library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

6.2

table1
## # A tibble: 6 × 4
##   country      year  cases population
##   <chr>       <dbl>  <dbl>      <dbl>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583
#> # A tibble: 6 × 4
#>   country      year  cases population
#>   <chr>       <dbl>  <dbl>      <dbl>
#> 1 Afghanistan  1999    745   19987071
#> 2 Afghanistan  2000   2666   20595360
#> 3 Brazil       1999  37737  172006362
#> 4 Brazil       2000  80488  174504898
#> 5 China        1999 212258 1272915272
#> 6 China        2000 213766 1280428583

table2
## # A tibble: 12 × 4
##    country      year type            count
##    <chr>       <dbl> <chr>           <dbl>
##  1 Afghanistan  1999 cases             745
##  2 Afghanistan  1999 population   19987071
##  3 Afghanistan  2000 cases            2666
##  4 Afghanistan  2000 population   20595360
##  5 Brazil       1999 cases           37737
##  6 Brazil       1999 population  172006362
##  7 Brazil       2000 cases           80488
##  8 Brazil       2000 population  174504898
##  9 China        1999 cases          212258
## 10 China        1999 population 1272915272
## 11 China        2000 cases          213766
## 12 China        2000 population 1280428583
#> # A tibble: 12 × 4
#>   country      year type           count
#>   <chr>       <dbl> <chr>          <dbl>
#> 1 Afghanistan  1999 cases            745
#> 2 Afghanistan  1999 population  19987071
#> 3 Afghanistan  2000 cases           2666
#> 4 Afghanistan  2000 population  20595360
#> 5 Brazil       1999 cases          37737
#> 6 Brazil       1999 population 172006362
#> # ℹ 6 more rows

table3
## # A tibble: 6 × 3
##   country      year rate             
##   <chr>       <dbl> <chr>            
## 1 Afghanistan  1999 745/19987071     
## 2 Afghanistan  2000 2666/20595360    
## 3 Brazil       1999 37737/172006362  
## 4 Brazil       2000 80488/174504898  
## 5 China        1999 212258/1272915272
## 6 China        2000 213766/1280428583
#> # A tibble: 6 × 3
#>   country      year rate             
#>   <chr>       <dbl> <chr>            
#> 1 Afghanistan  1999 745/19987071     
#> 2 Afghanistan  2000 2666/20595360    
#> 3 Brazil       1999 37737/172006362  
#> 4 Brazil       2000 80488/174504898  
#> 5 China        1999 212258/1272915272
#> 6 China        2000 213766/1280428583
# Compute rate per 10,000
table1 |>
  mutate(rate = cases / population * 10000)
## # A tibble: 6 × 5
##   country      year  cases population  rate
##   <chr>       <dbl>  <dbl>      <dbl> <dbl>
## 1 Afghanistan  1999    745   19987071 0.373
## 2 Afghanistan  2000   2666   20595360 1.29 
## 3 Brazil       1999  37737  172006362 2.19 
## 4 Brazil       2000  80488  174504898 4.61 
## 5 China        1999 212258 1272915272 1.67 
## 6 China        2000 213766 1280428583 1.67
#> # A tibble: 6 × 5
#>   country      year  cases population  rate
#>   <chr>       <dbl>  <dbl>      <dbl> <dbl>
#> 1 Afghanistan  1999    745   19987071 0.373
#> 2 Afghanistan  2000   2666   20595360 1.29 
#> 3 Brazil       1999  37737  172006362 2.19 
#> 4 Brazil       2000  80488  174504898 4.61 
#> 5 China        1999 212258 1272915272 1.67 
#> 6 China        2000 213766 1280428583 1.67

# Compute total cases per year
table1 |> 
  group_by(year) |> 
  summarize(total_cases = sum(cases))
## # A tibble: 2 × 2
##    year total_cases
##   <dbl>       <dbl>
## 1  1999      250740
## 2  2000      296920
#> # A tibble: 2 × 2
#>    year total_cases
#>   <dbl>       <dbl>
#> 1  1999      250740
#> 2  2000      296920

# Visualize changes over time
ggplot(table1, aes(x = year, y = cases)) +
  geom_line(aes(group = country), color = "grey50") +
  geom_point(aes(color = country, shape = country)) +
  scale_x_continuous(breaks = c(1999, 2000)) # x-axis breaks at 1999 and 2000

6.2.1 Exercises

  1. For each of the sample tables, describe what each observation and each column represents.

Table 1: Each observation represents a year where data was collected in each country (e.g., observation 1 represents data collected in 1999 in Afghanistan). Each column represents a variable.

Table 2: Each observation represents a variable (e.g., cases or population) measured in each year by country. The columns represent 2 variables (country and year); type of data (population or cases), and counts for each type of data in column 3.

Table 3: Each observation represents a year in which data was collected in each country. The columns represent 2 variables (country and year), as well as rate, which appears to be a calculated variable containing number of cases and population.

  1. Sketch out the process you’d use to calculate the rate for table2 and table3. You will need to perform four operations:
  1. Extract the number of TB cases per country per year.
  2. Extract the matching population per country per year.
  3. Divide cases by population, and multiply by 10000.
  4. Store back in the appropriate place.

You haven’t yet learned all the functions you’d need to actually perform these operations, but you should still be able to think through the transformations you’d need.

Table 2: a. To extract the number of TB cases per country per year, I need to filter the “type” column for all rows where the value is “cases,” then add the count values of these rows to a new column called “cases.” b. To extract the matching population per country per year, I need to filter the “type” column for all rows where the value is “population,” then add the count values of these rows to a new column called “population.” Double check to make sure it lines up with the correct case counts. c and d. Create a new column for rate using the mutate function, for instance:

{r}# table2 |> mutate(rate = cases/population * 10000)

Creating the new column will store it in the appropriate place in table2.

Table 3: a. To extract the number of TB cases per country per year, extract the numbers before the “/” in the rate column (the numerator in this column is the number of TB cases). Use the mutate function to place them in a new column. This is possible because the values in the rate column are currently defined as characters, rather than numbers. b. To extract the matching population per country per year, extract the numbers after the “/” in the rate column (the denominator is the population) and use the mutate function to place them in a new column. c and d. Multiple the existing rate column by 10000 using the mutate function which will create a new column with rate in table3.

{r}# table3 |> mutate(rate1 = rate * 10000)

6.3

6.3.1

billboard
## # A tibble: 317 × 79
##    artist     track date.entered   wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8
##    <chr>      <chr> <date>       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2 Pac      Baby… 2000-02-26      87    82    72    77    87    94    99    NA
##  2 2Ge+her    The … 2000-09-02      91    87    92    NA    NA    NA    NA    NA
##  3 3 Doors D… Kryp… 2000-04-08      81    70    68    67    66    57    54    53
##  4 3 Doors D… Loser 2000-10-21      76    76    72    69    67    65    55    59
##  5 504 Boyz   Wobb… 2000-04-15      57    34    25    17    17    31    36    49
##  6 98^0       Give… 2000-08-19      51    39    34    26    26    19     2     2
##  7 A*Teens    Danc… 2000-07-08      97    97    96    95   100    NA    NA    NA
##  8 Aaliyah    I Do… 2000-01-29      84    62    51    41    38    35    35    38
##  9 Aaliyah    Try … 2000-03-18      59    53    38    28    21    18    16    14
## 10 Adams, Yo… Open… 2000-08-26      76    76    74    69    68    67    61    58
## # ℹ 307 more rows
## # ℹ 68 more variables: wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>,
## #   wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>, wk17 <dbl>, wk18 <dbl>,
## #   wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, wk22 <dbl>, wk23 <dbl>, wk24 <dbl>,
## #   wk25 <dbl>, wk26 <dbl>, wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>,
## #   wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>, wk36 <dbl>,
## #   wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>, wk41 <dbl>, wk42 <dbl>, …

use pivot_longer to tidy data

billboard |>
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    values_to = "rank"
  )
## # A tibble: 24,092 × 5
##    artist track                   date.entered week   rank
##    <chr>  <chr>                   <date>       <chr> <dbl>
##  1 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk1      87
##  2 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk2      82
##  3 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk3      72
##  4 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk4      77
##  5 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk5      87
##  6 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk6      94
##  7 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk7      99
##  8 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk8      NA
##  9 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk9      NA
## 10 2 Pac  Baby Don't Cry (Keep... 2000-02-26   wk10     NA
## # ℹ 24,082 more rows

remove NAs that were forced to exist (not truly unknown)

billboard |>
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    values_to = "rank",
    values_drop_na = TRUE
  )
## # A tibble: 5,307 × 5
##    artist  track                   date.entered week   rank
##    <chr>   <chr>                   <date>       <chr> <dbl>
##  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk1      87
##  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk2      82
##  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk3      72
##  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk4      77
##  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk5      87
##  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk6      94
##  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk7      99
##  8 2Ge+her The Hardest Part Of ... 2000-09-02   wk1      91
##  9 2Ge+her The Hardest Part Of ... 2000-09-02   wk2      87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02   wk3      92
## # ℹ 5,297 more rows

convert “week” values to numbers from character strings

billboard_longer <- billboard |>
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    values_to = "rank",
    values_drop_na = TRUE
  ) |>
  mutate(
    week = parse_number(week)
  )

billboard_longer
## # A tibble: 5,307 × 5
##    artist  track                   date.entered  week  rank
##    <chr>   <chr>                   <date>       <dbl> <dbl>
##  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26       1    87
##  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26       2    82
##  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26       3    72
##  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26       4    77
##  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26       5    87
##  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26       6    94
##  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26       7    99
##  8 2Ge+her The Hardest Part Of ... 2000-09-02       1    91
##  9 2Ge+her The Hardest Part Of ... 2000-09-02       2    87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02       3    92
## # ℹ 5,297 more rows

Visualize how song ranks vary over time

billboard_longer |>
  ggplot(aes(x = week, y = rank, group = track)) +
  geom_line(alpha = 0.25) +
  scale_y_reverse()

6.3.2

blood pressure measurements- create a small tibble by hand with tribble

df <- tribble(
  ~id,  ~bp1, ~bp2,
   "A",  100,  120,
   "B",  140,  115,
   "C",  120,  125
)

Pivot longer to have 3 variables: id, measurement, and value

df |>
  pivot_longer(
    cols = bp1:bp2,
    names_to = "measurement",
    values_to = "value"
  )
## # A tibble: 6 × 3
##   id    measurement value
##   <chr> <chr>       <dbl>
## 1 A     bp1           100
## 2 A     bp2           120
## 3 B     bp1           140
## 4 B     bp2           115
## 5 C     bp1           120
## 6 C     bp2           125

6.3.3

who2
## # A tibble: 7,240 × 58
##    country      year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554 sp_m_5564
##    <chr>       <dbl>    <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
##  1 Afghanistan  1980       NA        NA        NA        NA        NA        NA
##  2 Afghanistan  1981       NA        NA        NA        NA        NA        NA
##  3 Afghanistan  1982       NA        NA        NA        NA        NA        NA
##  4 Afghanistan  1983       NA        NA        NA        NA        NA        NA
##  5 Afghanistan  1984       NA        NA        NA        NA        NA        NA
##  6 Afghanistan  1985       NA        NA        NA        NA        NA        NA
##  7 Afghanistan  1986       NA        NA        NA        NA        NA        NA
##  8 Afghanistan  1987       NA        NA        NA        NA        NA        NA
##  9 Afghanistan  1988       NA        NA        NA        NA        NA        NA
## 10 Afghanistan  1989       NA        NA        NA        NA        NA        NA
## # ℹ 7,230 more rows
## # ℹ 50 more variables: sp_m_65 <dbl>, sp_f_014 <dbl>, sp_f_1524 <dbl>,
## #   sp_f_2534 <dbl>, sp_f_3544 <dbl>, sp_f_4554 <dbl>, sp_f_5564 <dbl>,
## #   sp_f_65 <dbl>, sn_m_014 <dbl>, sn_m_1524 <dbl>, sn_m_2534 <dbl>,
## #   sn_m_3544 <dbl>, sn_m_4554 <dbl>, sn_m_5564 <dbl>, sn_m_65 <dbl>,
## #   sn_f_014 <dbl>, sn_f_1524 <dbl>, sn_f_2534 <dbl>, sn_f_3544 <dbl>,
## #   sn_f_4554 <dbl>, sn_f_5564 <dbl>, sn_f_65 <dbl>, ep_m_014 <dbl>, …

Store info in column names in new variables

who2 |>
  pivot_longer(
    cols = !(country:year),
    names_to = c("diagnosis", "gender", "age"),
    names_sep = "_",
    values_to = "count"
  )
## # A tibble: 405,440 × 6
##    country      year diagnosis gender age   count
##    <chr>       <dbl> <chr>     <chr>  <chr> <dbl>
##  1 Afghanistan  1980 sp        m      014      NA
##  2 Afghanistan  1980 sp        m      1524     NA
##  3 Afghanistan  1980 sp        m      2534     NA
##  4 Afghanistan  1980 sp        m      3544     NA
##  5 Afghanistan  1980 sp        m      4554     NA
##  6 Afghanistan  1980 sp        m      5564     NA
##  7 Afghanistan  1980 sp        m      65       NA
##  8 Afghanistan  1980 sp        f      014      NA
##  9 Afghanistan  1980 sp        f      1524     NA
## 10 Afghanistan  1980 sp        f      2534     NA
## # ℹ 405,430 more rows

6.3.4

household
## # A tibble: 5 × 5
##   family dob_child1 dob_child2 name_child1 name_child2
##    <int> <date>     <date>     <chr>       <chr>      
## 1      1 1998-11-26 2000-01-29 Susan       Jose       
## 2      2 1996-06-22 NA         Mark        <NA>       
## 3      3 2002-07-11 2004-04-05 Sam         Seth       
## 4      4 2004-10-10 2009-08-27 Craig       Khai       
## 5      5 2000-12-05 2005-02-28 Parker      Gracie

Tidy column names with a mix of variable values and variable names

household |>
  pivot_longer(
    cols = !family,
    names_to = c(".value", "child"), #.value makes the input column names contribute to both values and variable names in the output. "child" is created as a new column with "child" values
    names_sep = "_",
    values_drop_na = TRUE
  )
## # A tibble: 9 × 4
##   family child  dob        name  
##    <int> <chr>  <date>     <chr> 
## 1      1 child1 1998-11-26 Susan 
## 2      1 child2 2000-01-29 Jose  
## 3      2 child1 1996-06-22 Mark  
## 4      3 child1 2002-07-11 Sam   
## 5      3 child2 2004-04-05 Seth  
## 6      4 child1 2004-10-10 Craig 
## 7      4 child2 2009-08-27 Khai  
## 8      5 child1 2000-12-05 Parker
## 9      5 child2 2005-02-28 Gracie

6.4

cms_patient_experience
## # A tibble: 500 × 5
##    org_pac_id org_nm                           measure_cd measure_title prf_rate
##    <chr>      <chr>                            <chr>      <chr>            <dbl>
##  1 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       63
##  2 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       87
##  3 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       86
##  4 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       57
##  5 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       85
##  6 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       24
##  7 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       59
##  8 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       85
##  9 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       83
## 10 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       63
## # ℹ 490 more rows

view the complete set of values for measure_cd and measure_title

cms_patient_experience |>
  distinct(measure_cd, measure_title)
## # A tibble: 6 × 2
##   measure_cd   measure_title                                                    
##   <chr>        <chr>                                                            
## 1 CAHPS_GRP_1  CAHPS for MIPS SSM: Getting Timely Care, Appointments, and Infor…
## 2 CAHPS_GRP_2  CAHPS for MIPS SSM: How Well Providers Communicate               
## 3 CAHPS_GRP_3  CAHPS for MIPS SSM: Patient's Rating of Provider                 
## 4 CAHPS_GRP_5  CAHPS for MIPS SSM: Health Promotion and Education               
## 5 CAHPS_GRP_8  CAHPS for MIPS SSM: Courteous and Helpful Office Staff           
## 6 CAHPS_GRP_12 CAHPS for MIPS SSM: Stewardship of Patient Resources
cms_patient_experience |>
  pivot_wider(
    names_from = measure_cd,
    values_from = prf_rate
  )
## # A tibble: 500 × 9
##    org_pac_id org_nm           measure_title CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3
##    <chr>      <chr>            <chr>               <dbl>       <dbl>       <dbl>
##  1 0446157747 USC CARE MEDICA… CAHPS for MI…          63          NA          NA
##  2 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          87          NA
##  3 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          86
##  4 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          NA
##  5 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          NA
##  6 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          NA
##  7 0446162697 ASSOCIATION OF … CAHPS for MI…          59          NA          NA
##  8 0446162697 ASSOCIATION OF … CAHPS for MI…          NA          85          NA
##  9 0446162697 ASSOCIATION OF … CAHPS for MI…          NA          NA          83
## 10 0446162697 ASSOCIATION OF … CAHPS for MI…          NA          NA          NA
## # ℹ 490 more rows
## # ℹ 3 more variables: CAHPS_GRP_5 <dbl>, CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>

There are still multiple rows for each organization above. Fix the output to show which columns have values that uniquely identify each row

cms_patient_experience |>
  pivot_wider(
    id_cols = starts_with("org"),
    names_from = measure_cd,
    values_from = prf_rate
  )
## # A tibble: 95 × 8
##    org_pac_id org_nm CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3 CAHPS_GRP_5 CAHPS_GRP_8
##    <chr>      <chr>        <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
##  1 0446157747 USC C…          63          87          86          57          85
##  2 0446162697 ASSOC…          59          85          83          63          88
##  3 0547164295 BEAVE…          49          NA          75          44          73
##  4 0749333730 CAPE …          67          84          85          65          82
##  5 0840104360 ALLIA…          66          87          87          64          87
##  6 0840109864 REX H…          73          87          84          67          91
##  7 0840513552 SCL H…          58          83          76          58          78
##  8 0941545784 GRITM…          46          86          81          54          NA
##  9 1052612785 COMMU…          65          84          80          58          87
## 10 1254237779 OUR L…          61          NA          NA          65          NA
## # ℹ 85 more rows
## # ℹ 1 more variable: CAHPS_GRP_12 <dbl>

6.4.1

How does pivot_wider work

df <- tribble(
  ~id, ~measurement, ~value,
  "A",        "bp1",    100,
  "B",        "bp1",    140,
  "B",        "bp2",    115, 
  "A",        "bp2",    120,
  "A",        "bp3",    105
)
df |>
  pivot_wider(
    names_from = measurement,
    values_from = value
  )
## # A tibble: 2 × 4
##   id      bp1   bp2   bp3
##   <chr> <dbl> <dbl> <dbl>
## 1 A       100   120   105
## 2 B       140   115    NA

how pivot_wider figures out the column names:

df |>
  distinct(measurement) |>
  pull()
## [1] "bp1" "bp2" "bp3"

how pivot_wider figures out the rows (id_cols):

df |>
  select(-measurement, -value) |>
  distinct()
## # A tibble: 2 × 1
##   id   
##   <chr>
## 1 A    
## 2 B

pivot_wider combines the above 2 results to generate an empty data frame:

df |>
  select(-measurement, -value) |>
  distinct() |>
  mutate(x = NA, y = NA, z = NA)
## # A tibble: 2 × 4
##   id    x     y     z    
##   <chr> <lgl> <lgl> <lgl>
## 1 A     NA    NA    NA   
## 2 B     NA    NA    NA

Multiple rows in input that correspond to 1 cell in output (2 bp1 values for id “A”)

df <- tribble(
  ~id, ~measurement, ~value,
  "A",        "bp1",    100,
  "A",        "bp1",    102,
  "A",        "bp2",    120,
  "B",        "bp1",    140, 
  "B",        "bp2",    115
)
df |>
  pivot_wider(
    names_from = measurement,
    values_from = value
  )
## Warning: Values from `value` are not uniquely identified; output will contain list-cols.
## • Use `values_fn = list` to suppress this warning.
## • Use `values_fn = {summary_fun}` to summarise duplicates.
## • Use the following dplyr code to identify duplicates.
##   {data} %>%
##   dplyr::group_by(id, measurement) %>%
##   dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##   dplyr::filter(n > 1L)
## # A tibble: 2 × 3
##   id    bp1       bp2      
##   <chr> <list>    <list>   
## 1 A     <dbl [2]> <dbl [1]>
## 2 B     <dbl [1]> <dbl [1]>

use the warning to find the problem:

df |>
  group_by(id, measurement) |>
  summarise(n = n(), .groups = "drop") |>
  filter(n > 1)
## # A tibble: 1 × 3
##   id    measurement     n
##   <chr> <chr>       <int>
## 1 A     bp1             2