library(ggplot2)
mpg <- as.data.frame(ggplot2::mpg)
ggplot(data = mpg, aes(x= cty, y= hwy)) + geom_point()
midwest <- as.data.frame(ggplot2::midwest)
ggplot(data = midwest, aes(x= poptotal, y = popasian)) +
geom_point() +
xlim(0, 500000) +
ylim(0, 10000)
## Warning: Removed 15 rows containing missing values (`geom_point()`).
library(dplyr)
##
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df <- mpg %>%
filter(class == "suv") %>%
group_by(manufacturer) %>%
summarise(mean_cty = mean(cty)) %>%
arrange(desc(mean_cty)) %>%
head(5)
ggplot(data = df, aes(x = reorder(manufacturer, -mean_cty), y = mean_cty)) + geom_col()
economics <- as.data.frame(ggplot2::economics)
ggplot(data = economics, aes(x = date, y = psavert)) + geom_line()
class_mpg <- mpg %>%
filter(class %in% c("compact", "subcompact", "suv"))
ggplot(data = class_mpg, aes(x = class, y = cty)) + geom_boxplot()
getwd()
## [1] "C:/Users/user/OneDrive/바탕 화면"
setwd("C:\\Users\\user\\OneDrive\\바탕 화면\\R")
read.table("korean_data.txt", fileEncoding="utf-8", head=T) -> korean
korean$gender <- substr(korean$stimulus, 1,1)
ggplot(data = korean, aes(x = gender, y = response)) + geom_boxplot()
boxplot(korean$response)$stats
## [,1]
## [1,] 1
## [2,] 1
## [3,] 4
## [4,] 7
## [5,] 7
25%의 값은 1이고, median의 값은 4이고, 75%의 값은 7이다.