x = (runif(5000))
y = x*(1+rnorm(5000,0,0.1))
plot(x,y,cex=.5,pch=21)
mod=lm(y~x)
summary(mod)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.31903 -0.02670 0.00132 0.02686 0.37525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002068 0.001679 -1.232 0.218
## x 1.003865 0.002889 347.520 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05878 on 4998 degrees of freedom
## Multiple R-squared: 0.9603, Adjusted R-squared: 0.9603
## F-statistic: 1.208e+05 on 1 and 4998 DF, p-value: < 2.2e-16
plot(mod)
x_cat=cut(x, breaks = 20)
x_squa=(x)^2
data=data.frame(x,y,x_cat,x_squa)
sd=aggregate(data$y, list(data$x_cat), FUN=sd)
barplot((sd$x))
mod2=lm(y~x,weights=1/x_squa,data=data)
plot(mod2)
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
summary(mod2)
##
## Call:
## lm(formula = y ~ x, data = data, weights = 1/x_squa)
##
## Weighted Residuals:
## Min 1Q Median 3Q Max
## -0.37556 -0.06738 0.00033 0.06947 0.42789
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.526e-06 2.599e-06 -1.357 0.175
## x 9.984e-01 1.434e-03 696.460 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1013 on 4998 degrees of freedom
## Multiple R-squared: 0.9898, Adjusted R-squared: 0.9898
## F-statistic: 4.851e+05 on 1 and 4998 DF, p-value: < 2.2e-16
log_y=log(y)
log_x=log(x)
plot(x,log_y,cex=.5,pch=21)
plot(log_x,log_y,cex=.5,pch=21)
mod3=lm(log_y~(-1+log_x))
plot(mod3)
summary(mod3)
##
## Call:
## lm(formula = log_y ~ (-1 + log_x))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.47269 -0.06724 0.00333 0.06937 0.35564
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## log_x 1.004546 0.001044 962.7 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1031 on 4999 degrees of freedom
## Multiple R-squared: 0.9946, Adjusted R-squared: 0.9946
## F-statistic: 9.267e+05 on 1 and 4999 DF, p-value: < 2.2e-16
# mod4=glm(y~-1+x,family=Gamma)
# plot(mod4)
# summary(mod4)