library(readxl)
Data_GDP_Pengangguran_Inflasi <- read_excel("~/Data_GDP_Pengangguran_Inflasi.xlsx",
range = "D3:G22")
model<- lm(Data_GDP_Pengangguran_Inflasi)
summary(model)
##
## Call:
## lm(formula = Data_GDP_Pengangguran_Inflasi)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.08655 -0.35664 0.08166 0.44659 0.66872
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1983.68415 0.94371 2102.010 <2e-16 ***
## `Tingkat Pengangguran` 0.20607 0.07446 2.768 0.0144 *
## Inflasi -0.11469 0.12033 -0.953 0.3556
## GDP 1.64521 0.03966 41.483 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5739 on 15 degrees of freedom
## Multiple R-squared: 0.9916, Adjusted R-squared: 0.9899
## F-statistic: 591.1 on 3 and 15 DF, p-value: 8.64e-16
<- c(15, 17, 19, 20, 22, 23.5, 25) TestScore<- c(680, 670, 660, 630, 660, 635) model01<- lm(TestScore~STR)
STR <- c(5)
TestScore <- c(680, 670, 660, 630, 660, 635)
data <- data.frame(STR, TestScore)
model01 <- lm(TestScore ~ STR, data = data)
summary(model01)
##
## Call:
## lm(formula = TestScore ~ STR, data = data)
##
## Residuals:
## 1 2 3 4 5 6
## 24.167 14.167 4.167 -25.833 4.167 -20.833
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 655.833 8.002 81.96 5.12e-09 ***
## STR NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.6 on 5 degrees of freedom