library(tidyverse)
library(rvest)
library(plotly)
url <- 'http://www.imdb.com/search/title?count=100&release_date=2016,2016&title_type=feature'
webpage <- read_html(url)
#Use CSS selectors to scrape rankings
rank_data_html <- html_nodes(webpage,'.text-primary')
#Convert the ranking data to text
rank_data <- html_text(rank_data_html)
#View the ranking data
head(rank_data)
## [1] "1." "2." "3." "4." "5." "6."
#Convert rankings to numerical format
rank_data<-as.numeric(rank_data)
#View rank data again
head(rank_data)
## [1] 1 2 3 4 5 6
#Use CSS selectors to scrape the title section
title_data_html <- html_nodes(webpage,'.lister-item-header a')
#Convert the title data to text
title_data <- html_text(title_data_html)
#View the title data
head(title_data)
## [1] "Terrifier" "Suicide Squad" "Silence" "Hush"
## [5] "The Conjuring 2" "Split"
#Use CSS selectors to scrape the description section
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')
#Convert the description data to text
description_data <- html_text(description_data_html)
#View the description data
head(description_data)
## [1] "\nOn Halloween night, Tara Heyes finds herself as the obsession of a sadistic murderer known as Art the Clown."
## [2] "\nA secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [3] "\nIn the 17th century, two Portuguese Jesuit priests travel to Japan in an attempt to locate their mentor, who is rumored to have committed apostasy, and to propagate Catholicism."
## [4] "\nA deaf and mute writer who retreated into the woods to live a solitary life must fight for her life in silence when a masked killer appears at her window."
## [5] "\nEd and Lorraine Warren travel to North London to help a single mother raising four children alone in a house plagued by a supernatural spirit."
## [6] "\nThree girls are kidnapped by a man with a diagnosed 23 distinct personalities. They must try to escape before the apparent emergence of a frightful new 24th."
#Data-Preprocessing: removing '\n'
description_data<-gsub("\n","",description_data)
#Let's have another look at the description data
head(description_data)
## [1] "On Halloween night, Tara Heyes finds herself as the obsession of a sadistic murderer known as Art the Clown."
## [2] "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive task force. Their first mission: save the world from the apocalypse."
## [3] "In the 17th century, two Portuguese Jesuit priests travel to Japan in an attempt to locate their mentor, who is rumored to have committed apostasy, and to propagate Catholicism."
## [4] "A deaf and mute writer who retreated into the woods to live a solitary life must fight for her life in silence when a masked killer appears at her window."
## [5] "Ed and Lorraine Warren travel to North London to help a single mother raising four children alone in a house plagued by a supernatural spirit."
## [6] "Three girls are kidnapped by a man with a diagnosed 23 distinct personalities. They must try to escape before the apparent emergence of a frightful new 24th."
#Using CSS selectors to scrape the Movie runtime section
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime')
#Converting the runtime data to text
runtime_data <- html_text(runtime_data_html)
#Let's have a look at the runtime
head(runtime_data)
## [1] "85 min" "123 min" "161 min" "82 min" "134 min" "117 min"
#Data-Preprocessing: removing mins and converting it to numerical
runtime_data<-gsub(" min","",runtime_data)
runtime_data<-as.numeric(runtime_data)
#Let's have another look at the runtime data
head(runtime_data)
## [1] 85 123 161 82 134 117
#Using CSS selectors to scrape the Movie genre section
genre_data_html <- html_nodes(webpage,'.genre')
#Converting the genre data to text
genre_data <- html_text(genre_data_html)
#Let's have a look at the runtime
head(genre_data)
## [1] "\nHorror, Thriller "
## [2] "\nAction, Adventure, Fantasy "
## [3] "\nDrama, History "
## [4] "\nHorror, Thriller "
## [5] "\nHorror, Mystery, Thriller "
## [6] "\nHorror, Thriller "
#Data-Preprocessing: removing \n
genre_data<-gsub("\n","",genre_data)
#Data-Preprocessing: removing excess spaces
genre_data<-gsub(" ","",genre_data)
#taking only the first genre of each movie
genre_data<-gsub(",.*","",genre_data)
#Converting each genre from text to factor
genre_data<-as.factor(genre_data)
#Let's have another look at the genre data
head(genre_data)
## [1] Horror Action Drama Horror Horror Horror
## 9 Levels: Action Adventure Animation Biography Comedy Crime Drama ... Horror
#Using CSS selectors to scrape the IMDB rating section
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')
#Converting the ratings data to text
rating_data <- html_text(rating_data_html)
#Let's have a look at the ratings
head(rating_data)
## [1] "5.6" "5.9" "7.2" "6.6" "7.3" "7.3"
#Data-Preprocessing: converting ratings to numerical
rating_data<-as.numeric(rating_data)
#Let's have another look at the ratings data
head(rating_data)
## [1] 5.6 5.9 7.2 6.6 7.3 7.3
ratings_bar_data <- html_nodes(webpage, '.ratings-bar') |>
# scrape the ratings bar and convert to text
html_text2()
head(ratings_bar_data) #look at the ratings bar
## [1] "5.6\nRate this\n 1 2 3 4 5 6 7 8 9 10 5.6/10 X "
## [2] "5.9\nRate this\n 1 2 3 4 5 6 7 8 9 10 5.9/10 X \n40 Metascore"
## [3] "7.2\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.2/10 X \n79 Metascore"
## [4] "6.6\nRate this\n 1 2 3 4 5 6 7 8 9 10 6.6/10 X \n67 Metascore"
## [5] "7.3\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.3/10 X \n65 Metascore"
## [6] "7.3\nRate this\n 1 2 3 4 5 6 7 8 9 10 7.3/10 X \n63 Metascore"
metascore_data <- str_match(ratings_bar_data, "\\d{2} Metascore") |>
# extract metascore
str_match("\\d{2}") |>
as.numeric() # convert to number
length(metascore_data)
## [1] 100
metascore_data
## [1] NA 40 79 67 65 63 71 85 94 59 81 81 55 65 73 70 65 88 57 65 78 81 54 67 60
## [26] 44 51 41 65 74 71 81 66 96 68 58 76 47 66 NA 82 48 82 NA 44 51 75 42 32 25
## [51] 66 52 51 99 72 58 77 57 81 37 48 44 72 32 NA 45 44 47 66 46 53 81 69 49 77
## [76] 62 58 35 33 68 78 42 42 36 46 34 61 60 60 21 38 66 26 59 55 62 NA 68 79 74
summary(metascore_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 21.00 47.00 62.00 60.36 72.50 99.00 5
#Using CSS selectors to scrape the votes section
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
#Converting the votes data to text
votes_data <- html_text(votes_data_html)
#Let's have a look at the votes data
head(votes_data)
## [1] "47,604" "710,171" "119,435" "149,202" "292,206" "532,800"
#Data-Preprocessing: removing commas
votes_data<-gsub(",","",votes_data)
#Data-Preprocessing: converting votes to numerical
votes_data<-as.numeric(votes_data)
#Let's have another look at the votes data
head(votes_data)
## [1] 47604 710171 119435 149202 292206 532800
# scrape the votes bar and convert to text
votes_bar_data <- html_nodes(webpage, '.sort-num_votes-visible') |>
html_text2()
head(votes_bar_data) #look at the votes bar data
## [1] "Votes: 47,604" "Votes: 710,171 | Gross: $325.10M"
## [3] "Votes: 119,435 | Gross: $7.10M" "Votes: 149,202"
## [5] "Votes: 292,206 | Gross: $102.47M" "Votes: 532,800 | Gross: $138.29M"
gross_data <- str_match(votes_bar_data, "\\$.+$") #extract the gross earnings
gross_data <- gsub("M", "", gross_data) #clean data- remove "M"
gross_data <- substring(gross_data,2,6) |>
as.numeric() #clean data: remove $ sign
gross_data
## [1] NA 325.10 7.10 NA 102.40 138.20 67.21 2.01 151.10 270.40
## [11] 100.50 248.70 153.70 363.00 2.13 36.26 532.10 27.01 87.24 0.01
## [21] 341.20 5.02 93.43 10.66 128.30 126.60 56.25 100.00 35.14 169.60
## [31] 89.22 NA 234.00 47.70 NA 67.27 72.08 58.70 97.69 NA
## [41] 1.03 52.85 0.23 NA 330.30 86.26 408.00 NA 103.10 31.15
## [51] 12.79 155.40 1.33 27.85 232.60 162.40 364.00 43.03 0.51 59.69
## [61] 75.40 6.86 5.88 47.37 NA 10.91 10.16 8.11 55.48 NA
## [71] 20.76 5.20 51.74 7.23 14.43 0.18 38.58 0.78 34.92 61.43
## [81] 8.58 45.54 35.82 54.65 65.08 77.04 368.30 113.20 40.10 35.59
## [91] 21.22 143.50 18.71 55.12 79.21 0.15 NA 158.80 57.68 125.00
length(gross_data)
## [1] 100
summary(gross_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.01 15.50 55.87 93.09 122.05 532.10 10
#Using CSS selectors to scrape the directors section
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')
#Converting the directors data to text
directors_data <- html_text(directors_data_html)
#Let's have a look at the directors data
head(directors_data)
## [1] "Damien Leone" "David Ayer" "Martin Scorsese"
## [4] "Mike Flanagan" "James Wan" "M. Night Shyamalan"
#Data-Preprocessing: converting directors data into factors
directors_data<-as.factor(directors_data)
#Using CSS selectors to scrape the actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')
#Converting the gross actors data to text
actors_data <- html_text(actors_data_html)
#Let's have a look at the actors data
head(actors_data)
## [1] "Jenna Kanell" "Will Smith" "Andrew Garfield"
## [4] "John Gallagher Jr." "Vera Farmiga" "James McAvoy"
#Data-Preprocessing: converting actors data into factors
actors_data<-as.factor(actors_data)
#Combining all the lists to form a data frame
movies_df<-data.frame(Rank = rank_data, Title = title_data,
Description = description_data, Runtime = runtime_data,
Genre = genre_data, Rating = rating_data,
Metascore = metascore_data, Votes = votes_data, Gross_Earning_in_Mil = gross_data,
Director = directors_data) #Actor = actors_data is temporarily omitted since there are only 99 observations for this variable but 100 for all the others
#Structure of the data frame
str(movies_df)
## 'data.frame': 100 obs. of 10 variables:
## $ Rank : num 1 2 3 4 5 6 7 8 9 10 ...
## $ Title : chr "Terrifier" "Suicide Squad" "Silence" "Hush" ...
## $ Description : chr "On Halloween night, Tara Heyes finds herself as the obsession of a sadistic murderer known as Art the Clown." "A secret government agency recruits some of the most dangerous incarcerated super-villains to form a defensive "| __truncated__ "In the 17th century, two Portuguese Jesuit priests travel to Japan in an attempt to locate their mentor, who is"| __truncated__ "A deaf and mute writer who retreated into the woods to live a solitary life must fight for her life in silence "| __truncated__ ...
## $ Runtime : num 85 123 161 82 134 117 139 145 128 108 ...
## $ Genre : Factor w/ 9 levels "Action","Adventure",..: 9 1 7 9 9 9 4 7 5 3 ...
## $ Rating : num 5.6 5.9 7.2 6.6 7.3 7.3 8.1 8.1 8 7.1 ...
## $ Metascore : num NA 40 79 67 65 63 71 85 94 59 ...
## $ Votes : num 47604 710171 119435 149202 292206 ...
## $ Gross_Earning_in_Mil: num NA 325.1 7.1 NA 102.4 ...
## $ Director : Factor w/ 97 levels "Alessandro Carloni",..: 19 22 61 65 44 59 63 71 18 34 ...
movies_df |>
ggplot(aes(Runtime, fill = Genre, bins = 30)) +
geom_bar()
Based on the above data, which movie from which Genre had the longest
runtime?
movies_df |>
group_by(Genre) |>
slice_max(Runtime, n = 1) |>
relocate(Genre) |>
arrange(desc(Runtime))
## # A tibble: 10 × 10
## # Groups: Genre [9]
## Genre Rank Title Description Runtime Rating Metascore Votes
## <fct> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Drama 3 Silence In the 17t… 161 7.2 79 119435
## 2 Action 45 Batman v Superma… Batman is … 151 6.5 44 741776
## 3 Adventure 81 The Lost City of… A true-lif… 141 6.6 78 97055
## 4 Biography 7 Hacksaw Ridge World War … 139 8.1 71 571808
## 5 Horror 5 The Conjuring 2 Ed and Lor… 134 7.3 65 292206
## 6 Comedy 9 La La Land While navi… 128 8 94 639080
## 7 Crime 61 The Girl on the … A divorcee… 112 6.5 48 195702
## 8 Animation 10 Sing In a city … 108 7.1 59 184413
## 9 Animation 21 Zootopia In a city … 108 8 78 529648
## 10 Fantasy 97 The Midnight Man A girl and… 95 4.8 NA 4599
## # ℹ 2 more variables: Gross_Earning_in_Mil <dbl>, Director <fct>
Silence (from the Drama genre) has the longest runtime at 161 minutes.
movies_df |>
ggplot(aes(x = Runtime, y = Rating)) +
geom_point(aes(size = Votes, col = Genre))
Create the above viz with plotly
p1 <- plot_ly(movies_df, x = ~Runtime, y = ~Rating, text = ~Title, type = 'scatter', mode = 'markers', size = ~Votes, color = ~Genre, colors = 'Paired',
marker = list(opacity = 0.8))
p1 <- p1 |> layout(title = 'Movie Ratings by Runtime and Genre',
xaxis = list(showgrid = FALSE),
yaxis = list(showgrid = FALSE))
p1
Based on the above data, in the Runtime of 130-160 mins, which genre has the highest votes?
movies_df |>
filter(Runtime >= 130 & Runtime <= 160) |>
group_by(Genre) |>
relocate(Genre, Votes) |>
arrange(desc(Votes))
## # A tibble: 16 × 10
## # Groups: Genre [5]
## Genre Votes Rank Title Description Runtime Rating Metascore
## <fct> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
## 1 Action 829951 47 Captain America:… "Political… 147 7.8 75
## 2 Action 741776 45 Batman v Superma… "Batman is… 151 6.5 44
## 3 Action 671134 17 Rogue One: A Sta… "In a time… 133 7.8 65
## 4 Biography 571808 7 Hacksaw Ridge "World War… 139 8.1 71
## 5 Adventure 496697 33 Fantastic Beasts… "The adven… 132 7.2 66
## 6 Action 452836 52 X-Men: Apocalypse "In the 19… 144 6.9 52
## 7 Drama 302016 34 Manchester by th… "A depress… 137 7.8 96
## 8 Horror 292206 5 The Conjuring 2 "Ed and Lo… 134 7.3 65
## 9 Action 223710 23 The Magnificent … "Seven gun… 132 6.9 54
## 10 Drama 164453 8 The Handmaiden "A woman i… 145 8.1 85
## 11 Action 154409 42 13 Hours "During an… 144 7.3 48
## 12 Drama 114826 99 Fences "A working… 139 7.2 79
## 13 Drama 106694 68 A Cure for Welln… "An ambiti… 146 6.4 47
## 14 Adventure 97055 81 The Lost City of… "A true-li… 141 6.6 78
## 15 Drama 77370 32 The Wailing "Soon afte… 156 7.4 81
## 16 Action 60926 71 Free State of Jo… "A disillu… 139 6.9 53
## # ℹ 2 more variables: Gross_Earning_in_Mil <dbl>, Director <fct>
Within the runtime of 130-160 minutes, the Action genre has the movie with the highest number of votes (829,951 for Captain America: Civil War). The 3 movies with the most votes are all from the Action genre.
movies_df |>
ggplot(aes(x = Runtime, y = Gross_Earning_in_Mil)) +
geom_point(aes(size = Rating, col = Genre))
Based on the above data, across all genres which genre has the highest average gross earnings in runtime 100 to 120?
movies_df |>
filter(Runtime >= 100 & Runtime <= 120) |>
group_by(Genre) |>
summarise(avggross = mean(Gross_Earning_in_Mil)) |>
arrange(desc(avggross))
## # A tibble: 8 × 2
## Genre avggross
## <fct> <dbl>
## 1 Animation 216.
## 2 Adventure 125.
## 3 Action 89.2
## 4 Drama 48.4
## 5 Horror 46.8
## 6 Comedy 33.9
## 7 Biography 28.7
## 8 Crime NA
Animation is the genre with the highest average gross earnings given runtime between 100 and 120 minutes.