202636 0.079568298 -0.7802674
[63,] 0.0119117108 0.46268185 1.025654765 -0.7802674
[64,] 0.2349829163 -0.23064999 -0.357086995 -0.7802674
[65,] -0.8934949469 -0.61546116 -1.885380519 -0.7802674
[66,] -0.2527119742 2.24663189 0.807327119 -0.7802674
[67,] 0.5105414643 -0.31029919 -0.939294052 -0.7802674
[68,] -0.8913079743 0.29234773 -1.157621698 -0.7802674
[69,] 0.6242640396 -0.18122911 -0.720966405 -0.7802674
[70,] -1.1143791798 -0.71430294 -0.793742287 1.2730679
[71,] -1.5320909470 -0.68551407 -2.030932283 -0.7802674
[72,] -1.8251452758 -0.18170892 -1.230397580 -0.7802674
[73,] -0.0865020564 1.35849539 -0.502638759 -0.7802674
[74,] -1.8382671114 -0.49214886 -1.667052873 -0.7802674
[75,] 0.3727621903 -0.18122911 -0.648190523 -0.7802674
[76,] -0.9831608236 -0.09726158 -0.211535231 -0.7802674
[77,] 0.6570686287 -0.71430294 0.880103001 -0.7802674
[78,] 0.2262350259 -0.71430294 0.880103001 1.2730679
[79,] -0.4167349194 0.45548464 0.952878883 1.2730679
[80,] -0.0952499468 2.74036094 -0.284311113 -0.7802674
[81,] -0.7797723715 -0.71430294 0.152344180 1.2730679
[82,] 4.2786952594 -0.40578226 0.734551237 1.2730679
[83,] -0.1564851797 -0.67207927 0.880103001 1.2730679
[84,] 0.0490902450 -0.02337016 1.025654765 1.2730679
[85,] -1.1821753305 -0.71430294 -1.885380519 -0.7802674
[86,] 0.2984051218 0.88491855 0.152344180 -0.7802674
[87,] -1.4839775497 -0.71430294 0.443447708 1.2730679
[88,] 0.3662012725 -0.65432613 -0.357086995 -0.7802674
[89,] -0.9219255907 -0.71430294 -0.138759349 -0.7802674
[90,] 0.4777368752 -0.71430294 0.880103001 -0.7802674
[91,] -0.9984696318 -0.63033541 -1.594276991 -0.7802674
[92,] 0.9654317657 -0.71430294 1.535085940 1.2730679
[93,] 0.6592556013 0.02605072 -1.012069934 -0.7802674
[94,] -0.2199073851 -0.31461752 0.443447708 1.2730679
[95,] 0.8757658890 -0.70518646 0.952878883 -0.7802674
[96,] -1.2281017552 -0.25128201 1.389534176 -0.7802674
[97,] -0.0208928783 0.64309208 -1.012069934 -0.7802674
[98,] 0.3137139300 -0.64377021 -0.284311113 -0.7802674
[99,] 0.1999913546 -0.71430294 0.588999472 1.2730679
[100,] -0.5938797003 0.23333056 -0.284311113 -0.7802674
[101,] -0.7579026455 -0.58091453 0.516223590 -0.7802674
[102,] 0.4842977930 -0.71430294 -1.157621698 -0.7802674
[103,] 1.3175343548 -0.52669549 0.225120062 -0.7802674
[104,] 1.0529106698 -0.21865463 -0.866518170 -0.7802674
[105,] 0.5411590807 -0.52765512 -1.012069934 -0.7802674
[106,] 0.1059515327 4.46769287 1.535085940 -0.7802674
[107,] -0.8453815496 0.32209623 1.316758294 1.2730679
[108,] 2.4613210262 -0.41825743 0.807327119 1.2730679
[109,] -0.5851318099 -0.34436601 -0.065983466 -0.7802674
[110,] -0.9000558647 -0.71430294 -1.812604637 -0.7802674
[111,] -0.1411763714 -0.59482914 -1.958156401 -0.7802674
[112,] 0.0053507930 -0.49214886 0.807327119 1.2730679
[113,] -1.1209400976 -0.61546116 -0.429862877 -0.7802674
[114,] -0.1936637139 -0.71430294 1.316758294 1.2730679
[115,] -1.4774166319 1.63966664 1.171206529 1.2730679
[116,] 0.4930456835 -0.01089499 0.370671826 -0.7802674
[117,] -0.9284865086 0.34560713 -0.793742287 1.2730679
[118,] -1.2149799196 -0.71430294 -0.065983466 -0.7802674
[119,] -0.6135624537 0.41230134 1.316758294 1.2730679
[120,] 0.4077537519 -0.68167555 -1.157621698 -0.7802674
[121,] -0.7207241113 -0.14668247 1.243982411 -0.7802674
[122,] -0.0668193029 -0.30598086 -1.084845816 -0.7802674
[123,] 0.0119117108 -0.12701008 -0.720966405 -0.7802674
[124,] -0.3008253715 0.47995517 0.952878883 1.2730679
[125,] -0.0536974673 0.58263546 0.152344180 -0.7802674
[126,] 1.5274837247 -0.71430294 1.171206529 1.2730679
[127,] 0.3552664095 -0.63033541 -1.084845816 -0.7802674
[128,] 1.8074162179 0.17383357 -0.357086995 -0.7802674
[129,] 0.7183038616 0.70210925 1.243982411 1.2730679
[130,] 1.8402208070 -0.51422032 1.535085940 -0.7802674
[131,] -0.2986383989 0.31729808 1.389534176 -0.7802674
[132,] 1.1556983822 3.11557582 1.098430647 1.2730679
[133,] -0.3183211523 -0.18122911 -0.939294052 1.2730679
[134,] 0.6854992725 0.45020668 0.807327119 -0.7802674
[135,] -0.0143319605 2.07389870 -0.211535231 -0.7802674
[136,] -0.4604743715 0.21365817 0.661775355 1.2730679
[137,] -1.0990703716 0.17383357 -0.793742287 -0.7802674
[138,] -1.0728267004 0.37631526 -1.084845816 -0.7802674
[139,] -1.2324757004 -0.68983240 -1.667052873 -0.7802674
[140,] 1.4596875740 -0.25416090 0.807327119 -0.7802674
[141,] 1.6871327247 -0.54540826 0.807327119 1.2730679
[142,] -1.4992863580 0.12393287 -1.303173462 1.2730679
[143,] -0.2592728920 -0.68983240 -0.357086995 -0.7802674
[144,] 1.1053980123 0.83549766 1.098430647 -0.7802674
[145,] -0.3139472071 -0.21241705 -0.211535231 -0.7802674
[146,] -0.8869340291 -0.48399201 -0.211535231 -0.7802674
[147,] -0.8891210017 0.07019365 -0.866518170 -0.7802674
[148,] 0.5630288068 -0.56412102 0.006792416 1.2730679
[149,] 0.7051820260 -0.01857202 -0.720966405 1.2730679
[150,] -0.6419930975 -0.71430294 1.316758294 1.2730679
attr(,"scaled:center")
sbp tobacco ldl adiposity typea obesity alcohol
133.720000 3.917133 4.957867 25.172800 54.680000 26.155533 14.887067
age chd
42.906667 0.380000
attr(,"scaled:scale")
sbp tobacco ldl adiposity typea obesity alcohol
17.0219440 4.6686634 2.2498786 7.7423844 9.5026100 4.5725310 20.8413908
age chd
13.7408159 0.4870125
eigen() decomposition
$values
[1] 2.9170705 1.4118707 1.1160130 0.8881532 0.7544710 0.6896814 0.5952564
[8] 0.4500630 0.1774207
$vectors
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.31973708 -0.14262025 0.34461445 0.12455766 0.773491598 0.198441710
[2,] -0.30996648 -0.43526564 -0.05557033 -0.13412055 -0.428116965 0.344570801
[3,] -0.30990366 0.26461176 -0.35483022 -0.31694635 0.143035499 -0.640891920
[4,] -0.48970888 0.30954926 0.12746058 0.12731536 -0.067679308 -0.008954996
[5,] -0.05041004 -0.29167622 -0.56381468 0.74378096 0.113142417 -0.130737116
[6,] -0.32518859 0.47402587 0.10231868 0.39951587 -0.349989459 0.142905789
[7,] -0.13137526 -0.48735217 0.48813492 0.13164914 -0.238112413 -0.601909041
[8,] -0.49127221 -0.09438679 0.02994198 -0.08463022 0.003883837 0.035546448
[9,] -0.31454298 -0.26108737 -0.41045561 -0.33543413 0.037155563 0.173196143
[,7] [,8] [,9]
[1,] -0.10094403 0.30416870 0.052699907
[2,] -0.53373277 0.29783460 -0.133412610
[3,] -0.31610477 0.26739028 0.070423465
[4,] 0.09764729 -0.22536704 -0.752942956
[5,] -0.06173799 -0.06933312 -0.052674791
[6,] 0.16851093 0.37921619 0.429364966
[7,] 0.24446864 0.10237158 0.019604333
[8,] -0.11443341 -0.71225197 0.469049515
[9,] 0.70029635 0.17347413 0.004533299
Pada gambar scree plot diatas, dapat dilihat bahwa titik 5 kurva mulai
melandai. Maka analisis kasus ini akan menggunakan 5 Principal
Component (PC).
[1] 0.3241189
[1] 0.1568745
[1] 0.1240014
[1] 0.09868369
[1] 0.08383011
[1] 0.07663127
[1] 0.0661396
[1] 0.050007
[1] 0.01971341
Berdasarkan nilai kumulatif yang didapatkan, 5 Principal Component (PC) sudah menangkap sekitar 78% keragaman. Sehingga dapat kita susun 5 buah PC.
[,1] [,2] [,3] [,4] [,5]
[1,] -0.31973708 -0.14262025 0.34461445 0.12455766 0.773491598
[2,] -0.30996648 -0.43526564 -0.05557033 -0.13412055 -0.428116965
[3,] -0.30990366 0.26461176 -0.35483022 -0.31694635 0.143035499
[4,] -0.48970888 0.30954926 0.12746058 0.12731536 -0.067679308
[5,] -0.05041004 -0.29167622 -0.56381468 0.74378096 0.113142417
[6,] -0.32518859 0.47402587 0.10231868 0.39951587 -0.349989459
[7,] -0.13137526 -0.48735217 0.48813492 0.13164914 -0.238112413
[8,] -0.49127221 -0.09438679 0.02994198 -0.08463022 0.003883837
[9,] -0.31454298 -0.26108737 -0.41045561 -0.33543413 0.037155563
Hasil di atas dapat dituliskan dalam bentuk persamaan:
PC1 = -0.319X1 - 0.309X2 - 0.309X3 - 0.489X4 - 0.050X5 - 0.325X6 - 0.131X7 - 0.491X8 - 0.019X9
PC2 = -0.142X1 - 0.435X2 + 0.264X3 + 0.309X4 - 0.291X5 + 0.474X6 - 0.487X7 - 0.094X8 - 0.261X9
PC3 = 0.344X1 - 0.055X2 - 0.354X3 + 0.127X4 - 0.563X5 + 0.102X6 + 0.488X7 + 0.029X8 - 0.410X9
PC4 = 0.124X1 - 0.134X2 - 0.316X3 + 0.127X4 + 0.743X5 + 0.399X6 + 0.131X7 - 0.084X8 - 0.335X9
PC5 = 0.773X1 - 0.4282 + 0.143X3 - 0.067X4 + 0.113X5 - 0.3499X6 - 0.238X7 + 0.003X8 + 0.037X9
eigen() decomposition
$values
[1] 2.9170705 1.4118707 1.1160130 0.8881532 0.7544710 0.6896814 0.5952564
[8] 0.4500630 0.1774207
$vectors
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.31973708 -0.14262025 0.34461445 0.12455766 0.773491598 0.198441710
[2,] -0.30996648 -0.43526564 -0.05557033 -0.13412055 -0.428116965 0.344570801
[3,] -0.30990366 0.26461176 -0.35483022 -0.31694635 0.143035499 -0.640891920
[4,] -0.48970888 0.30954926 0.12746058 0.12731536 -0.067679308 -0.008954996
[5,] -0.05041004 -0.29167622 -0.56381468 0.74378096 0.113142417 -0.130737116
[6,] -0.32518859 0.47402587 0.10231868 0.39951587 -0.349989459 0.142905789
[7,] -0.13137526 -0.48735217 0.48813492 0.13164914 -0.238112413 -0.601909041
[8,] -0.49127221 -0.09438679 0.02994198 -0.08463022 0.003883837 0.035546448
[9,] -0.31454298 -0.26108737 -0.41045561 -0.33543413 0.037155563 0.173196143
[,7] [,8] [,9]
[1,] -0.10094403 -0.30416870 -0.052699907
[2,] -0.53373277 -0.29783460 0.133412610
[3,] -0.31610477 -0.26739028 -0.070423465
[4,] 0.09764729 0.22536704 0.752942956
[5,] -0.06173799 0.06933312 0.052674791
[6,] 0.16851093 -0.37921619 -0.429364966
[7,] 0.24446864 -0.10237158 -0.019604333
[8,] -0.11443341 0.71225197 -0.469049515
[9,] 0.70029635 -0.17347413 -0.004533299
Pada gambar scree plot diatas, dapat dilihat bahwa titik 5 kurva mulai
melandai. Maka analisis kasus ini akan menggunakan 5 Principal
Component (PC).
[1] 0.3241189
[1] 0.1568745
[1] 0.1240014
[1] 0.09868369
[1] 0.08383011
[1] 0.07663127
[1] 0.0661396
[1] 0.050007
[1] 0.01971341
Berdasarkan nilai kumulatif yang didapatkan, 5 Principal Component (PC) sudah menangkap sekitar 78% keragaman. Sehingga dapat kita susun 5 buah PC.
[,1] [,2] [,3] [,4] [,5]
[1,] -0.31973708 -0.14262025 0.34461445 0.12455766 0.773491598
[2,] -0.30996648 -0.43526564 -0.05557033 -0.13412055 -0.428116965
[3,] -0.30990366 0.26461176 -0.35483022 -0.31694635 0.143035499
[4,] -0.48970888 0.30954926 0.12746058 0.12731536 -0.067679308
[5,] -0.05041004 -0.29167622 -0.56381468 0.74378096 0.113142417
[6,] -0.32518859 0.47402587 0.10231868 0.39951587 -0.349989459
[7,] -0.13137526 -0.48735217 0.48813492 0.13164914 -0.238112413
[8,] -0.49127221 -0.09438679 0.02994198 -0.08463022 0.003883837
[9,] -0.31454298 -0.26108737 -0.41045561 -0.33543413 0.037155563
Hasil di atas dapat dituliskan dalam bentuk persamaan:
PC1 = -0.319X1 - 0.309X2 - 0.309X3 - 0.489X4 - 0.050X5 - 0.325X6 - 0.131X7 - 0.491X8 - 0.019X9
PC2 = -0.142X1 - 0.435X2 + 0.264X3 + 0.309X4 - 0.291X5 + 0.474X6 - 0.487X7 - 0.094X8 - 0.261X9
PC3 = 0.344X1 - 0.055X2 - 0.354X3 + 0.127X4 - 0.563X5 + 0.102X6 + 0.488X7 + 0.029X8 - 0.410X9
PC4 = 0.124X1 - 0.134X2 - 0.316X3 + 0.127X4 + 0.743X5 + 0.399X6 + 0.131X7 - 0.084X8 - 0.335X9
PC5 = 0.773X1 - 0.4282 + 0.143X3 - 0.067X4 + 0.113X5 - 0.3499X6 - 0.238X7 + 0.003X8 + 0.037X9
Standard deviations (1, .., p=9):
[1] 1.7079433 1.1882217 1.0564152 0.9424188 0.8686029 0.8304706 0.7715286
[8] 0.6708674 0.4212134
Rotation (n x k) = (9 x 9):
PC1 PC2 PC3 PC4 PC5
sbp -0.31973708 0.14262025 -0.34461445 -0.12455766 -0.773491598
tobacco -0.30996648 0.43526564 0.05557033 0.13412055 0.428116965
ldl -0.30990366 -0.26461176 0.35483022 0.31694635 -0.143035499
adiposity -0.48970888 -0.30954926 -0.12746058 -0.12731536 0.067679308
typea -0.05041004 0.29167622 0.56381468 -0.74378096 -0.113142417
obesity -0.32518859 -0.47402587 -0.10231868 -0.39951587 0.349989459
alcohol -0.13137526 0.48735217 -0.48813492 -0.13164914 0.238112413
age -0.49127221 0.09438679 -0.02994198 0.08463022 -0.003883837
chd -0.31454298 0.26108737 0.41045561 0.33543413 -0.037155563
PC6 PC7 PC8 PC9
sbp -0.198441710 -0.10094403 0.30416870 -0.052699907
tobacco -0.344570801 -0.53373277 0.29783460 0.133412610
ldl 0.640891920 -0.31610477 0.26739028 -0.070423465
adiposity 0.008954996 0.09764729 -0.22536704 0.752942956
typea 0.130737116 -0.06173799 -0.06933312 0.052674791
obesity -0.142905789 0.16851093 0.37921619 -0.429364966
alcohol 0.601909041 0.24446864 0.10237158 -0.019604333
age -0.035546448 -0.11443341 -0.71225197 -0.469049515
chd -0.173196143 0.70029635 0.17347413 -0.004533299
PC1 PC2 PC3
sbp -0.31974 0.14262 -0.34461
tobacco -0.30997 0.43527 0.05557
ldl -0.30990 -0.26461 0.35483
adiposity -0.48971 -0.30955 -0.12746
typea -0.05041 0.29168 0.56381
obesity -0.32519 -0.47403 -0.10232
alcohol -0.13138 0.48735 -0.48813
age -0.49127 0.09439 -0.02994
chd -0.31454 0.26109 0.41046
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 1.7079 1.1882 1.056 0.94242 0.86860 0.83047 0.77153
Proportion of Variance 0.3241 0.1569 0.124 0.09868 0.08383 0.07663 0.06614
Cumulative Proportion 0.3241 0.4810 0.605 0.70368 0.78751 0.86414 0.93028
PC8 PC9
Standard deviation 0.67087 0.42121
Proportion of Variance 0.05001 0.01971
Cumulative Proportion 0.98029 1.00000
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 1.7079433 1.1882217 1.0564152 0.94241880 0.86860290
Proportion of Variance 0.3241189 0.1568745 0.1240014 0.09868369 0.08383011
Cumulative Proportion 0.3241189 0.4809935 0.6049949 0.70367860 0.78750871
Comp.6 Comp.7 Comp.8 Comp.9
Standard deviation 0.83047062 0.7715286 0.6708674 0.42121337
Proportion of Variance 0.07663127 0.0661396 0.0500070 0.01971341
Cumulative Proportion 0.86413998 0.9302796 0.9802866 1.00000000
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
sbp 0.3197 0.1426 0.3446 0.1246 0.7735 0.1984 0.1009 0.3042
tobacco 0.3100 0.4353 -0.1341 -0.4281 0.3446 0.5337 0.2978
ldl 0.3099 -0.2646 -0.3548 -0.3169 0.1430 -0.6409 0.3161 0.2674
adiposity 0.4897 -0.3095 0.1275 0.1273 -0.2254
typea 0.2917 -0.5638 0.7438 0.1131 -0.1307
obesity 0.3252 -0.4740 0.1023 0.3995 -0.3500 0.1429 -0.1685 0.3792
alcohol 0.1314 0.4874 0.4881 0.1316 -0.2381 -0.6019 -0.2445 0.1024
age 0.4913 0.1144 -0.7123
chd 0.3145 0.2611 -0.4105 -0.3354 0.1732 -0.7003 0.1735
Comp.9
sbp
tobacco -0.1334
ldl
adiposity -0.7529
typea
obesity 0.4294
alcohol
age 0.4690
chd
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
SS loadings 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Proportion Var 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
Cumulative Var 0.1111 0.2222 0.3333 0.4444 0.5556 0.6667 0.7778 0.8889 1.0000
Perhitungan nilai loading yang menggambarkan sejauh mana setiap variabel berkontribusi terhadap pembentukan setiap komponen utama.
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
sbp 10.2231797 2.0340535 11.87591168 1.5514612 59.828925233
tobacco 9.6079216 18.9456178 0.30880613 1.7988322 18.328413582
ldl 9.6040280 7.0019384 12.59044882 10.0454988 2.045915401
adiposity 23.9814784 9.5820742 1.62462000 1.6209202 0.458048878
typea 0.2541172 8.5075017 31.78869933 55.3210122 1.280120656
obesity 10.5747618 22.4700524 1.04691114 15.9612930 12.249262116
alcohol 1.7259459 23.7512141 23.82757006 1.7331496 5.669752128
age 24.1348385 0.8908867 0.08965224 0.7162275 0.001508419
chd 9.8937288 6.8166613 16.84738059 11.2516054 0.138053586
Dim.6 Dim.7 Dim.8 Dim.9
sbp 3.937911236 1.0189697 9.2518597 0.27772802
tobacco 11.872903716 28.4870673 8.8705452 1.77989245
ldl 41.074245291 9.9922226 7.1497563 0.49594644
adiposity 0.008019196 0.9534993 5.0790303 56.69230950
typea 1.709219346 0.3811580 0.4807082 0.27746336
obesity 2.042206465 2.8395935 14.3804922 18.43542742
alcohol 36.229449368 5.9764918 1.0479941 0.03843299
age 0.126354994 1.3095005 50.7302864 22.00074475
chd 2.999690387 49.0414973 3.0093275 0.00205508
eigenvalue percentage of variance cumulative percentage of variance
comp 1 2.9170705 32.411894 32.41189
comp 2 1.4118707 15.687453 48.09935
comp 3 1.1160130 12.400144 60.49949
comp 4 0.8881532 9.868369 70.36786
comp 5 0.7544710 8.383011 78.75087
comp 6 0.6896814 7.663127 86.41400
comp 7 0.5952564 6.613960 93.02796
comp 8 0.4500630 5.000700 98.02866
comp 9 0.1774207 1.971341 100.00000
Variabel age (X8) dan adiposity (X4) memiliki
nilai kontribusi yang sangat tinggi, dimana menunjukkan representasi
variabel baik pada Principal Component (PC). Dalam hal ini,
variabel ditempatkan dekat dengan lingkaran pada lingkaran korelasi.
Sedangkan, variabel typea (X5) memiliki nilai kontribusi
terendah, dimana hal ini menunjukkan bahwa variabel tersebut tidak
sepenuhnya direpresentasikan oleh Principal Component (PC).
Variabel tersebut dekat dengan pusat lingkaran dan variabel tersebut
tidak terlalu penting untuk Principal Component (PC).
Berdasarkan hasil analisis yang telah dilakukan mengenai faktor-faktor yang menyebabkan seseorang terkena penyakit kardiovaskular dapat disimpulkan bahwa terdapat lima principal component yang terbentuk. Berikut adalah persamaan principal component yang terbentuk:
PC1 = -0.319X1 - 0.309X2 - 0.309X3 - 0.489X4 - 0.050X5 - 0.325X6 - 0.131X7 - 0.491X8 - 0.019X9
PC2 = -0.142X1 - 0.435X2 + 0.264X3 + 0.309X4 - 0.291X5 + 0.474X6 - 0.487X7 - 0.094X8 - 0.261X9
PC3 = 0.344X1 - 0.055X2 - 0.354X3 + 0.127X4 - 0.563X5 + 0.102X6 + 0.488X7 + 0.029X8 - 0.410X9
PC4 = 0.124X1 - 0.134X2 - 0.316X3 + 0.127X4 + 0.743X5 + 0.399X6 + 0.131X7 - 0.084X8 - 0.335X9
PC5 = 0.773X1 - 0.4282 + 0.143X3 - 0.067X4 + 0.113X5 - 0.3499X6 - 0.238X7 + 0.003X8 + 0.037X9
Dengan kata lain, penelitian ini berhasil mengurangi jumlah variabel dari 9 variabel menjadi 5 variabel baru (principal component) dengan mempertahankan 78% dari varians atau keragaman. Principal component yang terbentuk itu dapat diberi nama sebagai berikut:
Principal component 1 yang mencakup variabel adiposity (X4) dan age (X8) sebagai faktor kondisi tubuh
Principal component 2 yang mencakup variabel tobacco (X2), obesity (X6), dan alkohol (X7) sebagai faktor gaya hidup
Principal component 3 yang mencakup variabel typea (X5) sebagai faktor perilaku
Principal component 4 yang mencakup variabel ldl (X3) dan chd (X9) sebagai faktor penyakit
Principal component 5 yang mencakup variabel sbp (X1) sebagai faktor genetik
Johnson dan Wichern. (2007). Applied Multivariate Statistical Analysis. Edisi keenam. Pearson Prentice Hall.
Radiarta, I Nyoman, Hasnawi, dan A. M. (2013). Kondisi Kualitas Perairan Di Kabupaten Morowali Provinsi Sulawesi Tengah, 299–309.