library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
## (status 2 uses the sf package in place of rgdal)
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
Integrasi dalam konteks mosaic calculus melibatkan konsep integral mosaik, yang merupakan generalisasi dari integral Riemann dalam kalkulus konvensional. Integral mosaik memungkinkan kita untuk mengatasi situasi yang lebih kompleks dan umum daripada metode integral klasik. Berikut adalah materi yang berkaitan dengan integrasi dan integral dalam mosaic calculus:
tmp <- rfun(~ t, seed=982)
tmp2 <- rfun(~ t, seed = 2932)
tmp3 <- rfun(~ t, seed = 43)
windspeed <- function(t) {
abs(tmp((t - 5)*3) + tmp2((t - 10)*2) + tmp3((t - 15)*4))
}
speed2power <- function(s) {
pmin(ifelse(s < 5, 0, (s-2)^3), 5000)
}
slice_plot(windspeed(t) ~ t, bounds(t=c(0, 24)))