1 Setup

Libraries and functions

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 

Mypackages <-
  c("lme4","tidyverse","effects","ggplot2","psych",
    "MASS","Rmisc","lmerTest","ggthemes", "knitr",
    "lsmeans","pastecs","sjstats","car","ordinal",
    "Rcpp","corrplot", "ggpubr", "EnvStats",
    "easyStats", "cowplot","see","datawizard", 
    "ggcorrplot", "lavaan")

# install.packages(Mypackages) #you must remove the # in this comment if you need to install the packages! 
lapply(Mypackages,
       require,
       character.only = TRUE)

options(knitr.kable.NA = '—')
set.seed(1)  

1.1 Load Data

# read in data files
setwd("~/Desktop")
gjg_raw <-read.csv("/Users/mtrenfield17/Desktop/Research/Boston College Research/SISC Lab Research/I:S Project/Study 2a (Text & Drive)/Scope Project Study 2a.csv")

1.2 Functions

plot_cooker <- function(data, iv, dv) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("")
  ggpar(part1, legend = "none")
}
  
pol_line <- function(data, iv, dv) {
  ggplot(data, aes(x = {{iv}}, y = {{dv}}, color = condition)) +
  stat_summary(fun.data = "mean_cl_normal", geom = "line") +
  geom_point(position = position_jitter(width = 0.1, height = 0.1), alpha = 0.5) +
  labs(x = "Political Leaning", color = "Condition")
}

lizy_cooker <- function(dv, iv, Title, x_axis_labs, y_label, sample_size, coln, rown) {
  part1 <- ggviolin(gjg, x = dv, y = iv, color = dv,
                    alpha = 0.1, fill = dv, xlab = "Motive",
                    trim = TRUE, ylab = y_label) +
    stat_summary(fun.data = "mean_cl_normal", geom = "crossbar", fatten = 1) +
    scale_y_continuous(breaks = c(1:7)) +
    labs(title = paste0(Title, " (n = ", sample_size, ")")) +
    theme(panel.background = element_rect(fill = "transparent"), 
          legend.position = "right",  ## Consider “gray97” for fill
          plot.title = element_text(face = "bold", hjust = 0.5, size = 16), 
          plot.subtitle = element_text(hjust = 0.5),
          panel.grid.major.y = element_line(color='grey75'), 
          axis.text.x = element_text(face = "plain", size = 13, color = "black"),
          axis.text.y = element_text(face = "plain", size = 13, color = "black"),
          axis.title.y = element_text(face = "plain", size = 13, color = "black", 
                                       margin = margin(t = 0, r = 10, b = 0, l = 0)), ## lower X axis title
          panel.border = element_rect(color = "black", fill = NA, size = 1)) +
  scale_color_discrete(name = "Condition") +
  facet_wrap(~ vignette, ncol = coln, nrow = rown, scales = "free", as.table = TRUE)
  ggpar(part1, legend = "none")
}

#POL_gjg_long <- filter(gjg_long, political_overall %in% c("Democrat", "Republican"))
  
#gjg_long$political_overall
#ggplot(gjg_long, aes(x = condition, y = p_approve, color = condition)) +
  #geom_point(stat="summary", fun="mean", size = 2) +
  #facet_wrap(~political_overall) +
  #scale_x_discrete(labels = NULL)

1.3 Reshaping data

#### filtering people who failed the attn check ####
gjg <- gjg_raw %>% filter(attentionCheck == 4)

## changing condition to factor and reordering ##
gjg$condition <- as.factor(gjg$condition)
gjg$condition <- factor(gjg$condition, levels = c("individualScope", "populationScope", "mergedScope"))

# changing numeric DVs to numeric
gjg <- gjg %>% mutate_at(vars(policyDV, donation, helpDV_1, helpDV_2, helpDV_3, helpDV_4, preventDV_1, preventDV_2, preventDV_3, preventDV_4, feelingsMeasures_1, feelingsMeasures_2, feelingsMeasures_3, moral_1, moral_2, moral_3, blame_1, blame_2, efficacy_1, efficacy_2, efficacy_3, efficacy_4, age, pol, pid, edu, inc), as.numeric)

## renaming matrix variables
names(gjg)[names(gjg) == 'helpDV_1'] <-'usGovHelp'
names(gjg)[names(gjg) == 'helpDV_2'] <-'manufacturerHelp'
names(gjg)[names(gjg) == 'helpDV_3'] <-'driverHelp'
names(gjg)[names(gjg) == 'helpDV_4'] <-'youHelp'

names(gjg)[names(gjg) == 'preventDV_1'] <-'usGovPrevent'
names(gjg)[names(gjg) == 'preventDV_2'] <-'manufacturerPrevent'
names(gjg)[names(gjg) == 'preventDV_3'] <-'driverPrevent'
names(gjg)[names(gjg) == 'preventDV_4'] <-'youPrevent'

names(gjg)[names(gjg) == 'feelingsMeasures_1'] <-'upset'
names(gjg)[names(gjg) == 'feelingsMeasures_2'] <-'sympathetic'
names(gjg)[names(gjg) == 'feelingsMeasures_3'] <-'touched'

names(gjg)[names(gjg) == 'moral_1'] <-'donatingMoral'
names(gjg)[names(gjg) == 'moral_2'] <-'takingPrecautionsMoral'
names(gjg)[names(gjg) == 'moral_3'] <-'manufacturersMoral'

names(gjg)[names(gjg) == 'blame_1'] <-'manufacturerBlame'
names(gjg)[names(gjg) == 'blame_2'] <-'individualsBlame'

names(gjg)[names(gjg) == 'efficacy_1'] <-'studyDonationEfficacy'
names(gjg)[names(gjg) == 'efficacy_2'] <-'studyPolicyEfficacy'
names(gjg)[names(gjg) == 'efficacy_3'] <-'donationEfficacy'
names(gjg)[names(gjg) == 'efficacy_4'] <-'punishingIndividualsEfficacy'

2 Attention Check

gjg_raw <- gjg_raw %>% filter(consent == 8)

gjg_raw %>%
  group_by(attentionCheck) %>%
  dplyr::summarise(n = n()) %>%
  mutate(freq = n / sum(n))

8 participants failed the attention check.

3 Demographics

# Subset your data frame to include only the demographic columns
demo_gjg <- gjg[, c("gen", "race", "inc_TEXT", "edu_TEXT", "pol_TEXT", "pid_TEXT", "area")]

# Age
mean(gjg$age, na.rm=TRUE)
## [1] 42.13339
sd(gjg$age, na.rm=TRUE)
## [1] 13.49073
# Loop through each demographic column and calculate frequency counts
freq_tables <- list()

for (col in names(demo_gjg)) {
  {
    freq_table <- as.data.frame(table(demo_gjg[[col]]))
    freq_table$Percent <- round(freq_table$Freq / sum(freq_table$Freq) * 100, 2)
    freq_tables[[col]] <- freq_table
  }
}

# Print the frequency tables
for (i in seq_along(freq_tables)) {
  if (!is.null(freq_tables[[i]])) {
    cat("\nTable of frequencies for", names(freq_tables)[i], ":\n")
    print(freq_tables[[i]])
  }
}
## 
## Table of frequencies for gen :
##   Var1 Freq Percent
## 1         1    0.08
## 2    1  587   49.24
## 3    2  582   48.83
## 4    3   22    1.85
## 
## Table of frequencies for race :
##       Var1 Freq Percent
## 1        1    2    0.17
## 2      1,2    1    0.08
## 3    1,2,5    1    0.08
## 4  1,2,5,6    1    0.08
## 5  1,2,5,8    1    0.08
## 6    1,2,8    2    0.17
## 7      1,5    2    0.17
## 8    1,5,8    2    0.17
## 9      1,6    1    0.08
## 10     1,8   11    0.92
## 11       2  129   10.82
## 12   2,4,8    1    0.08
## 13     2,5    7    0.59
## 14   2,5,8    1    0.08
## 15     2,8   13    1.09
## 16       3   35    2.94
## 17     3,5    1    0.08
## 18     3,7    1    0.08
## 19     3,8    7    0.59
## 20     3,9    1    0.08
## 21       4    9    0.76
## 22       5   46    3.86
## 23     5,6    1    0.08
## 24   5,6,8    1    0.08
## 25     5,8   36    3.02
## 26     6,8    1    0.08
## 27       8  841   70.55
## 28       9   29    2.43
## 29     9,5    1    0.08
## 30     9,7    2    0.17
## 31     9,8    5    0.42
## 
## Table of frequencies for inc_TEXT :
##                  Var1 Freq Percent
## 1                        1    0.08
## 2 $100,000 - $149,999  200   16.78
## 3 $150,000 - $199,999   85    7.13
## 4   $25,000 - $49,999  285   23.91
## 5   $50,000 - $74,999  251   21.06
## 6   $75,000 - $99,999  185   15.52
## 7   less than $25,000  139   11.66
## 8  more than $200,000   46    3.86
## 
## Table of frequencies for edu_TEXT :
##                                                   Var1 Freq Percent
## 1                                    Bachelor's degree  451   37.84
## 2                  Graduate degree (Masters, PhD, etc)  190   15.94
## 3                           High school diploma or GED  154   12.92
## 4 Some college, Technical degree, or Associates degree  390   32.72
## 5 Some schooling, but no high school diploma or degree    7    0.59
## 
## Table of frequencies for pol_TEXT :
##                    Var1 Freq Percent
## 1                          2    0.17
## 2          Conservative  143   12.00
## 3               Liberal  280   23.49
## 4              Moderate  241   20.22
## 5 Somewhat Conservative  118    9.90
## 6      Somewhat Liberal  158   13.26
## 7     Very Conservative   69    5.79
## 8          Very Liberal  181   15.18
## 
## Table of frequencies for pid_TEXT :
##                  Var1 Freq Percent
## 1            Democrat  554   46.48
## 2 Independent / Other  356   29.87
## 3          Republican  282   23.66
## 
## Table of frequencies for area :
##   Var1 Freq Percent
## 1    1  329   27.60
## 2    2  630   52.85
## 3    3  233   19.55

4 Correlations

DVs <- gjg[c("policyDV", "donation", "usGovHelp", "manufacturerHelp", "driverHelp", "youHelp", "usGovPrevent", "manufacturerPrevent", "driverPrevent", "youPrevent", "upset", "sympathetic", "touched", "donatingMoral", "takingPrecautionsMoral", "manufacturersMoral", "manufacturerBlame", "individualsBlame", "studyDonationEfficacy", "studyPolicyEfficacy", "donationEfficacy", "punishingIndividualsEfficacy", "pol", "edu", "inc", "age")]

# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")

# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "lower", lower = "circle", tl.cex = 0.7, insig = "label_sig", diag = TRUE)

5 EFA

5.1 Evaluating the correlation matrix

5.2 Determining number of factors

  • Scree plot suggests (I have no clue)

  • eigenvalue method suggests 6

  • Parallel Analysis suggests 7

5.3 6 Factors

fit <- factanal(na.omit(efaDVs), factors=6, rotation="promax", scores = "regression")
print(fit, digits = 2, cutoff = .3, sort = TRUE)
## 
## Call:
## factanal(x = na.omit(efaDVs), factors = 6, scores = "regression",     rotation = "promax")
## 
## Uniquenesses:
##                     policyDV                     donation 
##                         0.52                         0.86 
##                    usGovHelp             manufacturerHelp 
##                         0.00                         0.29 
##                   driverHelp                      youHelp 
##                         0.68                         0.00 
##                 usGovPrevent          manufacturerPrevent 
##                         0.40                         0.16 
##                driverPrevent                   youPrevent 
##                         0.36                         0.62 
##                        upset                  sympathetic 
##                         0.57                         0.25 
##                      touched                donatingMoral 
##                         0.32                         0.59 
##       takingPrecautionsMoral           manufacturersMoral 
##                         0.76                         0.46 
##            manufacturerBlame             individualsBlame 
##                         0.51                         0.78 
##        studyDonationEfficacy          studyPolicyEfficacy 
##                         0.76                         0.72 
##             donationEfficacy punishingIndividualsEfficacy 
##                         0.66                         0.74 
## 
## Loadings:
##                              Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
## policyDV                      0.65                                          
## manufacturerHelp              0.77                                          
## manufacturerPrevent           1.03                                          
## manufacturersMoral            0.54    0.42                                  
## manufacturerBlame             0.71                                          
## donatingMoral                         0.75                                  
## donationEfficacy                      0.62                                  
## upset                                         0.58                          
## sympathetic                                   0.92                          
## touched                                       0.74                          
## driverPrevent                                         0.88                  
## youHelp                                                       0.97          
## usGovHelp                                                             0.97  
## donation                                                                    
## driverHelp                                            0.44                  
## usGovPrevent                  0.40                                    0.50  
## youPrevent                                                    0.43          
## takingPrecautionsMoral                0.34                                  
## individualsBlame                                      0.48                  
## studyDonationEfficacy                 0.37                                  
## studyPolicyEfficacy                   0.34                                  
## punishingIndividualsEfficacy          0.42                                  
## 
##                Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
## SS loadings       3.24    1.92    1.83    1.57    1.31    1.26
## Proportion Var    0.15    0.09    0.08    0.07    0.06    0.06
## Cumulative Var    0.15    0.23    0.32    0.39    0.45    0.51
## 
## Factor Correlations:
##         Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
## Factor1    1.00    0.26   -0.27   -0.27    0.32    0.37
## Factor2    0.26    1.00   -0.51   -0.31    0.17    0.40
## Factor3   -0.27   -0.51    1.00    0.28   -0.04   -0.54
## Factor4   -0.27   -0.31    0.28    1.00   -0.43   -0.65
## Factor5    0.32    0.17   -0.04   -0.43    1.00    0.38
## Factor6    0.37    0.40   -0.54   -0.65    0.38    1.00
## 
## Test of the hypothesis that 6 factors are sufficient.
## The chi square statistic is 889.42 on 114 degrees of freedom.
## The p-value is 2.31e-120
loads <- fit$loadings
fa.diagram(loads)

# ## Cronbach's Alpha
# f1 <- efaDVs[ , c("futureSacrifice", "futureImpact", "futureResponsibility", "moralMitigate", 
#                   "moralCollective", "intergenerational1", "opportunityChoiceNum", "donation", "moralProtect", "dayToDayEfficacy")]
# f2 <- efaDVs[ , c("effortEfficacy", "americansEfficacy1", "americansEfficacy2", "optimism")]
# f3 <- efaDVs[ , c("thankfulPG", "sacrificesPG", "gratitudePG")]
# f4 <- efaDVs[ , c("intergenerational1", "intergenerational2", "american1", "american2")]
# f5 <- efaDVs[ , c("hope", "optimism")]
# alpha(f1)
# alpha(f2)
# alpha(f3)
# alpha(f4)
# alpha(f5)

6 CFA

  • Bad fit
model <- '
  responsibilityHelp =~ usGovHelp + manufacturerHelp + driverHelp + youHelp

  responsibilityPrevent =~ usGovPrevent + manufacturerPrevent + driverPrevent + youPrevent

  affect =~ upset + sympathetic + touched

  moralIssue =~ donatingMoral + takingPrecautionsMoral + manufacturersMoral
  
  blame =~ manufacturerBlame + individualsBlame
  
  efficacy =~ studyDonationEfficacy + studyPolicyEfficacy + donationEfficacy + punishingIndividualsEfficacy
  
'

fit <- cfa(model, data = factorDVs)
summary(fit, fit.measures=TRUE)
## lavaan 0.6.15 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        55
## 
##                                                   Used       Total
##   Number of observations                          1190        1192
## 
## Model Test User Model:
##                                                       
##   Test statistic                              2979.412
##   Degrees of freedom                               155
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              8955.612
##   Degrees of freedom                               190
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.678
##   Tucker-Lewis Index (TLI)                       0.605
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -34745.548
##   Loglikelihood unrestricted model (H1)     -33255.842
##                                                       
##   Akaike (AIC)                               69601.095
##   Bayesian (BIC)                             69880.589
##   Sample-size adjusted Bayesian (SABIC)      69705.889
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.124
##   90 Percent confidence interval - lower         0.120
##   90 Percent confidence interval - upper         0.128
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                            Estimate  Std.Err  z-value  P(>|z|)
##   responsibilityHelp =~                                       
##     usGovHelp                 1.000                           
##     manufacturrHlp            1.497    0.065   23.108    0.000
##     driverHelp                0.261    0.044    5.906    0.000
##     youHelp                   0.678    0.054   12.546    0.000
##   responsibilityPrevent =~                                    
##     usGovPrevent              1.000                           
##     manufctrrPrvnt            1.378    0.056   24.781    0.000
##     driverPrevent             0.094    0.029    3.232    0.001
##     youPrevent                0.423    0.049    8.566    0.000
##   affect =~                                                   
##     upset                     1.000                           
##     sympathetic               1.175    0.054   21.917    0.000
##     touched                   1.344    0.061   22.104    0.000
##   moralIssue =~                                               
##     donatingMoral             1.000                           
##     takngPrctnsMrl            0.650    0.069    9.407    0.000
##     manufactrrsMrl            1.750    0.123   14.176    0.000
##   blame =~                                                    
##     manufacturrBlm            1.000                           
##     individualsBlm           -0.048    0.023   -2.128    0.033
##   efficacy =~                                                 
##     stdyDntnEffccy            1.000                           
##     stdyPlcyEffccy            1.101    0.096   11.529    0.000
##     donationEffccy            1.148    0.100   11.529    0.000
##     pnshngIndvdlsE            0.866    0.085   10.242    0.000
## 
## Covariances:
##                            Estimate  Std.Err  z-value  P(>|z|)
##   responsibilityHelp ~~                                       
##     rspnsbltyPrvnt            0.678    0.047   14.367    0.000
##     affect                    0.278    0.029    9.499    0.000
##     moralIssue                0.351    0.033   10.559    0.000
##     blame                     0.620    0.044   14.237    0.000
##     efficacy                  0.248    0.027    9.324    0.000
##   responsibilityPrevent ~~                                    
##     affect                    0.240    0.029    8.394    0.000
##     moralIssue                0.371    0.034   10.785    0.000
##     blame                     0.636    0.044   14.525    0.000
##     efficacy                  0.226    0.026    8.760    0.000
##   affect ~~                                                   
##     moralIssue                0.248    0.027    9.328    0.000
##     blame                     0.134    0.032    4.250    0.000
##     efficacy                  0.309    0.029   10.568    0.000
##   moralIssue ~~                                               
##     blame                     0.412    0.037   11.054    0.000
##     efficacy                  0.225    0.025    9.074    0.000
##   blame ~~                                                    
##     efficacy                  0.173    0.027    6.382    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .usGovHelp         1.085    0.049   22.269    0.000
##    .manufacturrHlp    0.384    0.043    8.969    0.000
##    .driverHelp        1.415    0.058   24.288    0.000
##    .youHelp           1.722    0.072   23.800    0.000
##    .usGovPrevent      0.939    0.044   21.591    0.000
##    .manufctrrPrvnt    0.348    0.040    8.752    0.000
##    .driverPrevent     0.694    0.028   24.362    0.000
##    .youPrevent        1.836    0.076   24.155    0.000
##    .upset             0.934    0.044   21.180    0.000
##    .sympathetic       0.465    0.032   14.477    0.000
##    .touched           0.491    0.039   12.558    0.000
##    .donatingMoral     1.225    0.054   22.490    0.000
##    .takngPrctnsMrl    1.077    0.046   23.494    0.000
##    .manufactrrsMrl    0.611    0.061   10.062    0.000
##    .manufacturrBlm   -0.818    0.855   -0.956    0.339
##    .individualsBlm    0.351    0.015   24.160    0.000
##    .stdyDntnEffccy    0.960    0.045   21.384    0.000
##    .stdyPlcyEffccy    0.909    0.044   20.460    0.000
##    .donationEffccy    0.987    0.048   20.460    0.000
##    .pnshngIndvdlsE    0.947    0.043   22.144    0.000
##     responsbltyHlp    0.724    0.063   11.567    0.000
##     rspnsbltyPrvnt    0.781    0.062   12.506    0.000
##     affect            0.674    0.058   11.628    0.000
##     moralIssue        0.361    0.046    7.780    0.000
##     blame             2.246    0.856    2.625    0.009
##     efficacy          0.290    0.039    7.381    0.000

7 Behavioral Outcomes

  • Merged donates equal to individual, and significantly more than structural

  • merged policy support significantly higher than individual and structural (which are equal)

percep_plot_list <- list(plot_cooker(gjg, condition, donation),
                         plot_cooker(gjg, condition, policyDV))

# Adding titles to each plot
percep_plot_list[[1]] <- percep_plot_list[[1]] +
  ggtitle("Donations")
  
percep_plot_list[[2]] <- percep_plot_list[[2]] +
  ggtitle("Support for Policy")

percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 1)

overall_percep_title <- ggdraw() +
  draw_label("Behavioral DVs", fontface = "bold")

plot_grid(overall_percep_title, percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))

# pol_line(gjg, pol, policyDV)
# pol_line(gjg, pol, donation)

7.1 Inferential Stats

gjg$condition <- relevel(gjg$condition, ref = "mergedScope")
gjg_I <- gjg
gjg_I$condition <- relevel(gjg_I$condition, ref = "individualScope")


mod_donation<- lm(donation ~ condition, data = gjg)
summary(mod_donation)
## 
## Call:
## lm(formula = donation ~ condition, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5338 -2.9028 -0.9028  1.5995  7.0972 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                3.4005     0.1627  20.898   <2e-16 ***
## conditionindividualScope   0.1333     0.2306   0.578   0.5632    
## conditionpopulationScope  -0.4977     0.2317  -2.148   0.0319 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.263 on 1189 degrees of freedom
## Multiple R-squared:  0.00684,    Adjusted R-squared:  0.00517 
## F-statistic: 4.095 on 2 and 1189 DF,  p-value: 0.0169
mod_donationI <- lm(donation ~ condition, data = gjg_I)
summary(mod_donationI)
## 
## Call:
## lm(formula = donation ~ condition, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5338 -2.9028 -0.9028  1.5995  7.0972 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                3.5338     0.1633  21.636  < 2e-16 ***
## conditionmergedScope      -0.1333     0.2306  -0.578  0.56315    
## conditionpopulationScope  -0.6310     0.2322  -2.718  0.00666 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.263 on 1189 degrees of freedom
## Multiple R-squared:  0.00684,    Adjusted R-squared:  0.00517 
## F-statistic: 4.095 on 2 and 1189 DF,  p-value: 0.0169
mod_policy<- lm(policyDV ~ condition + pol, data = gjg)
summary(mod_policy)
## 
## Call:
## lm(formula = policyDV ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8049 -1.7977  0.3256  1.6800  3.3738 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.89110    0.17516  22.214  < 2e-16 ***
## conditionindividualScope -0.39549    0.13849  -2.856  0.00437 ** 
## conditionpopulationScope -0.35445    0.13946  -2.542  0.01116 *  
## pol                       0.13055    0.03155   4.138 3.76e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.96 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0227, Adjusted R-squared:  0.02023 
## F-statistic: 9.182 on 3 and 1186 DF,  p-value: 5.237e-06
mod_policyI <- lm(policyDV ~ condition + pol, data = gjg_I)
summary(mod_policyI)
## 
## Call:
## lm(formula = policyDV ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8049 -1.7977  0.3256  1.6800  3.3738 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.49560    0.17450  20.032  < 2e-16 ***
## conditionmergedScope      0.39549    0.13849   2.856  0.00437 ** 
## conditionpopulationScope  0.04105    0.13969   0.294  0.76893    
## pol                       0.13055    0.03155   4.138 3.76e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.96 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0227, Adjusted R-squared:  0.02023 
## F-statistic: 9.182 on 3 and 1186 DF,  p-value: 5.237e-06

8 Responsibility (Help and Prevent)

  • Merged & individual assign significantly more responsibility to drivers to help victims than structural

  • Merged & individual assign significantly more responsibility to manufacturers to help victims than structural

  • Merged & individual assign significantly more responsibility to us gov to help victims than structural

  • Merged assign marginally more responsibility to self to help victims than individual (p = 0.07)

  • Merged assign significantly more responsibility to drivers to prevent texting while driving than structural

  • Merged assign significantly more responsibility to manufacturers to prevent texting while driving than structural and individual (structural and individual difference marginal, p = 0.09)

gjg_long<-gjg %>% gather(stim, resp, "usGovHelp":"punishingIndividualsEfficacy")  

gjg_long$condition <- factor(gjg_long$condition, levels = c("individualScope", "populationScope", "mergedScope"))


responsibilityHelpLong <- gjg_long %>%
  filter(grepl("Help", stim))

facet_cooker <- function(data, iv, dv, coln, rown) {
  part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
    geom_violin(alpha = 0.3, scale = "count") + 
  stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
    stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
                 #change to make a data set from allEffects with mean, low CI, high CI
                 size = 1.5, color = "black") +
    theme_classic() +
    xlab("") +
    ylab("") +
   facet_wrap(~ stim, ncol = coln, nrow = rown, scales = "free", as.table = TRUE)
  ggpar(part1, legend = "none")
}

facet_cooker(responsibilityHelpLong, condition, resp, coln = 2, rown = 2)

responsibilityPreventLong <- gjg_long %>%
  filter(grepl("Prevent", stim))

facet_cooker(responsibilityPreventLong, condition, resp, coln = 2, rown = 2)

8.1 Inferential Stats

mod_usGovHelp <- lm(usGovHelp ~ condition + pol, data = gjg)
summary(mod_usGovHelp)
## 
## Call:
## lm(formula = usGovHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.65110 -1.04741 -0.03706  1.12393  2.83921 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.23215    0.11519  19.377  < 2e-16 ***
## conditionindividualScope  0.01035    0.09108   0.114  0.90954    
## conditionpopulationScope -0.27259    0.09172  -2.972  0.00302 ** 
## pol                       0.20123    0.02075   9.698  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.289 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.08397,    Adjusted R-squared:  0.08165 
## F-statistic: 36.24 on 3 and 1186 DF,  p-value: < 2.2e-16
mod_usGovHelpI <- lm(usGovHelp ~ condition + pol, data = gjg_I)
summary(mod_usGovHelpI)
## 
## Call:
## lm(formula = usGovHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.65110 -1.04741 -0.03706  1.12393  2.83921 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.24250    0.11476  19.541  < 2e-16 ***
## conditionmergedScope     -0.01035    0.09108  -0.114  0.90954    
## conditionpopulationScope -0.28294    0.09186  -3.080  0.00212 ** 
## pol                       0.20123    0.02075   9.698  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.289 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.08397,    Adjusted R-squared:  0.08165 
## F-statistic: 36.24 on 3 and 1186 DF,  p-value: < 2.2e-16
mod_manufacturerHelp <- lm(manufacturerHelp ~ condition + pol, data = gjg)
summary(mod_manufacturerHelp)
## 
## Call:
## lm(formula = manufacturerHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.59134 -1.16150 -0.04121  1.15960  2.56023 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.74932    0.12421  22.135  < 2e-16 ***
## conditionindividualScope -0.42984    0.09820  -4.377 1.31e-05 ***
## conditionpopulationScope -0.26978    0.09889  -2.728  0.00647 ** 
## pol                       0.12029    0.02237   5.376 9.14e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.39 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03977,    Adjusted R-squared:  0.03734 
## F-statistic: 16.37 on 3 and 1186 DF,  p-value: 1.975e-10
mod_manufacturerHelpI <- lm(manufacturerHelp ~ condition + pol, data = gjg_I)
summary(mod_manufacturerHelpI)
## 
## Call:
## lm(formula = manufacturerHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.59134 -1.16150 -0.04121  1.15960  2.56023 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.31948    0.12374  18.745  < 2e-16 ***
## conditionmergedScope      0.42984    0.09820   4.377 1.31e-05 ***
## conditionpopulationScope  0.16005    0.09905   1.616    0.106    
## pol                       0.12029    0.02237   5.376 9.14e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.39 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.03977,    Adjusted R-squared:  0.03734 
## F-statistic: 16.37 on 3 and 1186 DF,  p-value: 1.975e-10
mod_driverHelp <- lm(driverHelp ~ condition + pol, data = gjg)
summary(mod_driverHelp)
## 
## Call:
## lm(formula = driverHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2811 -0.8206  0.6943  0.8576  1.2040 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.37953    0.10717  40.865  < 2e-16 ***
## conditionindividualScope -0.11410    0.08473  -1.347    0.178    
## conditionpopulationScope -0.41130    0.08533  -4.820 1.62e-06 ***
## pol                      -0.02461    0.01930  -1.275    0.203    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.199 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02134,    Adjusted R-squared:  0.01887 
## F-statistic: 8.622 on 3 and 1186 DF,  p-value: 1.157e-05
mod_driverHelpI <- lm(driverHelp ~ condition + pol, data = gjg_I)
summary(mod_driverHelpI)
## 
## Call:
## lm(formula = driverHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2811 -0.8206  0.6943  0.8576  1.2040 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.26543    0.10677  39.950  < 2e-16 ***
## conditionmergedScope      0.11410    0.08473   1.347 0.178380    
## conditionpopulationScope -0.29720    0.08547  -3.477 0.000525 ***
## pol                      -0.02461    0.01930  -1.275 0.202680    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.199 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.02134,    Adjusted R-squared:  0.01887 
## F-statistic: 8.622 on 3 and 1186 DF,  p-value: 1.157e-05
mod_youHelp <- lm(youHelp ~ condition + pol, data = gjg)
summary(mod_youHelp)
## 
## Call:
## lm(formula = youHelp ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9422 -0.9148 -0.5951  1.2208  2.4049 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.96961    0.12810  23.181   <2e-16 ***
## conditionindividualScope -0.18254    0.10128  -1.802   0.0718 .  
## conditionpopulationScope -0.07624    0.10199  -0.748   0.4549    
## pol                      -0.02742    0.02307  -1.188   0.2349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.433 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.003923,   Adjusted R-squared:  0.001404 
## F-statistic: 1.557 on 3 and 1186 DF,  p-value: 0.1981
mod_youHelpI <- lm(youHelp ~ condition + pol, data = gjg_I)
summary(mod_youHelpI)
## 
## Call:
## lm(formula = youHelp ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9422 -0.9148 -0.5951  1.2208  2.4049 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.78707    0.12762  21.839   <2e-16 ***
## conditionmergedScope      0.18254    0.10128   1.802   0.0718 .  
## conditionpopulationScope  0.10629    0.10216   1.040   0.2983    
## pol                      -0.02742    0.02307  -1.188   0.2349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.433 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.003923,   Adjusted R-squared:  0.001404 
## F-statistic: 1.557 on 3 and 1186 DF,  p-value: 0.1981
mod_usGovPrevent <- lm(usGovPrevent ~ condition + pol, data = gjg)
summary(mod_usGovPrevent)
## 
## Call:
## lm(formula = usGovPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0208 -0.9502  0.1850  1.0577  2.4822 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.48899    0.11168  22.287   <2e-16 ***
## conditionindividualScope  0.01831    0.08830   0.207   0.8358    
## conditionpopulationScope -0.18744    0.08892  -2.108   0.0352 *  
## pol                       0.21621    0.02012  10.748   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.249 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.09472,    Adjusted R-squared:  0.09243 
## F-statistic: 41.37 on 3 and 1186 DF,  p-value: < 2.2e-16
mod_usGovPreventI <- lm(usGovPrevent ~ condition + pol, data = gjg_I)
summary(mod_usGovPreventI)
## 
## Call:
## lm(formula = usGovPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0208 -0.9502  0.1850  1.0577  2.4822 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.50729    0.11126  22.536   <2e-16 ***
## conditionmergedScope     -0.01831    0.08830  -0.207    0.836    
## conditionpopulationScope -0.20575    0.08906  -2.310    0.021 *  
## pol                       0.21621    0.02012  10.748   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.249 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.09472,    Adjusted R-squared:  0.09243 
## F-statistic: 41.37 on 3 and 1186 DF,  p-value: < 2.2e-16
mod_manufacturerPrevent <- lm(manufacturerPrevent ~ condition + pol, data = gjg)
summary(mod_manufacturerPrevent)
## 
## Call:
## lm(formula = manufacturerPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9943 -1.0771  0.1478  1.1962  2.2071 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.99955    0.11817  25.384  < 2e-16 ***
## conditionindividualScope -0.34878    0.09343  -3.733 0.000198 ***
## conditionpopulationScope -0.19048    0.09408  -2.025 0.043133 *  
## pol                       0.14211    0.02128   6.676 3.75e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.322 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.04745,    Adjusted R-squared:  0.04504 
## F-statistic: 19.69 on 3 and 1186 DF,  p-value: 1.837e-12
mod_manufacturerPreventI <- lm(manufacturerPrevent ~ condition + pol, data = gjg_I)
summary(mod_manufacturerPreventI)
## 
## Call:
## lm(formula = manufacturerPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9943 -1.0771  0.1478  1.1962  2.2071 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.65077    0.11772  22.517  < 2e-16 ***
## conditionmergedScope      0.34878    0.09343   3.733 0.000198 ***
## conditionpopulationScope  0.15831    0.09423   1.680 0.093231 .  
## pol                       0.14211    0.02128   6.676 3.75e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.322 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.04745,    Adjusted R-squared:  0.04504 
## F-statistic: 19.69 on 3 and 1186 DF,  p-value: 1.837e-12
mod_driverPrevent <- lm(driverPrevent ~ condition + pol, data = gjg)
summary(mod_driverPrevent)
## 
## Call:
## lm(formula = driverPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6726 -0.4609  0.3942  0.4779  0.5837 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.73945    0.07444  63.669  < 2e-16 ***
## conditionindividualScope -0.08367    0.05886  -1.422  0.15541    
## conditionpopulationScope -0.16719    0.05927  -2.821  0.00487 ** 
## pol                      -0.02228    0.01341  -1.661  0.09689 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8328 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.008702,   Adjusted R-squared:  0.006194 
## F-statistic:  3.47 on 3 and 1186 DF,  p-value: 0.01567
mod_driverPreventI <- lm(driverPrevent ~ condition + pol, data = gjg_I)
summary(mod_driverPreventI)
## 
## Call:
## lm(formula = driverPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6726 -0.4609  0.3942  0.4779  0.5837 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.65578    0.07416  62.780   <2e-16 ***
## conditionmergedScope      0.08367    0.05886   1.422   0.1554    
## conditionpopulationScope -0.08353    0.05936  -1.407   0.1597    
## pol                      -0.02228    0.01341  -1.661   0.0969 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8328 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.008702,   Adjusted R-squared:  0.006194 
## F-statistic:  3.47 on 3 and 1186 DF,  p-value: 0.01567
mod_youPrevent <- lm(youPrevent ~ condition + pol, data = gjg)
summary(mod_youPrevent)
## 
## Call:
## lm(formula = youPrevent ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7233 -0.7040  0.3325  1.3153  1.3612 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.683912   0.125934  29.253   <2e-16 ***
## conditionindividualScope  0.022250   0.099463   0.224    0.823    
## conditionpopulationScope  0.045880   0.100218   0.458    0.647    
## pol                      -0.006443   0.022695  -0.284    0.777    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.407 on 1185 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.0002522,  Adjusted R-squared:  -0.002279 
## F-statistic: 0.09965 on 3 and 1185 DF,  p-value: 0.9602
mod_youPreventI <- lm(youPrevent ~ condition + pol, data = gjg_I)
summary(mod_youPreventI)
## 
## Call:
## lm(formula = youPrevent ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7233 -0.7040  0.3325  1.3153  1.3612 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.706162   0.125460  29.540   <2e-16 ***
## conditionmergedScope     -0.022250   0.099463  -0.224    0.823    
## conditionpopulationScope  0.023630   0.100381   0.235    0.814    
## pol                      -0.006443   0.022695  -0.284    0.777    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.407 on 1185 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.0002522,  Adjusted R-squared:  -0.002279 
## F-statistic: 0.09965 on 3 and 1185 DF,  p-value: 0.9602

9 Affect Help

  • Merged & individual feel significantly more upset than structural (individual marginally higher than merged, p = 0.054)

  • Merged & individual feel significantly more sympathetic than structural

  • Merged & individual feel significantly more touched than structural

  • also main effect of politics for touched (libs feel it less)

affectLong <- gjg_long %>%
  filter(stim %in% c("upset", "sympathetic", "touched"))

facet_cooker(affectLong, condition, resp, coln = 2, rown = 2)

9.1 Inferential Stats

mod_upset <- lm(upset ~ condition + pol, data = gjg)
summary(mod_upset)
## 
## Call:
## lm(formula = upset ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4524 -0.7746  0.2254  0.8226  2.4394 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.03467    0.11035  27.500  < 2e-16 ***
## conditionindividualScope  0.16809    0.08725   1.926   0.0543 .  
## conditionpopulationScope -0.50978    0.08786  -5.802 8.39e-09 ***
## pol                       0.03567    0.01988   1.795   0.0730 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.235 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.05451,    Adjusted R-squared:  0.05212 
## F-statistic: 22.79 on 3 and 1186 DF,  p-value: 2.388e-14
mod_upsetI <- lm(upset ~ condition + pol, data = gjg_I)
summary(mod_upsetI)
## 
## Call:
## lm(formula = upset ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4524 -0.7746  0.2254  0.8226  2.4394 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.20276    0.10994  29.132  < 2e-16 ***
## conditionmergedScope     -0.16809    0.08725  -1.926   0.0543 .  
## conditionpopulationScope -0.67787    0.08800  -7.703  2.8e-14 ***
## pol                       0.03567    0.01988   1.795   0.0730 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.235 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.05451,    Adjusted R-squared:  0.05212 
## F-statistic: 22.79 on 3 and 1186 DF,  p-value: 2.388e-14
mod_sympathetic <- lm(sympathetic ~ condition + pol, data = gjg)
summary(mod_sympathetic)
## 
## Call:
## lm(formula = sympathetic ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.95326 -0.81904  0.08091  1.03162  2.04680 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.773471   0.098836  38.179   <2e-16 ***
## conditionindividualScope  0.126630   0.078144   1.620    0.105    
## conditionpopulationScope -0.827869   0.078691 -10.521   <2e-16 ***
## pol                       0.007594   0.017803   0.427    0.670    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.106 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1274, Adjusted R-squared:  0.1252 
## F-statistic: 57.72 on 3 and 1186 DF,  p-value: < 2.2e-16
mod_sympatheticI <- lm(sympathetic ~ condition + pol, data = gjg_I)
summary(mod_sympatheticI)
## 
## Call:
## lm(formula = sympathetic ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.95326 -0.81904  0.08091  1.03162  2.04680 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.900101   0.098464  39.609   <2e-16 ***
## conditionmergedScope     -0.126630   0.078144  -1.620    0.105    
## conditionpopulationScope -0.954500   0.078818 -12.110   <2e-16 ***
## pol                       0.007594   0.017803   0.427    0.670    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.106 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.1274, Adjusted R-squared:  0.1252 
## F-statistic: 57.72 on 3 and 1186 DF,  p-value: < 2.2e-16
mod_touched <- lm(touched ~ condition + pol, data = gjg)
summary(mod_touched)
## 
## Call:
## lm(formula = touched ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.29292 -1.10800 -0.07947  0.92053  2.71019 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.27876    0.11279  29.069  < 2e-16 ***
## conditionindividualScope  0.05685    0.08918   0.637   0.5239    
## conditionpopulationScope -0.69012    0.08980  -7.685  3.2e-14 ***
## pol                      -0.04269    0.02032  -2.101   0.0358 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.262 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.06933,    Adjusted R-squared:  0.06698 
## F-statistic: 29.45 on 3 and 1186 DF,  p-value: < 2.2e-16
mod_touchedI <- lm(touched ~ condition + pol, data = gjg_I)
summary(mod_touchedI)
## 
## Call:
## lm(formula = touched ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.29292 -1.10800 -0.07947  0.92053  2.71019 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.33561    0.11237  29.685  < 2e-16 ***
## conditionmergedScope     -0.05685    0.08918  -0.637   0.5239    
## conditionpopulationScope -0.74697    0.08995  -8.304 2.71e-16 ***
## pol                      -0.04269    0.02032  -2.101   0.0358 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.262 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.06933,    Adjusted R-squared:  0.06698 
## F-statistic: 29.45 on 3 and 1186 DF,  p-value: < 2.2e-16

10 Efficacy

  • Merged & individual feel significantly more efficacy in donations to resolve texting while driving than structural

  • Also main effect of political leaning on donation efficacy (libs feel it less)

  • Merged & individual feel significantly more efficacy in the donation opportunity presented in the study than structural

  • Strucutral feels punishing individual drivers is less efficacious than individual and structural

efficacyHelpLong <- gjg_long %>%
  filter(grepl("Efficacy", stim))

facet_cooker(efficacyHelpLong, condition, resp, coln = 2, rown = 2)

10.1 Inferential Stats

mod_studyDonationEfficacy <- lm(studyDonationEfficacy ~ condition + pol, data = gjg)
summary(mod_studyDonationEfficacy)
## 
## Call:
## lm(formula = studyDonationEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8288 -0.7318  0.2632  0.7229  1.7229 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.54776    0.09871  35.943  < 2e-16 ***
## conditionindividualScope  0.06634    0.07804   0.850 0.395432    
## conditionpopulationScope -0.30136    0.07859  -3.835 0.000132 ***
## pol                       0.03067    0.01778   1.725 0.084793 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.104 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0233, Adjusted R-squared:  0.02082 
## F-statistic: 9.429 on 3 and 1186 DF,  p-value: 3.691e-06
mod_studyDonationEfficacyI <- lm(studyDonationEfficacy ~ condition + pol, data = gjg_I)
summary(mod_studyDonationEfficacyI)
## 
## Call:
## lm(formula = studyDonationEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8288 -0.7318  0.2632  0.7229  1.7229 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.61411    0.09833  36.753  < 2e-16 ***
## conditionmergedScope     -0.06634    0.07804  -0.850   0.3954    
## conditionpopulationScope -0.36771    0.07871  -4.671 3.33e-06 ***
## pol                       0.03067    0.01778   1.725   0.0848 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.104 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.0233, Adjusted R-squared:  0.02082 
## F-statistic: 9.429 on 3 and 1186 DF,  p-value: 3.691e-06
mod_studyPolicyEfficacy <- lm(studyPolicyEfficacy ~ condition + pol, data = gjg)
summary(mod_studyPolicyEfficacy)
## 
## Call:
## lm(formula = studyPolicyEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3769 -0.3769 -0.1451  0.7487  1.9667 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.22042    0.10008  32.178  < 2e-16 ***
## conditionindividualScope -0.03619    0.07918  -0.457  0.64771    
## conditionpopulationScope -0.20945    0.07968  -2.629  0.00869 ** 
## pol                       0.02235    0.01803   1.240  0.21529    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.12 on 1185 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.008077,   Adjusted R-squared:  0.005566 
## F-statistic: 3.217 on 3 and 1185 DF,  p-value: 0.02214
mod_studyPolicyEfficacyI <- lm(studyPolicyEfficacy ~ condition + pol, data = gjg_I)
summary(mod_studyPolicyEfficacyI)
## 
## Call:
## lm(formula = studyPolicyEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3769 -0.3769 -0.1451  0.7487  1.9667 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.18423    0.09973  31.929   <2e-16 ***
## conditionmergedScope      0.03619    0.07918   0.457   0.6477    
## conditionpopulationScope -0.17326    0.07986  -2.170   0.0302 *  
## pol                       0.02235    0.01803   1.240   0.2153    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.12 on 1185 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.008077,   Adjusted R-squared:  0.005566 
## F-statistic: 3.217 on 3 and 1185 DF,  p-value: 0.02214
mod_donationEfficacy <- lm(donationEfficacy ~ condition + pol, data = gjg)
summary(mod_donationEfficacy)
## 
## Call:
## lm(formula = donationEfficacy ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1596 -0.9047 -0.6904  0.8833  3.3096 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.20246    0.10410  21.158   <2e-16 ***
## conditionindividualScope -0.06905    0.08230  -0.839   0.4017    
## conditionpopulationScope -0.21200    0.08288  -2.558   0.0107 *  
## pol                      -0.04287    0.01875  -2.286   0.0224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.165 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.009685,   Adjusted R-squared:  0.00718 
## F-statistic: 3.866 on 3 and 1186 DF,  p-value: 0.009105
mod_donationEfficacyI <- lm(donationEfficacy ~ condition + pol, data = gjg_I)
summary(mod_donationEfficacyI)
## 
## Call:
## lm(formula = donationEfficacy ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1596 -0.9047 -0.6904  0.8833  3.3096 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.13341    0.10371  20.572   <2e-16 ***
## conditionmergedScope      0.06905    0.08230   0.839   0.4017    
## conditionpopulationScope -0.14296    0.08301  -1.722   0.0853 .  
## pol                      -0.04287    0.01875  -2.286   0.0224 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.165 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.009685,   Adjusted R-squared:  0.00718 
## F-statistic: 3.866 on 3 and 1186 DF,  p-value: 0.009105
mod_punishingIndividualsEfficacy <- lm(punishingIndividualsEfficacy ~ condition + pol, data = gjg)
summary(mod_punishingIndividualsEfficacy)
## 
## Call:
## lm(formula = punishingIndividualsEfficacy ~ condition + pol, 
##     data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8091 -0.7571  0.2224  1.1909  1.5213 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.824880   0.095903  39.883  < 2e-16 ***
## conditionindividualScope -0.051976   0.075826  -0.685 0.493188    
## conditionpopulationScope -0.291041   0.076356  -3.812 0.000145 ***
## pol                      -0.007884   0.017275  -0.456 0.648179    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.073 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01375,    Adjusted R-squared:  0.01126 
## F-statistic: 5.512 on 3 and 1186 DF,  p-value: 0.0009267
mod_punishingIndividualsEfficacyI <- lm(punishingIndividualsEfficacy ~ condition + pol, data = gjg_I)
summary(mod_punishingIndividualsEfficacyI)
## 
## Call:
## lm(formula = punishingIndividualsEfficacy ~ condition + pol, 
##     data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8091 -0.7571  0.2224  1.1909  1.5213 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.772905   0.095543  39.489  < 2e-16 ***
## conditionmergedScope      0.051976   0.075826   0.685  0.49319    
## conditionpopulationScope -0.239065   0.076480  -3.126  0.00182 ** 
## pol                      -0.007884   0.017275  -0.456  0.64818    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.073 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01375,    Adjusted R-squared:  0.01126 
## F-statistic: 5.512 on 3 and 1186 DF,  p-value: 0.0009267

11 Morality

  • Individual thinks donating to texting and driving victims is significantly more a moral issue than structural (marginal between structural and merged, p = 0.08)

  • Individual thinks drivers taking precautions to not text while driving is significantly more a moral issue than structural (marginal between structural and merged, p = 0.059)

  • Merged thinks manufacturers preventing texting while driving is significantly more a moral issue than structural and individual

  • Main effect of political leaning on thinking manufacturers preventing texting while driving is a moral issue than structural and individual (libs moreso)

  • Merged and Structural assign significantly more blame to manufacturers than individual

  • Merged and Structural assign significantly more blame to drivers than structural

moralIssueLong <- gjg_long %>%
  filter(grepl("Moral", stim))

facet_cooker(moralIssueLong, condition, resp, coln = 2, rown = 2)

blameLong <- gjg_long %>%
  filter(grepl("Blame", stim))

facet_cooker(blameLong, condition, resp, coln = 2, rown = 2)

11.1 Inferential Stats

mod_donatingMoral <- lm(donatingMoral ~ condition + pol, data = gjg)
summary(mod_donatingMoral)
## 
## Call:
## lm(formula = donatingMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8292 -0.8169  0.1954  1.1872  2.3960 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.787559   0.112529  24.772   <2e-16 ***
## conditionindividualScope  0.045744   0.088971   0.514   0.6072    
## conditionpopulationScope -0.154884   0.089594  -1.729   0.0841 .  
## pol                      -0.004103   0.020269  -0.202   0.8396    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.259 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.004607,   Adjusted R-squared:  0.002089 
## F-statistic:  1.83 on 3 and 1186 DF,  p-value: 0.1399
mod_donatingMoralI <- lm(donatingMoral ~ condition + pol, data = gjg_I)
summary(mod_donatingMoralI)
## 
## Call:
## lm(formula = donatingMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8292 -0.8169  0.1954  1.1872  2.3960 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.833303   0.112107  25.273   <2e-16 ***
## conditionmergedScope     -0.045744   0.088971  -0.514   0.6072    
## conditionpopulationScope -0.200628   0.089738  -2.236   0.0256 *  
## pol                      -0.004103   0.020269  -0.202   0.8396    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.259 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.004607,   Adjusted R-squared:  0.002089 
## F-statistic:  1.83 on 3 and 1186 DF,  p-value: 0.1399
mod_takingPrecautionsMoral <- lm(takingPrecautionsMoral ~ condition + pol, data = gjg)
summary(mod_takingPrecautionsMoral)
## 
## Call:
## lm(formula = takingPrecautionsMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0863 -0.8591  0.0931  0.9615  1.1888 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.94396    0.09893  39.865   <2e-16 ***
## conditionindividualScope  0.03073    0.07822   0.393   0.6945    
## conditionpopulationScope -0.14867    0.07877  -1.887   0.0594 .  
## pol                       0.01594    0.01782   0.895   0.3712    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.107 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.005741,   Adjusted R-squared:  0.003226 
## F-statistic: 2.283 on 3 and 1186 DF,  p-value: 0.07747
mod_takingPrecautionsMoralI <- lm(takingPrecautionsMoral ~ condition + pol, data = gjg_I)
summary(mod_takingPrecautionsMoralI)
## 
## Call:
## lm(formula = takingPrecautionsMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.0863 -0.8591  0.0931  0.9615  1.1888 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.97470    0.09856  40.327   <2e-16 ***
## conditionmergedScope     -0.03073    0.07822  -0.393   0.6945    
## conditionpopulationScope -0.17940    0.07890  -2.274   0.0232 *  
## pol                       0.01594    0.01782   0.895   0.3712    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.107 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.005741,   Adjusted R-squared:  0.003226 
## F-statistic: 2.283 on 3 and 1186 DF,  p-value: 0.07747
mod_manufacturersMoral <- lm(manufacturersMoral ~ condition + pol, data = gjg)
summary(mod_manufacturersMoral)
## 
## Call:
## lm(formula = manufacturersMoral ~ condition + pol, data = gjg)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.30707 -1.02450  0.04355  1.00662  2.43567 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.75811    0.11623  23.730  < 2e-16 ***
## conditionindividualScope -0.27220    0.09189  -2.962 0.003116 ** 
## conditionpopulationScope -0.18718    0.09254  -2.023 0.043326 *  
## pol                       0.07842    0.02094   3.746 0.000188 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01949,    Adjusted R-squared:  0.01701 
## F-statistic: 7.858 on 3 and 1186 DF,  p-value: 3.409e-05
mod_manufacturersMoralI <- lm(manufacturersMoral ~ condition + pol, data = gjg_I)
summary(mod_manufacturersMoralI)
## 
## Call:
## lm(formula = manufacturersMoral ~ condition + pol, data = gjg_I)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.30707 -1.02450  0.04355  1.00662  2.43567 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.48590    0.11579  21.469  < 2e-16 ***
## conditionmergedScope      0.27220    0.09189   2.962 0.003116 ** 
## conditionpopulationScope  0.08502    0.09269   0.917 0.359165    
## pol                       0.07842    0.02094   3.746 0.000188 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01949,    Adjusted R-squared:  0.01701 
## F-statistic: 7.858 on 3 and 1186 DF,  p-value: 3.409e-05
mod_manufacturerBlame <- lm(manufacturerBlame ~ condition + pol, data = gjg)
summary(mod_manufacturerBlame)
## 
## Call:
## lm(formula = manufacturerBlame ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6809 -0.9879 -0.1938  0.7379  3.3296 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.94804    0.10399  18.734  < 2e-16 ***
## conditionindividualScope -0.48704    0.08222  -5.924 4.12e-09 ***
## conditionpopulationScope -0.06483    0.08279  -0.783    0.434    
## pol                       0.10469    0.01873   5.589 2.83e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.163 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.05724,    Adjusted R-squared:  0.05486 
## F-statistic:    24 on 3 and 1186 DF,  p-value: 4.399e-15
mod_manufacturerBlameI <- lm(manufacturerBlame ~ condition + pol, data = gjg_I)
summary(mod_manufacturerBlameI)
## 
## Call:
## lm(formula = manufacturerBlame ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6809 -0.9879 -0.1938  0.7379  3.3296 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.46100    0.10360  14.103  < 2e-16 ***
## conditionmergedScope      0.48704    0.08222   5.924 4.12e-09 ***
## conditionpopulationScope  0.42221    0.08293   5.091 4.13e-07 ***
## pol                       0.10469    0.01873   5.589 2.83e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.163 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.05724,    Adjusted R-squared:  0.05486 
## F-statistic:    24 on 3 and 1186 DF,  p-value: 4.399e-15
mod_individualsBlame <- lm(individualsBlame ~ condition + pol, data = gjg)
summary(mod_individualsBlame)
## 
## Call:
## lm(formula = individualsBlame ~ condition + pol, data = gjg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8019  0.1918  0.2233  0.2887  0.4017 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.755440   0.053040  89.657  < 2e-16 ***
## conditionindividualScope  0.065403   0.041936   1.560  0.11912    
## conditionpopulationScope -0.112931   0.042230  -2.674  0.00759 ** 
## pol                      -0.006310   0.009554  -0.661  0.50906    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5934 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01531,    Adjusted R-squared:  0.01282 
## F-statistic: 6.148 on 3 and 1186 DF,  p-value: 0.0003798
mod_individualsBlameI <- lm(individualsBlame ~ condition + pol, data = gjg_I)
summary(mod_individualsBlameI)
## 
## Call:
## lm(formula = individualsBlame ~ condition + pol, data = gjg_I)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8019  0.1918  0.2233  0.2887  0.4017 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.820844   0.052841  91.233  < 2e-16 ***
## conditionmergedScope     -0.065403   0.041936  -1.560    0.119    
## conditionpopulationScope -0.178335   0.042298  -4.216 2.67e-05 ***
## pol                      -0.006310   0.009554  -0.661    0.509    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5934 on 1186 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.01531,    Adjusted R-squared:  0.01282 
## F-statistic: 6.148 on 3 and 1186 DF,  p-value: 0.0003798

12 Bonus

bonus_gjg <- gjg_raw %>% filter(attentionCheck == 4, Finished == 1, consent == 8)
bonus_gjg <- bonus_gjg %>% 
  dplyr::select(PROLIFIC_PID, donation)

view(bonus_gjg)
winners_bonus_gjg <- bonus_gjg[seq(20, nrow(bonus_gjg), 20), ]

# write.csv(winners_bonus_gjg, "BONUS_scope_project_study_1_texting.csv", row.names = FALSE)