This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
packages <- c("tidyverse", "modelsummary", "forcats", "RColorBrewer",
"fst", "viridis", "knitr", "rmarkdown", "ggridges", "viridis", "questionr", "flextable", "infer")
new_packages <- packages[!(packages %in% installed.packages()[,"Package"])]
if(length(new_packages)) install.packages(new_packages)
lapply(packages, library, character.only = TRUE)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: viridisLite
##
##
## Attaching package: 'flextable'
##
##
## The following object is masked from 'package:purrr':
##
## compose
## [[1]]
## [1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [13] "grDevices" "utils" "datasets" "methods" "base"
##
## [[2]]
## [1] "modelsummary" "lubridate" "forcats" "stringr" "dplyr"
## [6] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [11] "tidyverse" "stats" "graphics" "grDevices" "utils"
## [16] "datasets" "methods" "base"
##
## [[3]]
## [1] "modelsummary" "lubridate" "forcats" "stringr" "dplyr"
## [6] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [11] "tidyverse" "stats" "graphics" "grDevices" "utils"
## [16] "datasets" "methods" "base"
##
## [[4]]
## [1] "RColorBrewer" "modelsummary" "lubridate" "forcats" "stringr"
## [6] "dplyr" "purrr" "readr" "tidyr" "tibble"
## [11] "ggplot2" "tidyverse" "stats" "graphics" "grDevices"
## [16] "utils" "datasets" "methods" "base"
##
## [[5]]
## [1] "fst" "RColorBrewer" "modelsummary" "lubridate" "forcats"
## [6] "stringr" "dplyr" "purrr" "readr" "tidyr"
## [11] "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [16] "grDevices" "utils" "datasets" "methods" "base"
##
## [[6]]
## [1] "viridis" "viridisLite" "fst" "RColorBrewer" "modelsummary"
## [6] "lubridate" "forcats" "stringr" "dplyr" "purrr"
## [11] "readr" "tidyr" "tibble" "ggplot2" "tidyverse"
## [16] "stats" "graphics" "grDevices" "utils" "datasets"
## [21] "methods" "base"
##
## [[7]]
## [1] "knitr" "viridis" "viridisLite" "fst" "RColorBrewer"
## [6] "modelsummary" "lubridate" "forcats" "stringr" "dplyr"
## [11] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [16] "tidyverse" "stats" "graphics" "grDevices" "utils"
## [21] "datasets" "methods" "base"
##
## [[8]]
## [1] "rmarkdown" "knitr" "viridis" "viridisLite" "fst"
## [6] "RColorBrewer" "modelsummary" "lubridate" "forcats" "stringr"
## [11] "dplyr" "purrr" "readr" "tidyr" "tibble"
## [16] "ggplot2" "tidyverse" "stats" "graphics" "grDevices"
## [21] "utils" "datasets" "methods" "base"
##
## [[9]]
## [1] "ggridges" "rmarkdown" "knitr" "viridis" "viridisLite"
## [6] "fst" "RColorBrewer" "modelsummary" "lubridate" "forcats"
## [11] "stringr" "dplyr" "purrr" "readr" "tidyr"
## [16] "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [21] "grDevices" "utils" "datasets" "methods" "base"
##
## [[10]]
## [1] "ggridges" "rmarkdown" "knitr" "viridis" "viridisLite"
## [6] "fst" "RColorBrewer" "modelsummary" "lubridate" "forcats"
## [11] "stringr" "dplyr" "purrr" "readr" "tidyr"
## [16] "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [21] "grDevices" "utils" "datasets" "methods" "base"
##
## [[11]]
## [1] "questionr" "ggridges" "rmarkdown" "knitr" "viridis"
## [6] "viridisLite" "fst" "RColorBrewer" "modelsummary" "lubridate"
## [11] "forcats" "stringr" "dplyr" "purrr" "readr"
## [16] "tidyr" "tibble" "ggplot2" "tidyverse" "stats"
## [21] "graphics" "grDevices" "utils" "datasets" "methods"
## [26] "base"
##
## [[12]]
## [1] "flextable" "questionr" "ggridges" "rmarkdown" "knitr"
## [6] "viridis" "viridisLite" "fst" "RColorBrewer" "modelsummary"
## [11] "lubridate" "forcats" "stringr" "dplyr" "purrr"
## [16] "readr" "tidyr" "tibble" "ggplot2" "tidyverse"
## [21] "stats" "graphics" "grDevices" "utils" "datasets"
## [26] "methods" "base"
##
## [[13]]
## [1] "infer" "flextable" "questionr" "ggridges" "rmarkdown"
## [6] "knitr" "viridis" "viridisLite" "fst" "RColorBrewer"
## [11] "modelsummary" "lubridate" "forcats" "stringr" "dplyr"
## [16] "purrr" "readr" "tidyr" "tibble" "ggplot2"
## [21] "tidyverse" "stats" "graphics" "grDevices" "utils"
## [26] "datasets" "methods" "base"
ess <- read_fst("All-ESS-Data.fst")
germany_data <- ess %>%
filter(cntry == "DE")
Mission 1 Launch a new R project and R markdown file. Name it “Lastname_Firstname_Project_202”. Set up your environment with packages you will use.
Mission 2 Filter to your country of interest and save the dataset.
write_fst(germany_data, "/Users/linjessica/Desktop/SOC202/germany_data.fst")
Mission 3 Clean your environment and load in the filtered dataset.
rm(list=ls()); gc()
## used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 1267793 67.8 2144382 114.6 NA 2144382 114.6
## Vcells 2146915 16.4 1257014840 9590.3 16384 1396891378 10657.5
df <- read_fst("/Users/linjessica/Desktop/SOC202/germany_data.fst")
Mission 4 Produce and save a data summary output (using data summary skim) for potential outcomes of interest on a similar scale (e.g., 0-10, or 1 to 6, or binary). Add a title. You can do so while coding (explore package information for flextable and/or modelsummary) or add it directly in the word file. Title should be something like: Table 1: Descriptive Statistics for outcome variables. You can alter the title as you see fit.
df$year <- NA
replacements <- c(2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020)
for(i in 1:10){
df$year[df$essround == i] <- replacements[i]
}
germany_data <- df
germany_data_table_subset <- germany_data %>%
mutate(
eisced = ifelse(eisced == 2, 0, ifelse(eisced %in% c(77, 88, 99), NA, eisced)),
eiscedp = ifelse(eiscedp %in% c(66,77, 88, 99), NA, eiscedp),
eiscedf = ifelse(eiscedf %in% c(77, 88, 99), NA, eiscedf)
)
summary_table <- datasummary_skim(germany_data_table_subset %>% select(eisced, eiscedp, eiscedf), output = "flextable")
## Warning: The histogram argument is only supported for (a) output types "default",
## "html", "kableExtra", or "gt"; (b) writing to file paths with extensions
## ".html", ".jpg", or ".png"; and (c) Rmarkdown, knitr or Quarto documents
## compiled to PDF (via kableExtra) or HTML (via kableExtra or gt). Use
## `histogram=FALSE` to silence this warning.
summary_table
| Unique (#) | Missing (%) | Mean | SD | Min | Median | Max |
|---|---|---|---|---|---|---|---|
eisced | 9 | 1 | 4.0 | 3.2 | 0.0 | 3.0 | 55.0 |
eiscedp | 9 | 54 | 4.4 | 3.1 | 1.0 | 3.0 | 55.0 |
eiscedf | 9 | 56 | 3.9 | 3.4 | 1.0 | 3.0 | 55.0 |
germany_data_v2 <- germany_data_table_subset %>%
rename(
`Highest Level of Education` = eisced,
`Partner's Highest Level of Education` = eiscedp,
`Father's Highest Level of Education` = eiscedf
)
summary_table_v2 <- datasummary_skim(germany_data_v2 %>% select(`Highest Level of Education`,`Partner's Highest Level of Education`, `Father's Highest Level of Education`), output = "flextable")
## Warning: The histogram argument is only supported for (a) output types "default",
## "html", "kableExtra", or "gt"; (b) writing to file paths with extensions
## ".html", ".jpg", or ".png"; and (c) Rmarkdown, knitr or Quarto documents
## compiled to PDF (via kableExtra) or HTML (via kableExtra or gt). Use
## `histogram=FALSE` to silence this warning.
summary_table_v2 <- add_header_lines(summary_table_v2, values = "Table 1: Descriptive Statistics for outcome variables")
summary_table_v2
Table 1: Descriptive Statistics for outcome variables | |||||||
|---|---|---|---|---|---|---|---|
| Unique (#) | Missing (%) | Mean | SD | Min | Median | Max |
Highest Level of Education | 9 | 1 | 4.0 | 3.2 | 0.0 | 3.0 | 55.0 |
Partner's Highest Level of Education | 9 | 54 | 4.4 | 3.1 | 1.0 | 3.0 | 55.0 |
Father's Highest Level of Education | 9 | 56 | 3.9 | 3.4 | 1.0 | 3.0 | 55.0 |
flextable::save_as_docx(summary_table_v2, path = "summary_table_v2.docx",
width = 7.0, height = 7.0)
Mission 6 Produce and save a plot as a PDF for your outcome of interest (any will do here).
avg_eisced_by_year <- aggregate(eisced ~ year + eiscedp, data=germany_data_table_subset, mean)
p1 <- ggplot(avg_eisced_by_year, aes(x=year, y=eiscedp, color=as.factor(eiscedp))) +
geom_line(aes(group=eiscedp)) +
labs(title="Mean of Highest Level of Education",
subtitle = "for those Partner's Highest Level of Education in Germany",
x="Survey Year",
y="Average Highest Level of Education") +
scale_color_discrete(name="Education Level", labels=c("Not possible to harmonise into ES-ISCED", "ES-ISCED I , less than lower secondary","ES-ISCED II, lower secondary","ES-ISCED IIIb, lower tier upper secondary","ES-ISCED IIIa, upper tier upper secondary","ES-ISCED IV, advanced vocational, sub-degree","ES-ISCED V1, lower tertiary education, BA level","ES-ISCED V2, higher tertiary education, >= MA level","Other")) +
theme_minimal()
p1
ggsave(filename = "plot1.pdf", plot = p1, device = "pdf", width = 40, height = 8)