Prueba de una cola a la derecha
\[ H_0: p\leq 0.3 \quad \mbox{versus} \quad H_1: p > 0.3 \] Prueba de una cola a la izquierda
\[ H_0: p\geq 0.3 \quad \mbox{versus} \quad H_1: p < 0.3 \] Prueba de dos colas (bilateral)
\[ H_0: p= 0.3 \quad \mbox{versus} \quad H_1: p \neq 0.3 \] La distribución muestral de la proporción muestral es normal.
Fórmula para calcular el Estadístico
\[Z= \frac{\overline{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \] Fórmula del valor P
\[\text{$P$-valor} \;= \; \begin{cases} P(Z\leq z), & \text{para una prueba de una cola a la izquierda}, \\ & \\ P(Z\geq z), & \text{para una prueba de una cola a la derecha}, \\ &\\ 2\,P(Z\geq |z|),& \text{para una prueba de dos colas}. \end{cases} \]
Se considera que un medicamento que se prescribe comúnmente para aliviar la tensión nerviosa tiene una eficacia de tan sólo 60%. Los resultados experimentales de un nuevo fármaco administrado a una muestra aleatoria de 100 adultos que padecían tensión nerviosa revelaron que 70 de ellos sintieron alivio. ¿Esta evidencia es suficiente para concluir que el nuevo medicamento es mejor que el que se prescribe comúnmente? Utilice un nivel de significancia de 0.05.
\[ H_0: p\leq 0.6 \quad \mbox{versus} \quad H_1: p > 0.6 \]
n=100
alpha=0.05
pbarra=0.7 #proporción de la muestra
p=0.6 # proporcion_hipotetica
# Prueba de hipótesis de una proporción
resultado_prueba <- prop.test(x = pbarra*n, n = n, p = p, alternative = "greater")
ES <- sqrt(p*(1-p)/n) #K) Error estándar (= desviación estándar del estadístico)
z<- (pbarra - p)/ES #L) Valor de prueba
c=qnorm(1-alpha)
c;z
## [1] 1.644854
## [1] 2.041241
# Mostrar resultados
cat("Resultado de la prueba de hipótesis:\n")
## Resultado de la prueba de hipótesis:
print(resultado_prueba)
##
## 1-sample proportions test with continuity correction
##
## data: pbarra * n out of n, null probability p
## X-squared = 3.7604, df = 1, p-value = 0.02624
## alternative hypothesis: true p is greater than 0.6
## 95 percent confidence interval:
## 0.6149607 1.0000000
## sample estimates:
## p
## 0.7
Decisión: Rechazar \(H_0\) y concluir que el nuevo fármaco es mejor.
n=200
x=110
alpha = 0.05
pbarra= x/n
p= 0.6
# Prueba de hipótesis de una proporción
resultado_prueba <- prop.test(x , n=n, p=p, alternative = "less")
ES <- sqrt(p*(1-p)/n) #K) Error estándar (= desviación estándar del estadístico)
z<- (pbarra - p)/ES #L) Valor de prueba
c=qnorm(1-alpha)
c;z
## [1] 1.644854
## [1] -1.443376
Decisión Rechazar H0 y concluir que menos del 60% residentes de cierta área están a favor de una demanda de anexión de una ciudad vecina.
n=90
x=28
alpha = 0.05
pbarra=x/n
p= 0.25
# Prueba de hipótesis de una proporción
resultado_prueba <- prop.test(x = pbarra*n, n = n, p = p, alternative = "greater")
ES <- sqrt(p*(1-p)/n) #K) Error estándar (= desviación estándar del estadístico)
z<- (pbarra - p)/ES #L) Valor de prueba
c=qnorm(1-alpha)
c;z
## [1] 1.644854
## [1] 1.338877
Decisión aceptar H0 y concluir que no mas de 25% de los estudiantes van en bicicleta a la escuela.