library(ggplot2)
library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
## 
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
## 
##     count, tally
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
##      (status 2 uses the sf package in place of rgdal)
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D

Graphical Optimization dalam konteks Mosaic Calculus adalah pendekatan yang menggabungkan konsep kalkulus, grafik, dan optimisasi untuk memahami dan menyelesaikan masalah optimisasi dengan bantuan visualisasi. Dalam Graphical Optimization, informasi yang disajikan dalam bentuk grafik atau visual digunakan untuk membantu mengidentifikasi solusi yang optimal atau paling baik.

Berikut adalah beberapa aspek penting dari Graphical Optimization dalam konteks Mosaic Calculus:

  1. Visualisasi Fungsi Objektif: Graphical Optimization fokus pada visualisasi fungsi objektif (misalnya, fungsi biaya atau keuntungan) dalam bentuk grafik. Grafik ini memungkinkan kita untuk dengan jelas melihat bagaimana fungsi berperilaku dalam berbagai kondisi.

  2. Identifikasi Titik Optimal: Dalam grafik fungsi objektif, titik optimal yang diinginkan dapat diidentifikasi sebagai puncak tertinggi atau lembah terendah dalam grafik. Hal ini memungkinkan kita untuk secara visual mengenali solusi yang optimal.

  3. Inklusi Kendala dan Batasan: Selain fungsi objektif, Graphical Optimization juga dapat memasukkan visualisasi batasan atau kendala yang harus dipatuhi. Ini membantu dalam mengidentifikasi wilayah di mana solusi optimal harus berada.

  4. Interaktif: Graphical Optimization bisa menjadi interaktif, di mana pengguna dapat memanipulasi grafik, mengubah parameter, dan melihat dampaknya pada solusi. Ini memungkinkan eksplorasi lebih lanjut dalam mencari solusi optimal.

  5. Menggabungkan Konsep Mosaic Calculus: Graphical Optimization dalam Mosaic Calculus mengintegrasikan konsep-konsep kalkulus dan optimisasi dengan visualisasi. Ini berarti bahwa perubahan dalam grafik akan tercermin dalam perubahan dalam perhitungan matematika yang mendasari solusi optimal.

Contoh sederhana dari Graphical Optimization dalam konteks Mosaic Calculus mungkin melibatkan fungsi objektif yang mencakup biaya dan pendapatan dalam bisnis. Grafik akan menunjukkan di mana titik impas terjadi (di mana biaya dan pendapatan sama), dan dengan cara visual, kita dapat mengidentifikasi titik di mana laba maksimal dicapai.

# Fungsi yang akan dioptimalkan
f <- function(x) x^2 + 2*x + 1

# Membuat dataset dengan berbagai nilai x
x_values <- seq(-5, 5, by = 0.1)
y_values <- f(x_values)
df <- data.frame(x = x_values, y = y_values)

# Membuat grafik
ggplot(df, aes(x, y)) +
  geom_line() +
  geom_point() +
  labs(title = "Numerical Optimization using Gradient Descent", x = "x", y = "f(x)")

Penting untuk diingat bahwa Graphical Optimization adalah alat bantu yang kuat dalam pemahaman masalah optimisasi, tetapi pada masalah yang lebih kompleks, solusi yang diperoleh dari visualisasi mungkin memerlukan bantuan perangkat lunak dan perhitungan matematis yang lebih canggih.