# List of packages
packages <- c("tidyverse", "modelsummary", "forcats", "RColorBrewer", 
              "fst", "viridis", "knitr", "rmarkdown", "ggridges", "viridis", "questionr", "flextable", "infer") # add any you need here

# Install packages if they aren't installed already
new_packages <- packages[!(packages %in% installed.packages()[,"Package"])]
if(length(new_packages)) install.packages(new_packages)

# Load the packages
lapply(packages, library, character.only = TRUE)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: viridisLite
## 
## 
## Attaching package: 'flextable'
## 
## 
## The following object is masked from 'package:purrr':
## 
##     compose
## [[1]]
##  [1] "lubridate" "forcats"   "stringr"   "dplyr"     "purrr"     "readr"    
##  [7] "tidyr"     "tibble"    "ggplot2"   "tidyverse" "stats"     "graphics" 
## [13] "grDevices" "utils"     "datasets"  "methods"   "base"     
## 
## [[2]]
##  [1] "modelsummary" "lubridate"    "forcats"      "stringr"      "dplyr"       
##  [6] "purrr"        "readr"        "tidyr"        "tibble"       "ggplot2"     
## [11] "tidyverse"    "stats"        "graphics"     "grDevices"    "utils"       
## [16] "datasets"     "methods"      "base"        
## 
## [[3]]
##  [1] "modelsummary" "lubridate"    "forcats"      "stringr"      "dplyr"       
##  [6] "purrr"        "readr"        "tidyr"        "tibble"       "ggplot2"     
## [11] "tidyverse"    "stats"        "graphics"     "grDevices"    "utils"       
## [16] "datasets"     "methods"      "base"        
## 
## [[4]]
##  [1] "RColorBrewer" "modelsummary" "lubridate"    "forcats"      "stringr"     
##  [6] "dplyr"        "purrr"        "readr"        "tidyr"        "tibble"      
## [11] "ggplot2"      "tidyverse"    "stats"        "graphics"     "grDevices"   
## [16] "utils"        "datasets"     "methods"      "base"        
## 
## [[5]]
##  [1] "fst"          "RColorBrewer" "modelsummary" "lubridate"    "forcats"     
##  [6] "stringr"      "dplyr"        "purrr"        "readr"        "tidyr"       
## [11] "tibble"       "ggplot2"      "tidyverse"    "stats"        "graphics"    
## [16] "grDevices"    "utils"        "datasets"     "methods"      "base"        
## 
## [[6]]
##  [1] "viridis"      "viridisLite"  "fst"          "RColorBrewer" "modelsummary"
##  [6] "lubridate"    "forcats"      "stringr"      "dplyr"        "purrr"       
## [11] "readr"        "tidyr"        "tibble"       "ggplot2"      "tidyverse"   
## [16] "stats"        "graphics"     "grDevices"    "utils"        "datasets"    
## [21] "methods"      "base"        
## 
## [[7]]
##  [1] "knitr"        "viridis"      "viridisLite"  "fst"          "RColorBrewer"
##  [6] "modelsummary" "lubridate"    "forcats"      "stringr"      "dplyr"       
## [11] "purrr"        "readr"        "tidyr"        "tibble"       "ggplot2"     
## [16] "tidyverse"    "stats"        "graphics"     "grDevices"    "utils"       
## [21] "datasets"     "methods"      "base"        
## 
## [[8]]
##  [1] "rmarkdown"    "knitr"        "viridis"      "viridisLite"  "fst"         
##  [6] "RColorBrewer" "modelsummary" "lubridate"    "forcats"      "stringr"     
## [11] "dplyr"        "purrr"        "readr"        "tidyr"        "tibble"      
## [16] "ggplot2"      "tidyverse"    "stats"        "graphics"     "grDevices"   
## [21] "utils"        "datasets"     "methods"      "base"        
## 
## [[9]]
##  [1] "ggridges"     "rmarkdown"    "knitr"        "viridis"      "viridisLite" 
##  [6] "fst"          "RColorBrewer" "modelsummary" "lubridate"    "forcats"     
## [11] "stringr"      "dplyr"        "purrr"        "readr"        "tidyr"       
## [16] "tibble"       "ggplot2"      "tidyverse"    "stats"        "graphics"    
## [21] "grDevices"    "utils"        "datasets"     "methods"      "base"        
## 
## [[10]]
##  [1] "ggridges"     "rmarkdown"    "knitr"        "viridis"      "viridisLite" 
##  [6] "fst"          "RColorBrewer" "modelsummary" "lubridate"    "forcats"     
## [11] "stringr"      "dplyr"        "purrr"        "readr"        "tidyr"       
## [16] "tibble"       "ggplot2"      "tidyverse"    "stats"        "graphics"    
## [21] "grDevices"    "utils"        "datasets"     "methods"      "base"        
## 
## [[11]]
##  [1] "questionr"    "ggridges"     "rmarkdown"    "knitr"        "viridis"     
##  [6] "viridisLite"  "fst"          "RColorBrewer" "modelsummary" "lubridate"   
## [11] "forcats"      "stringr"      "dplyr"        "purrr"        "readr"       
## [16] "tidyr"        "tibble"       "ggplot2"      "tidyverse"    "stats"       
## [21] "graphics"     "grDevices"    "utils"        "datasets"     "methods"     
## [26] "base"        
## 
## [[12]]
##  [1] "flextable"    "questionr"    "ggridges"     "rmarkdown"    "knitr"       
##  [6] "viridis"      "viridisLite"  "fst"          "RColorBrewer" "modelsummary"
## [11] "lubridate"    "forcats"      "stringr"      "dplyr"        "purrr"       
## [16] "readr"        "tidyr"        "tibble"       "ggplot2"      "tidyverse"   
## [21] "stats"        "graphics"     "grDevices"    "utils"        "datasets"    
## [26] "methods"      "base"        
## 
## [[13]]
##  [1] "infer"        "flextable"    "questionr"    "ggridges"     "rmarkdown"   
##  [6] "knitr"        "viridis"      "viridisLite"  "fst"          "RColorBrewer"
## [11] "modelsummary" "lubridate"    "forcats"      "stringr"      "dplyr"       
## [16] "purrr"        "readr"        "tidyr"        "tibble"       "ggplot2"     
## [21] "tidyverse"    "stats"        "graphics"     "grDevices"    "utils"       
## [26] "datasets"     "methods"      "base"
# read data
ess <- read_fst("All-ESS-Data.fst")

Mission 1

Launch a new R project and R markdown file. Name it “Lastname_Firstname_Project_202”. Set up your environment with packages you will use.

Mission 2

Filter:

uk_data <- ess %>% 
  filter(cntry == "GR") 

Saving the dataset

write_fst(uk_data, "~/Desktop/School/Courses/soc202/uk_data.fst") 
getwd()
## [1] "/Users/rileyyang/Desktop/School/Courses/soc202/riley_y_soc202project"

Mission 3

rm(list=ls()); gc()
##           used (Mb) gc trigger   (Mb) limit (Mb)   max used    (Mb)
## Ncells 1262580 67.5    2128808  113.7         NA    2128808   113.7
## Vcells 2151950 16.5 1257022127 9590.4      16384 1338827798 10214.5
df <- read_fst("~/Desktop/School/Courses/soc202/uk_data.fst")

Mission 4

Produce and save a data summary output (using data summary skim) for potential outcomes of interest on a similar scale (e.g., 0-10, or 1 to 6, or binary). Add a title. You can do so while coding (explore package information for flextable and/or modelsummary) or add it directly in the word file. Title should be something like: Table 1: Descriptive Statistics for outcome variables. You can alter the title as you see fit.

df$year <- NA
replacements <- c(2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020)
for(i in 1:10){
  df$year[df$essround == i] <- replacements[i]
}

uk_data <- df

# make sure you know your current folder path. you can do getwd() to check
uk_data_table_subset <- uk_data %>%
  mutate(
    polintr = ifelse(polintr %in% c(7, 8, 9), NA, polintr), 
    pplfair = ifelse(pplfair %in% c(77, 88, 99), NA, pplfair), 
    ppltrst = ifelse(ppltrst %in% c(77, 88, 99), NA, ppltrst) 
  )

summary_table <- datasummary_skim(uk_data_table_subset %>% select(polintr, pplfair, ppltrst), output = "flextable")
## Warning: The histogram argument is only supported for (a) output types "default",
##   "html", "kableExtra", or "gt"; (b) writing to file paths with extensions
##   ".html", ".jpg", or ".png"; and (c) Rmarkdown, knitr or Quarto documents
##   compiled to PDF (via kableExtra)  or HTML (via kableExtra or gt). Use
##   `histogram=FALSE` to silence this warning.
summary_table

Unique (#)

Missing (%)

Mean

SD

Min

Median

Max

polintr

5

0

3.0

0.9

1.0

3.0

4.0

pplfair

12

0

4.0

2.2

0.0

4.0

10.0

ppltrst

12

0

4.0

2.3

0.0

4.0

10.0

Note: you well get a warning, just ignore it.

Now let’s change the variable labels to be clearer. Here’s how to do it tidyverse style.

uk_data_v2 <- uk_data_table_subset %>%
  mutate(
    `How interested in politics` = polintr,
    `Trust in most people` = ppltrst,
    `Fairness in most people` = pplfair
  )

Check our table again.

summary_table_v2 <- datasummary_skim(uk_data_v2 %>% select(c("How interested in politics","Trust in most people", "Fairness in most people")), output = "flextable")
## Warning: The histogram argument is only supported for (a) output types "default",
##   "html", "kableExtra", or "gt"; (b) writing to file paths with extensions
##   ".html", ".jpg", or ".png"; and (c) Rmarkdown, knitr or Quarto documents
##   compiled to PDF (via kableExtra)  or HTML (via kableExtra or gt). Use
##   `histogram=FALSE` to silence this warning.
summary_table_v2

Unique (#)

Missing (%)

Mean

SD

Min

Median

Max

How interested in politics

5

0

3.0

0.9

1.0

3.0

4.0

Trust in most people

12

0

4.0

2.3

0.0

4.0

10.0

Fairness in most people

12

0

4.0

2.2

0.0

4.0

10.0

Mission 5

Produce and save a data summary output (using data summary skim) for socio-demographic variables. Add a title. You can do so while coding (explore package information for flextable and/or modelsummary) or add it directly in the word file. Title should be something like: Table 1: Descriptive Statistics for socio-demographic variables. You can alter the title as you see fit.

Mission 6

Produce and save a plot as a PDF for your outcome of interest (any will do here).

# Calculate the mean of trstprl by year and clsprty
avg_ppltrst_by_year <- aggregate(ppltrst ~ year + polintr, data=uk_data_table_subset, mean)

# Storing plot as p1
p1 <- ggplot(avg_ppltrst_by_year, aes(x=year, y=ppltrst, color=as.factor(polintr))) + 
  geom_line(aes(group=polintr)) +
  labs(title="Mean of Trust in People by Survey Year", 
       subtitle = "in relations to how interested",
       x="Survey Year", 
       y="Average Trust in People (trust increases from 0 to 10)") +
  scale_color_discrete(name="How interested in politics", labels=c("Not at all interested", "Hardly interested", "Quite interested", "Very interested")) +
  theme_minimal()

p1

ggsave(filename = "Mean of Trust in People by Survey Year.pdf", plot = p1, device = "pdf", width = 6, height = 4)