# Load packages
library(tidyverse)
library(tidyquant)
1 Get stock prices and convert to returns
Ra <- c("AMZN", "TSLA", "TM") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 66 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AMZN 2022-01-31 -0.122
## 2 AMZN 2022-02-28 0.0267
## 3 AMZN 2022-03-31 0.0614
## 4 AMZN 2022-04-29 -0.238
## 5 AMZN 2022-05-31 -0.0328
## 6 AMZN 2022-06-30 -0.116
## 7 AMZN 2022-07-29 0.271
## 8 AMZN 2022-08-31 -0.0606
## 9 AMZN 2022-09-30 -0.109
## 10 AMZN 2022-10-31 -0.0935
## # ℹ 56 more rows
2 Get baseline and convert to returns
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 22 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## # ℹ 12 more rows
3 Join the two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 66 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AMZN 2022-01-31 -0.122 -0.101
## 2 AMZN 2022-02-28 0.0267 -0.0343
## 3 AMZN 2022-03-31 0.0614 0.0341
## 4 AMZN 2022-04-29 -0.238 -0.133
## 5 AMZN 2022-05-31 -0.0328 -0.0205
## 6 AMZN 2022-06-30 -0.116 -0.0871
## 7 AMZN 2022-07-29 0.271 0.123
## 8 AMZN 2022-08-31 -0.0606 -0.0464
## 9 AMZN 2022-09-30 -0.109 -0.105
## 10 AMZN 2022-10-31 -0.0935 0.0390
## # ℹ 56 more rows
4 Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePremium Alpha AnnualizedAlpha Beta `Beta-` `Beta+` Correlation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMZN -0.0176 0.0063 0.0783 1.47 1.68 2.58 0.857
## 2 TSLA -0.210 0.0031 0.0373 2.07 1.71 4.68 0.717
## 3 TM 0.0655 0.0034 0.0416 0.644 0.111 0.722 0.624
## # ℹ 5 more variables: `Correlationp-value` <dbl>, InformationRatio <dbl>,
## # `R-squared` <dbl>, TrackingError <dbl>, TreynorRatio <dbl>
Which stock has a positively skewed distribution of returns?
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = VolatilitySkewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol VolatilitySkewness.1
## <chr> <dbl>
## 1 AMZN 2.42
## 2 TSLA 1.99
## 3 TM 1.44