혼자서 해보기1
Q1.
library(ggplot2)
ggplot(data = mpg, aes(x= cty, y = hwy)) + geom_point()

Q2.
ggplot(data = midwest, aes(x = poptotal, y = popasian)) +
geom_point() +
xlim(0, 500000) +
ylim(0, 10000)
## Warning: Removed 15 rows containing missing values (`geom_point()`).

혼자서 해보기2
Q1.
library(dplyr)
##
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df <- mpg %>% filter(class == "suv") %>%
group_by(manufacturer) %>%
summarise(mean_cty = mean(cty)) %>%
arrange(desc(mean_cty)) %>%
head(5)
ggplot(data = df, aes(x = reorder(manufacturer, -mean_cty), y = mean_cty)) + geom_col()

Q2.
ggplot(data = mpg, aes(x = class)) + geom_bar()

혼자서 해보기3
Q1.
ggplot(data = economics, aes(x = date, y = psavert)) + geom_line()

혼자서 해보기4
Q1.
class <- mpg %>% filter(class %in% c("compact","subcompact","suv"))
ggplot(data = class, aes(x=class, y= cty)) +geom_boxplot()

한국어 데이터를 이용해 그래프그리기
library(readxl)
korean <- read_excel("C:\\Users\\user\\Documents\\20220124\\korean_data_ANSI.xls")
ggplot(data = korean, aes(x = gender , y= response)) + geom_boxplot()

boxplot(korean$response)$stats

## [,1]
## [1,] 1
## [2,] 1
## [3,] 4
## [4,] 7
## [5,] 7
25% 값: 1 , median: 4 , 75% 값: 7