library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.2
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(reshape2)
## Warning: package 'reshape2' was built under R version 4.1.3
library(psych)
## Warning: package 'psych' was built under R version 4.1.2
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(readr)
library(explore)
## Warning: package 'explore' was built under R version 4.1.2
##
## Attaching package: 'explore'
## The following object is masked from 'package:psych':
##
## describe
library(car)
## Warning: package 'car' was built under R version 4.1.2
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
## The following object is masked from 'package:dplyr':
##
## recode
This dataset includes the following variables: l.dia: left IMA diameter l.tamax: left tamax l.bf: left IMA flow r.dia: right IMA diameter r.tamax: right tamax r.bf: right IMA flow rx: the radiated group (1), the non-radiated group: (0) m.side: mastectomy side (0: left, 1: right) x.dia: the radiated IMA diameter cx.dia: the contralateral IMA diameter x.tamax: the radiated IMA tamax cx.tamax: the contralateral IMA tamax x.bf: the radiated IMA flow cx.bf: the contralateral IMA flow lx.dia: diameter of the left radiated IMA rx.dia: diameter of the right radiated IMA lx.tamax: tamax of the left radiated IMA rx.tamax: tamax of the right radiated IMA lx.bf: blood flow of the left radiated IMA rx.bf: blood flow of the right radiated IMA
t= "C:/Users/Macbook pro 2015/OneDrive/Documents/Thesis/IMA.csv "
dat= read.csv(t, header = T)
dat$rx=factor(dat$rx)
datx=subset(dat, rx==1)
datc= subset(dat, rx==0)
datx$m.side=factor(datx$m.side)
datxl= subset(datx, m.side==0)
datxr= subset(datx, m.side==1)
datx$x.dia= ifelse(datx$m.side==0,datx$l.dia, datx$r.dia)
datx$cx.dia= ifelse(datx$m.side==0, datx$r.dia, datx$l.dia)
datx$x.tamax= ifelse(datx$m.side==0, datx$l.tamax, datx$r.tamax)
datx$cx.tamax= ifelse(datx$m.side==0, datx$r.tamax, datx$l.tamax)
datx$x.bf= ifelse(datx$m.side==0,datx$l.bf,datx$r.bf)
datx$cx.bf= ifelse(datx$m.side==0,datx$r.bf,datx$l.bf)
datc.all.dia=melt(datc,id=c("age"), measure.vars = c("l.dia","r.dia"))
datc.all.tamax=melt(datc,id=c("age"), measure.vars = c("l.tamax","r.tamax"))
datc.all.bf=melt(datc,id=c("age"), measure.vars = c("l.bf","r.bf"))
datx.all.dia=melt(datx,id=c("age"), measure.vars = c("x.dia","cx.dia"))
datx.all.tamax=melt(datx,id=c("age"), measure.vars = c("x.tamax","cx.tamax"))
datx.all.bf= melt(datx, id=c("age"), measure.vars = c("x.bf","cx.bf"))
head(datx)
## No bmi hbp cad smoking diabetes datex datep days age m.side l.dia
## 1 1 31.0 0 0 0 0 8/8/2019 11/12/2021 827 45 0 0.17
## 2 2 21.2 0 0 0 0 12/9/2016 11/15/2021 1802 60 1 0.17
## 3 3 19.0 0 0 0 0 12/23/2017 11/12/2021 1420 55 1 0.18
## 4 4 24.0 0 0 0 0 8/21/2016 11/18/2021 1915 52 1 0.18
## 5 5 22.0 0 0 0 0 1/1/2017 11/19/2021 1783 49 1 0.19
## 6 6 23.0 0 0 0 0 1/1/2018 11/19/2021 1418 44 1 0.19
## l.tamax l.bf rx r.bf r.tamax r.dia x.dia cx.dia x.tamax cx.tamax x.bf
## 1 34.14 40.42 1 45.23 36.23 0.16 0.17 0.16 34.14 36.23 40.42
## 2 31.43 42.38 1 43.68 30.93 0.17 0.17 0.17 30.93 31.43 43.68
## 3 29.63 46.43 1 36.09 31.11 0.16 0.16 0.18 31.11 29.63 36.09
## 4 43.60 63.16 1 97.73 79.47 0.16 0.16 0.18 79.47 43.60 97.73
## 5 33.79 56.94 1 38.96 25.40 0.18 0.18 0.19 25.40 33.79 38.96
## 6 72.57 124.75 1 50.21 42.33 0.16 0.16 0.19 42.33 72.57 50.21
## cx.bf
## 1 45.23
## 2 42.38
## 3 46.43
## 4 63.16
## 5 56.94
## 6 124.75
dat$hbp <- as.factor(dat$hbp)
dat$cad <- as.factor(dat$cad)
dat$diabetes <- as.factor(dat$diabetes)
dat$smoking <- as.factor(dat$smoking)
table1(~ age + bmi + hbp + cad + diabetes + smoking | rx, dat)
| 0 (N=108) |
1 (N=122) |
Overall (N=230) |
|
|---|---|---|---|
| age | |||
| Mean (SD) | 40.8 (12.2) | 53.6 (8.45) | 47.6 (12.2) |
| Median [Min, Max] | 40.0 [18.0, 75.0] | 53.0 [31.0, 76.0] | 49.0 [18.0, 76.0] |
| bmi | |||
| Mean (SD) | 21.8 (1.80) | 21.6 (1.93) | 21.7 (1.87) |
| Median [Min, Max] | 22.0 [18.0, 26.0] | 22.0 [18.0, 31.0] | 22.0 [18.0, 31.0] |
| hbp | |||
| 0 | 89 (82.4%) | 97 (79.5%) | 186 (80.9%) |
| 1 | 19 (17.6%) | 25 (20.5%) | 44 (19.1%) |
| cad | |||
| 0 | 107 (99.1%) | 119 (97.5%) | 226 (98.3%) |
| 1 | 1 (0.9%) | 3 (2.5%) | 4 (1.7%) |
| diabetes | |||
| 0 | 104 (96.3%) | 118 (96.7%) | 222 (96.5%) |
| 1 | 4 (3.7%) | 4 (3.3%) | 8 (3.5%) |
| smoking | |||
| 0 | 108 (100%) | 121 (99.2%) | 229 (99.6%) |
| 1 | 0 (0%) | 1 (0.8%) | 1 (0.4%) |
datx$m.side= factor(datx$m.side)
dat$rx=factor(dat$rx)
table1(~ age+ l.dia +l.tamax + l.bf + r.dia+r.tamax+ r.bf,datc)
| Overall (N=108) |
|
|---|---|
| age | |
| Mean (SD) | 40.8 (12.2) |
| Median [Min, Max] | 40.0 [18.0, 75.0] |
| l.dia | |
| Mean (SD) | 0.181 (0.0159) |
| Median [Min, Max] | 0.180 [0.140, 0.220] |
| l.tamax | |
| Mean (SD) | 38.4 (10.2) |
| Median [Min, Max] | 37.4 [18.2, 77.2] |
| l.bf | |
| Mean (SD) | 60.1 (20.3) |
| Median [Min, Max] | 56.7 [21.8, 144] |
| r.dia | |
| Mean (SD) | 0.182 (0.0154) |
| Median [Min, Max] | 0.180 [0.140, 0.220] |
| r.tamax | |
| Mean (SD) | 39.9 (10.8) |
| Median [Min, Max] | 37.7 [3.41, 64.2] |
| r.bf | |
| Mean (SD) | 62.4 (19.0) |
| Median [Min, Max] | 61.0 [23.2, 122] |
table1(~ age+ x.dia + x.tamax + x.bf + cx.dia + cx.tamax + cx.bf, datx)
| Overall (N=122) |
|
|---|---|
| age | |
| Mean (SD) | 53.6 (8.45) |
| Median [Min, Max] | 53.0 [31.0, 76.0] |
| x.dia | |
| Mean (SD) | 0.172 (0.0186) |
| Median [Min, Max] | 0.170 [0.120, 0.220] |
| x.tamax | |
| Mean (SD) | 38.5 (12.1) |
| Median [Min, Max] | 36.2 [15.6, 79.5] |
| x.bf | |
| Mean (SD) | 55.2 (24.6) |
| Median [Min, Max] | 52.4 [13.8, 155] |
| cx.dia | |
| Mean (SD) | 0.185 (0.0196) |
| Median [Min, Max] | 0.180 [0.120, 0.270] |
| cx.tamax | |
| Mean (SD) | 40.7 (13.2) |
| Median [Min, Max] | 38.4 [16.6, 86.7] |
| cx.bf | |
| Mean (SD) | 68.6 (32.9) |
| Median [Min, Max] | 62.7 [10.6, 258] |
table1(~ age +x.dia + x.tamax + x.bf + cx.dia + cx.tamax +cx.bf| m.side,datx)
| 0 (N=63) |
1 (N=59) |
Overall (N=122) |
|
|---|---|---|---|
| age | |||
| Mean (SD) | 54.5 (8.74) | 52.7 (8.10) | 53.6 (8.45) |
| Median [Min, Max] | 53.0 [31.0, 76.0] | 52.0 [41.0, 74.0] | 53.0 [31.0, 76.0] |
| x.dia | |||
| Mean (SD) | 0.173 (0.0203) | 0.171 (0.0168) | 0.172 (0.0186) |
| Median [Min, Max] | 0.180 [0.120, 0.220] | 0.170 [0.130, 0.210] | 0.170 [0.120, 0.220] |
| x.tamax | |||
| Mean (SD) | 36.3 (11.9) | 40.9 (12.0) | 38.5 (12.1) |
| Median [Min, Max] | 34.1 [15.6, 70.7] | 37.4 [21.0, 79.5] | 36.2 [15.6, 79.5] |
| x.bf | |||
| Mean (SD) | 53.1 (26.2) | 57.5 (22.7) | 55.2 (24.6) |
| Median [Min, Max] | 47.9 [13.8, 144] | 55.6 [22.0, 155] | 52.4 [13.8, 155] |
| cx.dia | |||
| Mean (SD) | 0.186 (0.0235) | 0.184 (0.0144) | 0.185 (0.0196) |
| Median [Min, Max] | 0.180 [0.120, 0.270] | 0.180 [0.150, 0.220] | 0.180 [0.120, 0.270] |
| cx.tamax | |||
| Mean (SD) | 42.3 (12.6) | 38.9 (13.7) | 40.7 (13.2) |
| Median [Min, Max] | 40.5 [16.6, 74.9] | 36.4 [18.4, 86.7] | 38.4 [16.6, 86.7] |
| cx.bf | |||
| Mean (SD) | 72.9 (36.1) | 64.0 (28.6) | 68.6 (32.9) |
| Median [Min, Max] | 69.1 [10.6, 258] | 57.5 [27.4, 180] | 62.7 [10.6, 258] |
shapiro.test(datx$age)
##
## Shapiro-Wilk normality test
##
## data: datx$age
## W = 0.97679, p-value = 0.03337
shapiro.test(datc$age)
##
## Shapiro-Wilk normality test
##
## data: datc$age
## W = 0.98499, p-value = 0.2672
wilcox.test(datx$age, datc$age)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$age and datc$age
## W = 10614, p-value = 1.273e-15
## alternative hypothesis: true location shift is not equal to 0
cor.test(datc$age, datc$l.dia, method = "spearman")
## Warning in cor.test.default(datc$age, datc$l.dia, method = "spearman"): Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datc$age and datc$l.dia
## S = 185118, p-value = 0.2231
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.1182081
cor.test(datc$age, datc$r.dia, method="spearman")
## Warning in cor.test.default(datc$age, datc$r.dia, method = "spearman"): Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datc$age and datc$r.dia
## S = 194349, p-value = 0.4451
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.07423567
cor.test(datx$age, datx$cx.dia, method = "spearman")
## Warning in cor.test.default(datx$age, datx$cx.dia, method = "spearman"): Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datx$age and datx$cx.dia
## S = 290572, p-value = 0.6632
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.03981668
explore_all(datx)
## Warning in explore_bar(data_tmp, !!sym(var_name)): number of bars limited to 30
## by parameter max_cat
## Warning in explore_bar(data_tmp, !!sym(var_name)): number of bars limited to 30
## by parameter max_cat
explore_all(datc)
explore_all(dat)
## Warning in explore_bar(data_tmp, !!sym(var_name)): number of bars limited to 30
## by parameter max_cat
## Warning in explore_bar(data_tmp, !!sym(var_name)): number of bars limited to 30
## by parameter max_cat
shapiro.test(datc$l.dia)
##
## Shapiro-Wilk normality test
##
## data: datc$l.dia
## W = 0.95547, p-value = 0.001168
qqnorm(datc$l.dia)
qqline(datc$l.dia)
shapiro.test(datc$r.dia)
##
## Shapiro-Wilk normality test
##
## data: datc$r.dia
## W = 0.94041, p-value = 0.0001109
qqnorm(datc$r.dia)
qqline(datc$r.dia)
wilcox.test(datc$l.dia, datc$r.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datc$l.dia and datc$r.dia
## W = 5669.5, p-value = 0.717
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datc.all.dia, aes(x=value, fill=variable))+geom_density(alpha=0.5)
p+ xlab("Distribution of IMA diameter in the control group")+ ylab("Probability")
p= ggplot(data=datc.all.dia, aes(x=variable, y= value,
fill=variable, col=variable))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" Boxplot of IMA diameter in control group ", y="IMA diameter (cm)")+ theme(legend.position = "none")
shapiro.test(datc$l.tamax)
##
## Shapiro-Wilk normality test
##
## data: datc$l.tamax
## W = 0.96997, p-value = 0.01515
qqnorm(datc$l.tamax)
qqline(datc$l.tamax)
shapiro.test(datc$r.tamax)
##
## Shapiro-Wilk normality test
##
## data: datc$r.tamax
## W = 0.95957, p-value = 0.002339
qqnorm(datc$r.tamax)
qqline(datc$r.tamax)
wilcox.test(datc$l.tamax, datc$r.tamax)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datc$l.tamax and datc$r.tamax
## W = 5361, p-value = 0.3056
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datc.all.tamax, aes(x=value, fill=variable))+geom_density(alpha=0.5)
p+ xlab("IMA tamax in the control group")+ ylab("Probability")
p= ggplot(data=datc.all.tamax, aes(x=variable, y= value,
fill=variable, col=variable))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" IMA ", y="IMA tamax")+ theme(legend.position = "none")
shapiro.test(datc$l.bf)
##
## Shapiro-Wilk normality test
##
## data: datc$l.bf
## W = 0.95941, p-value = 0.002274
qqnorm(datc$l.bf)
qqline(datc$l.bf)
shapiro.test(datc$r.bf)
##
## Shapiro-Wilk normality test
##
## data: datc$r.bf
## W = 0.97807, p-value = 0.07136
qqnorm(datc$r.bf)
qqline(datc$r.bf)
wilcox.test(datc$l.bf, datc$r.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datc$l.bf and datc$r.bf
## W = 5396.5, p-value = 0.3436
## alternative hypothesis: true location shift is not equal to 0
hist(datc$l.bf, prob=T, breaks=20, col="blue", border = "white", xlab = "Left IMA flow", ylab = "Number of people", xlim = c(5,150), main = "Distribution of the left IMA blood flow")
lines(density(na.omit(datc$l.bf)), col="red", lwd=3)
hist(datc$r.bf, prob=T, breaks=20, col="blue", border = "white", xlab = "Right IMA flow", ylab = "Number of people", xlim = c(5,150), main = "Distribution of the right IMA blood flow")
lines(density(na.omit(datc$r.bf)), col="red", lwd=3)
p= ggplot(data=datc.all.bf, aes(x=value, fill=variable))+geom_density(alpha=0.5)
p+ xlab("IMA blood flow in the control group")+ ylab("Probability")
p= ggplot(data=datc.all.bf, aes(x=variable, y= value,
fill=variable, col=variable))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" IMA ", y="IMA blood flow")+ theme(legend.position = "none")
There were no statistically significant differences between the left and right IMA in the control group with regard to diameter, time-averaged maximum velocity and blood flow.
datc16l= subset(datc, datc$l.dia < 0.16)
count(datc16l)
## n
## 1 6
datc20l= subset(datc, datc$l.dia >0.20)
count(datc20l)
## n
## 1 8
datc16r = subset(datc, datc$r.dia < 0.16)
count(datc16r)
## n
## 1 6
datc20r= subset(datc, datc$r.dia > 0.2)
count(datc20r)
## n
## 1 5
shapiro.test(datx$x.dia)
##
## Shapiro-Wilk normality test
##
## data: datx$x.dia
## W = 0.96582, p-value = 0.003454
qqnorm(datx$x.dia)
qqline(datx$x.dia)
shapiro.test(datx$cx.dia)
##
## Shapiro-Wilk normality test
##
## data: datx$cx.dia
## W = 0.92728, p-value = 5.564e-06
qqnorm(datx$cx.dia)
qqline(datx$cx.dia)
wilcox.test(datx$x.dia, datx$cx.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.dia and datx$cx.dia
## W = 4754.5, p-value = 7.383e-07
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datx.all.dia, aes(x=value, fill=variable))+geom_density(alpha=0.5)
p+ xlab("Distribution of IMA diameter in the irradiated group")+ ylab("Probability")
p= ggplot(data=datx.all.dia, aes(x=variable, y= value,
fill=variable, col=variable))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" Rx vs Non-Rx ", y="Boxplot of IMA diameter in the irradiated group (cm)")+ theme(legend.position = "none")
shapiro.test(datx$x.tamax)
##
## Shapiro-Wilk normality test
##
## data: datx$x.tamax
## W = 0.94282, p-value = 5.783e-05
qqnorm(datx$x.tamax)
qqline(datx$x.tamax)
shapiro.test(datx$cx.tamax)
##
## Shapiro-Wilk normality test
##
## data: datx$cx.tamax
## W = 0.96749, p-value = 0.004817
qqnorm(datx$cx.tamax)
qqline(datx$cx.tamax)
wilcox.test(datx$x.tamax, datx$cx.tamax)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.tamax and datx$cx.tamax
## W = 6693, p-value = 0.1745
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datx.all.tamax, aes(x=value, fill=variable))+geom_density(alpha=0.5)
p+ xlab("Distribution of IMA tamax in the irradiated group")+ ylab("Probability")
p= ggplot(data=datx.all.tamax, aes(x=variable, y= value,
fill=variable, col=variable))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" Irradiated vs Non-irradiated IMA ", y="IMA tamax in the irradiated group (cm)")+ theme(legend.position = "none")
shapiro.test(datx$x.bf)
##
## Shapiro-Wilk normality test
##
## data: datx$x.bf
## W = 0.91502, p-value = 1.05e-06
qqnorm(datx$x.bf)
qqline(datx$x.bf)
shapiro.test(datx$cx.bf)
##
## Shapiro-Wilk normality test
##
## data: datx$cx.bf
## W = 0.84754, p-value = 7.063e-10
qqnorm(datx$cx.bf)
qqline(datx$cx.bf)
wilcox.test(datx$x.bf, datx$cx.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.bf and datx$cx.bf
## W = 5388.5, p-value = 0.0001959
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datx.all.bf, aes(x=value, fill=variable))+geom_density(alpha=0.5)
p+ xlab("Distribution of IMA blood flow in the irradiated group")+ ylab("Probability")
p= ggplot(data=datx.all.bf, aes(x=variable, y= value,
fill=variable, col=variable))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x="Irradiated vs Non-irradiated IMA", y="IMA blood flow")+ theme(legend.position = "none")
In the patients who received postoperative radiotherapy,there were statistically significant differences between the irradiated IMAs and the controlateral non-irradiated IMAs with regard to diameter and blood flow, however, there was no significant difference between two groups in term of time-averaged maximum velocity
datx.x13 = subset(datx, datx$x.dia < 0.13)
count(datx.x13)
## n
## 1 2
datx.x16 = subset(datx, datx$x.dia < 0.16)
count(datx.x16)
## n
## 1 22
datx.x20 = subset(datx, datx$x.dia > 0.20)
count(datx.x20)
## n
## 1 4
datx.cx16 = subset(datx, datx$cx.dia < 0.16)
count(datx.cx16)
## n
## 1 3
datx.cx20 = subset(datx, datx$cx.dia > 0.20)
count(datx.cx20)
## n
## 1 15
datx.ex = subset(datx, datx$r.dia < 0.25)
count(datx.ex)
## n
## 1 120
wilcox.test(datx.ex$x.dia, datx.ex$cx.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx.ex$x.dia and datx.ex$cx.dia
## W = 4667.5, p-value = 1.709e-06
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx.ex$x.bf, datx.ex$cx.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx.ex$x.bf and datx.ex$cx.bf
## W = 5337.5, p-value = 0.0005353
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxl$l.dia, datxr$r.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.dia and datxr$r.dia
## W = 1994.5, p-value = 0.4808
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datx, aes(x=x.dia, fill=m.side))+geom_density(alpha=0.5)
p+ xlab("IMA diameter in the irradiated group")+ ylab("Probability")
p= ggplot(data=datx, aes(x=m.side, y= x.dia,
fill=m.side, col=m.side))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" left and right IMA ", y="IMA diameter in the irradiated group (cm)")+ theme(legend.position = "none")
wilcox.test(datxl$l.tamax, datxr$r.tamax)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.tamax and datxr$r.tamax
## W = 1405, p-value = 0.0203
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datx, aes(x=x.tamax, fill=m.side))+geom_density(alpha=0.5)
p+ xlab("IMA tamax in the irradiated group")+ ylab("Probability")
p= ggplot(data=datx, aes(x=m.side, y= x.tamax,
fill=m.side, col=m.side))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" left and right IMA ", y="IMA tamax in the irradiated group (cm)")+ theme(legend.position = "none")
wilcox.test(datxl$l.bf, datxr$r.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.bf and datxr$r.bf
## W = 1589.5, p-value = 0.169
## alternative hypothesis: true location shift is not equal to 0
p= ggplot(data=datx, aes(x=x.bf, fill=m.side))+geom_density(alpha=0.5)
p+ xlab("IMA flow in the irradiated group")+ ylab("Probability")
p= ggplot(data=datx, aes(x=m.side, y= x.bf,
fill=m.side, col=m.side))
p + geom_boxplot(alpha=0.5)+ geom_jitter(alpha=0.3)+ labs (x=" left vs right irradiated IMA ", y=" IMA blood flow in the irradiated group (cm)")+ theme(legend.position = "none")
wilcox.test(datx$x.dia, datc$l.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.dia and datc$l.dia
## W = 4723.5, p-value = 0.000162
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx$x.tamax, datc$l.tamax)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.tamax and datc$l.tamax
## W = 6341, p-value = 0.6245
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx$x.bf, datc$l.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.bf and datc$l.bf
## W = 5381, p-value = 0.01659
## alternative hypothesis: true location shift is not equal to 0
There were statistically significant differences between the radiated IMA and the left IMA in the control group with regard to diameter and blood flow, however, tamax was not significantly different between two groups
wilcox.test(datx$x.dia, datc$r.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.dia and datc$r.dia
## W = 4540, p-value = 3.421e-05
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx$x.tamax, datc$r.tamax)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.tamax and datc$r.tamax
## W = 5884.5, p-value = 0.1628
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx$x.bf, datc$r.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.bf and datc$r.bf
## W = 4921.5, p-value = 0.0009396
## alternative hypothesis: true location shift is not equal to 0
There were statistically significant differences between the irradiated IMA and the right IMA in the control group with regard to diameter and blood flow, however, tamax was not significantly different between two groups
wilcox.test(datx$x.dia, datc.all.dia$value)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.dia and datc.all.dia$value
## W = 9263.5, p-value = 3.649e-06
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx$x.tamax, datc.all.tamax$value)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.tamax and datc.all.tamax$value
## W = 12226, p-value = 0.2709
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx$x.bf, datc.all.bf$value)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx$x.bf and datc.all.bf$value
## W = 10302, p-value = 0.000869
## alternative hypothesis: true location shift is not equal to 0
There were statistically significant differences between the irradiated IMA and both IMA in the control group with regard to diameter and blood flow, however, tamax was not significantly different between two groups
wilcox.test(datxl$l.dia, datc$l.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.dia and datc$l.dia
## W = 2612.5, p-value = 0.009821
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxl$l.tamax, datc$l.tamax)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.tamax and datc$l.tamax
## W = 2857, p-value = 0.08123
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxl$l.bf, datc$l.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.bf and datc$l.bf
## W = 2559, p-value = 0.006979
## alternative hypothesis: true location shift is not equal to 0
There were statistically significant differences between the left irradiated IMA and the left IMA in the control group with regard to diameter and blood flow, however, tamax was not significantly different between two groups
wilcox.test(datxr$r.dia, datc$r.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxr$r.dia and datc$r.dia
## W = 2014.5, p-value = 6.249e-05
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxr$r.tamax, datc$r.tamax)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxr$r.tamax and datc$r.tamax
## W = 3239, p-value = 0.8605
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxr$r.bf, datc$r.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxr$r.bf and datc$r.bf
## W = 2590, p-value = 0.04617
## alternative hypothesis: true location shift is not equal to 0
There was significant difference between the left irradiated IMA and the left IMA in the control group with regard to diameter, however, the blood flow was not significantly different between two groups.
wilcox.test(datxl$l.dia,datxl$r.dia )
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.dia and datxl$r.dia
## W = 1366, p-value = 0.002266
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxl$l.tamax,datxl$r.tamax )
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.tamax and datxl$r.tamax
## W = 1384, p-value = 0.003417
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxl$l.bf,datxl$r.bf )
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxl$l.bf and datxl$r.bf
## W = 1186, p-value = 9.877e-05
## alternative hypothesis: true location shift is not equal to 0
Subgroup analysis showed that there were significant differences between the left irradiated and the controlateral non-irradiated IMA in term of the diameter, time-averaged peak systolic velocity and blood flow.
wilcox.test(datxr$r.dia,datxr$l.dia )
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxr$r.dia and datxr$l.dia
## W = 993.5, p-value = 4.075e-05
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxr$r.tamax,datxr$l.tamax )
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxr$r.tamax and datxr$l.tamax
## W = 1950.5, p-value = 0.2595
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datxr$r.bf,datxr$l.bf )
##
## Wilcoxon rank sum test with continuity correction
##
## data: datxr$r.bf and datxr$l.bf
## W = 1529, p-value = 0.2561
## alternative hypothesis: true location shift is not equal to 0
Subgroup analysis showed that there was a significant difference between the right irradiated and the left non-irradiated IMA in term of the diameter (P < 0.0001); however, there were not significant differences in term of time-averaged peak velocity and bood flow (P= 0.19, P=0.3, respectively)
datx$d1 <- as.Date(datx$datex, format = "%m/%d/%y")
datx$d2 <- as.Date(datx$datep, format = "%m/%d/%y")
datx$rx.days= datx$d2-datx$d1
datx$rx.months = datx$days/30
datx$rx.months <- as.numeric(datx$rx.months)
cor.test(datx$rx.months,datx$x.dia, method = "spearman")
## Warning in cor.test.default(datx$rx.months, datx$x.dia, method = "spearman"):
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datx$rx.months and datx$x.dia
## S = 357247, p-value = 0.04663
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.1805083
cor.test(datx$rx.months, datx$x.bf, method = "spearman")
## Warning in cor.test.default(datx$rx.months, datx$x.bf, method = "spearman"):
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datx$rx.months and datx$x.bf
## S = 353746, p-value = 0.06286
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.1689399
scatterplot(datx$days ~ datx$x.dia, pch=16, smooth=F, col="blue", lwd=2, xlab="Diameter of the radiated IMA", ylab="Time from radiation completion")
scatterplot(datx$days ~ datx$x.bf, pch=16, smooth=F, col="blue", lwd=2, xlab="Blood flow of the radiated IMA", ylab="Time from radiation completion")
scatterplot(datx$rx.months ~ datx$x.dia, pch=16, smooth=F, col="blue", lwd=2, xlab="Diameter of the radiated IMA", ylab="Time from radiation completion")
scatterplot(datx$rx.months ~ datx$x.bf, pch=16, smooth=F, col="blue", lwd=2, xlab="Blood flow of the radiated IMA", ylab="Time from radiation completion")
cor.test(datc$age, datc$l.dia, method = "spearman")
## Warning in cor.test.default(datc$age, datc$l.dia, method = "spearman"): Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datc$age and datc$l.dia
## S = 185118, p-value = 0.2231
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.1182081
cor.test(datc$age, datc$r.dia, method="spearman")
## Warning in cor.test.default(datc$age, datc$r.dia, method = "spearman"): Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datc$age and datc$r.dia
## S = 194349, p-value = 0.4451
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.07423567
cor.test(datx$age, datx$cx.dia, method = "spearman")
## Warning in cor.test.default(datx$age, datx$cx.dia, method = "spearman"): Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datx$age and datx$cx.dia
## S = 290572, p-value = 0.6632
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.03981668
cor.test(datx$age, datx$cx.bf, method = "spearman")
## Warning in cor.test.default(datx$age, datx$cx.bf, method = "spearman"): Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: datx$age and datx$cx.bf
## S = 292028, p-value = 0.7019
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.03500423
datx49= subset(datx,age<50)
datx50= subset(datx, age>=50)
wilcox.test(datx49$cx.dia, datx50$cx.dia)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx49$cx.dia and datx50$cx.dia
## W = 1654, p-value = 0.9736
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(datx49$cx.bf, datx50$cx.bf)
##
## Wilcoxon rank sum test with continuity correction
##
## data: datx49$cx.bf and datx50$cx.bf
## W = 1663, p-value = 0.9914
## alternative hypothesis: true location shift is not equal to 0
summary(datx$rx.months)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.367 21.017 33.650 37.933 53.983 230.567