MT CARS

The “mtcars” dataset in R is a built-in dataset that contains information about various car models. This dataset is often used for learning and practicing data analysis and statistics in R.

#spotify dataset
data=read.csv("C://Users//AISHWARYA//OneDrive//ドキュメント//SPOTIFYdv.csv")
data
##                                                                                       track_name
## 1                                                            Seven (feat. Latto) (Explicit Ver.)
## 2                                                                                           LALA
## 3                                                                                        vampire
## 4                                                                                   Cruel Summer
## 5                                                                                 WHERE SHE GOES
## 6                                                                                       Sprinter
## 7                                                                                Ella Baila Sola
## 8                                                                                       Columbia
## 9                                                                                       fukumean
## 10                                                                               La Bebe - Remix
## 11                                                                                     un x100to
## 12                                                                                     Super Shy
## 13                                                                                       Flowers
## 14                                                                                      Daylight
## 15                                                                                     As It Was
## 16                                                                                     Kill Bill
## 17                                                                             Cupid - Twin Ver.
## 18                                       What Was I Made For? [From The Motion Picture "Barbie"]
## 19                                                                                    Classy 101
## 20                                                                                    Like Crazy
## 21                                                                                     LADY GAGA
## 22                                           I Can See You (Taylor���s Version) (From The 
## 23                                                                              I Wanna Be Yours
## 24                                                      Peso Pluma: Bzrp Music Sessions, Vol. 55
## 25 Popular (with Playboi Carti & Madonna) - The Idol Vol. 1 (Music from the HBO Original Series)
## 26                                                                                   SABOR FRESA
## 27                                                                 Calm Down (with Selena Gomez)
## 28                                                                                  MOJABI GHOST
## 29                                                                                    Last Night
## 30                                                       Dance The Night (From Barbie The Album)
## 31                                                                                          Rush
## 32                                                                                         TULUM
## 33                                                                                      Creepin'
## 34                                                                                     Anti-Hero
## 35                                                                                           TQG
## 36                                                                               Los del Espacio
## 37                                                                Fr��gil (feat. Grupo Front
## 38                                                                                   Blank Space
## 39                                                                                         Style
## 40                                                                                           TQM
## 41                                                                                       El Azul
## 42                                                 Sunflower - Spider-Man: Into the Spider-Verse
## 43                                                                               I'm Good (Blue)
## 44                                                                                 See You Again
## 45                                              Barbie World (with Aqua) [From Barbie The Album]
## 46                                                                               Angels Like You
## 47                                                                               I Ain't Worried
## 48                                                                                   Die For You
## 49                                                                                       Starboy
## 50                                                                           Die For You - Remix
## 51                                                                                      El Cielo
## 52                                                                            Baby Don't Hurt Me
## 53                                                                                      AMARGURA
## 54                                                                  (It Goes Like) Nanana - Edit
## 55                                                                                  Another Love
## 56                                                                               Blinding Lights
## 57                                                                                     Moonlight
## 58                                                                                    La Bachata
## 59                                                                                           S91
## 60                                                                                      cardigan
## 61                                                                                        T�ï¿
## 62                                                                            Boy's a liar Pt. 2
## 63                                                       Left and Right (Feat. Jung Kook of BTS)
## 64                                                                                          BESO
## 65                                                                                       Hey Mor
## 66                                                                                        Yellow
## 67                                                                                         Karma
## 68                                                                                        People
## 69                                                                                     Overdrive
## 70                                                                  Enchanted (Taylor's Version)
## 71                                                                                    BABY HELLO
## 72                                                                                    Heat Waves
## 73                                                                                   golden hour
## 74                                                                               Sweater Weather
## 75                                                         Quevedo: Bzrp Music Sessions, Vol. 52
## 76                                                                                  Viva La Vida
## 77                                                                                  Here With Me
## 78                                                                     Unholy (feat. Kim Petras)
## 79                                                                                    Yandel 150
## 80                                                                               CORAZ��N VA
## 81                                                                                       Riptide
## 82                                      Until I Found You (with Em Beihold) - Em Beihold Version
## 83                                                                             Novidade na �ï¿
## 84                                                           Back To December (Taylor's Version)
## 85                                                                     STAY (with Justin Bieber)
## 86                                                                                   El Merengue
## 87                                                                             Someone You Loved
## 88                                                                               Me Porto Bonito
## 89                                                                                        Makeba
## 90                                                                            MONTAGEM - FR PUNK
## 91                                                                                      Fast Car
## 92                                                                     What It Is (Solo Version)
## 93                                                                                   Coco Chanel
## 94                                                                              Don���t Bl
## 95                                                                                Still With You
## 96                                                                   All My Life (feat. J. Cole)
## 97                                                                             Say Yes To Heaven
## 98                                                                                        Snooze
## 99                                                                            Summertime Sadness
##                                                                  artist.s._name
## 1                                                              Latto, Jung Kook
## 2                                                                   Myke Towers
## 3                                                                Olivia Rodrigo
## 4                                                                  Taylor Swift
## 5                                                                     Bad Bunny
## 6                                                             Dave, Central Cee
## 7                                                    Eslabon Armado, Peso Pluma
## 8                                                                       Quevedo
## 9                                                                         Gunna
## 10                                                        Peso Pluma, Yng Lvcas
## 11                                                    Bad Bunny, Grupo Frontera
## 12                                                                     NewJeans
## 13                                                                  Miley Cyrus
## 14                                                                David Kushner
## 15                                                                 Harry Styles
## 16                                                                          SZA
## 17                                                                  Fifty Fifty
## 18                                                                Billie Eilish
## 19                                                             Feid, Young Miko
## 20                                                                        Jimin
## 21                                     Gabito Ballesteros, Junior H, Peso Pluma
## 22                                                                 Taylor Swift
## 23                                                               Arctic Monkeys
## 24                                                         Bizarrap, Peso Pluma
## 25                                           The Weeknd, Madonna, Playboi Carti
## 26                                                                Fuerza Regida
## 27                                                          R��ma, Selena G
## 28                                                             Tainy, Bad Bunny
## 29                                                                Morgan Wallen
## 30                                                                     Dua Lipa
## 31                                                                  Troye Sivan
## 32                                                   Peso Pluma, Grupo Frontera
## 33                                          The Weeknd, 21 Savage, Metro Boomin
## 34                                                                 Taylor Swift
## 35                                                             Karol G, Shakira
## 36 Big One, Duki, Lit Killah, Maria Becerra, FMK, Rusherking, Emilia, Tiago pzk
## 37                                        Yahritza Y Su Esencia, Grupo Frontera
## 38                                                                 Taylor Swift
## 39                                                                 Taylor Swift
## 40                                                                Fuerza Regida
## 41                                                         Junior H, Peso Pluma
## 42                                                        Post Malone, Swae Lee
## 43                                                     Bebe Rexha, David Guetta
## 44                                               Tyler, The Creator, Kali Uchis
## 45                                                 Nicki Minaj, Aqua, Ice Spice
## 46                                                                  Miley Cyrus
## 47                                                                  OneRepublic
## 48                                                                   The Weeknd
## 49                                                        The Weeknd, Daft Punk
## 50                                                    Ariana Grande, The Weeknd
## 51                                             Feid, Myke Towers, Sky Rompiendo
## 52                                          David Guetta, Anne-Marie, Coi Leray
## 53                                                                      Karol G
## 54                                                                    Peggy Gou
## 55                                                                    Tom Odell
## 56                                                                   The Weeknd
## 57                                                                   Kali Uchis
## 58                                                                Manuel Turizo
## 59                                                                      Karol G
## 60                                                                 Taylor Swift
## 61                                                     dennis, MC Kevin o Chris
## 62                                                    PinkPantheress, Ice Spice
## 63                                                 Charlie Puth, BTS, Jung Kook
## 64                                                     Rauw Alejandro, ROSAL�
## 65                                                                  Ozuna, Feid
## 66                                                                Chris Molitor
## 67                                                                 Taylor Swift
## 68                                                                     Libianca
## 69                                                                  Post Malone
## 70                                                                 Taylor Swift
## 71                                                     Rauw Alejandro, Bizarrap
## 72                                                                Glass Animals
## 73                                                                         JVKE
## 74                                                            The Neighbourhood
## 75                                                            Bizarrap, Quevedo
## 76                                                                     Coldplay
## 77                                                                         d4vd
## 78                                                        Sam Smith, Kim Petras
## 79                                                                 Yandel, Feid
## 80                                                                Maria Becerra
## 81                                                                    Vance Joy
## 82                                                  Em Beihold, Stephen Sanchez
## 83                                                        Mc Livinho, DJ Matt D
## 84                                                                 Taylor Swift
## 85                                                 Justin Bieber, The Kid Laroi
## 86                                                    Marshmello, Manuel Turizo
## 87                                                                Lewis Capaldi
## 88                                                  Chencho Corleone, Bad Bunny
## 89                                                                         Jain
## 90                                                           Ayparia, unxbected
## 91                                                                   Luke Combs
## 92                                                                      Doechii
## 93                                                    Bad Bunny, Eladio Carrion
## 94                                                                 Taylor Swift
## 95                                                                    Jung Kook
## 96                                                            J. Cole, Lil Durk
## 97                                                                 Lana Del Rey
## 98                                                                          SZA
## 99                                                                 Lana Del Rey
##    artist_count released_year released_month released_day in_spotify_playlists
## 1             2          2023              7           14                  553
## 2             1          2023              3           23                 1474
## 3             1          2023              6           30                 1397
## 4             1          2019              8           23                 7858
## 5             1          2023              5           18                 3133
## 6             2          2023              6            1                 2186
## 7             2          2023              3           16                 3090
## 8             1          2023              7            7                  714
## 9             1          2023              5           15                 1096
## 10            2          2023              3           17                 2953
## 11            2          2023              4           17                 2876
## 12            1          2023              7            7                  422
## 13            1          2023              1           12                12211
## 14            1          2023              4           14                 3528
## 15            1          2022              3           31                23575
## 16            1          2022             12            8                 8109
## 17            1          2023              2           24                 2942
## 18            1          2023              7           13                  873
## 19            2          2023              3           31                 2610
## 20            1          2023              3           24                  596
## 21            3          2023              6           22                  332
## 22            1          2023              7            7                  516
## 23            1          2013              1            1                12859
## 24            2          2023              5           31                 1313
## 25            3          2023              6            2                 1945
## 26            1          2023              6           22                  250
## 27            2          2022              3           25                 7112
## 28            2          2023              6           29                  859
## 29            1          2023              1           31                 2420
## 30            1          2023              5           25                 2988
## 31            1          2023              7           13                  864
## 32            2          2023              6           28                  266
## 33            3          2022             12            2                 6036
## 34            1          2022             10           21                 9082
## 35            2          2023              2           23                 4284
## 36            8          2023              6            1                 1150
## 37            2          2023              4            7                  672
## 38            1          2014              1            1                11434
## 39            1          2014              1            1                 7830
## 40            1          2023              5           19                  584
## 41            2          2023              2           10                  692
## 42            2          2018             10            9                24094
## 43            2          2022              8           26                12482
## 44            3          2017              7           21                13387
## 45            3          2023              6           23                 1117
## 46            1          2020             11           27                 3372
## 47            1          2022              5           13                 8431
## 48            1          2016             11           24                 2483
## 49            2          2016              9           21                29536
## 50            2          2023              2           24                 3408
## 51            3          2023              6            2                 1298
## 52            3          2023              4            6                 4277
## 53            1          2023              2           24                 1133
## 54            1          2023              6           15                 2259
## 55            1          2012             10           15                18371
## 56            1          2019             11           29                43899
## 57            1          2023              2           24                 2649
## 58            1          2022              5           26                 6804
## 59            1          2023              7           14                  525
## 60            1          2020              7           24                 7923
## 61            2          2023              5            4                  731
## 62            2          2023              2            3                 5184
## 63            3          2022              6           24                 3107
## 64            2          2023              3           24                 4053
## 65            2          2022             10            6                 4637
## 66            1          1999              1            1                31358
## 67            1          2022             10           21                 3818
## 68            1          2022             12            2                 3506
## 69            1          2023              7           14                  410
## 70            1          2023              7            7                  148
## 71            2          2023              6           23                 1004
## 72            1          2020              6           28                22543
## 73            1          2022              7           15                 4511
## 74            1          2012              5           14                16413
## 75            2          2022              7            6                 8506
## 76            1          2008              1            1                33898
## 77            1          2022              7           17                 3246
## 78            2          2022              9           22                 8576
## 79            2          2022             12           20                 3618
## 80            1          2023              6           22                  370
## 81            1          1975              1            1                31123
## 82            2          2022              4           22                 2790
## 83            2          2023              6           23                  267
## 84            1          2023              7            7                  139
## 85            2          2021              7            9                17050
## 86            2          2023              3            3                 2114
## 87            1          2018             11            8                17836
## 88            2          2022              5            6                 8870
## 89            1          2015              6           22                 6060
## 90            2          2012              6           20                  641
## 91            1          2023              3           24                 1446
## 92            1          2023              3           17                  804
## 93            2          2023              3           17                 1962
## 94            1          2017             11            8                 4875
## 95            1          2020              6            5                   31
## 96            2          2023              5           12                 2175
## 97            1          2023              3           17                 2000
## 98            1          2022             12            9                 2839
## 99            1          2011              1            1                20333
##    in_spotify_charts    streams in_apple_playlists in_apple_charts
## 1                147  141381703                 43             263
## 2                 48  133716286                 48             126
## 3                113  140003974                 94             207
## 4                100  800840817                116             207
## 5                 50  303236322                 84             133
## 6                 91  183706234                 67             213
## 7                 50  725980112                 34             222
## 8                 43   58149378                 25              89
## 9                 83   95217315                 60             210
## 10                44  553634067                 49             110
## 11                40  505671438                 41             205
## 12                55   58255150                 37             202
## 13               115 1316855716                300             215
## 14                98  387570742                 80             156
## 15               130 2513188493                403             198
## 16                77 1163093654                183             162
## 17                77  496795686                 91             212
## 18               104   30546883                 80             227
## 19                40  335222234                 43             100
## 20                68  363369738                  8             104
## 21                26   86444842                 11             163
## 22                38   52135248                 73             119
## 23               110 1297026226                 24              98
## 24                40  200647221                 17             152
## 25                87  115364561                 74             182
## 26                26   78300654                 16             149
## 27                77  899183384                202             119
## 28                40   61245289                 35             109
## 29                19  429829812                 52             107
## 30               101  127408954                  0               0
## 31                78   22581161                 71             135
## 32                34   52294266                 20             185
## 33                88  843957510                113             149
## 34                56  999748277                242             142
## 35                49  618990393                115             123
## 36                31  123122413                 22              33
## 37                34  188933502                 19             108
## 38                53 1355959075                154             123
## 39                42  786181836                 94             111
## 40                28  176553476                 16             159
## 41                25  354495408                 10             107
## 42                78 2808096550                372             117
## 43                80 1109433169                291             184
## 44                64 1047101291                 77              58
## 45                80   65156199                 82             145
## 46                19  570515054                 65              48
## 47                76 1085685420                241             127
## 48                59 1647990401                 68              21
## 49                79 2565529693                281             137
## 50                47  518745108                 87              86
## 51                38  107753850                 44              64
## 52                66  177740666                145             111
## 53                39  153372011                 14              71
## 54                59   57876440                  0               0
## 55                83 1813673666                250             122
## 56                69 3703895074                672             199
## 57                42  256483385                 67              79
## 58                45 1214083358                139             111
## 59                41   16011326                 34             115
## 60                29  812019557                106             112
## 61                15  111947664                 27              17
## 62                41  156338624                154              84
## 63                39  720434240                 38               0
## 64                50  357925728                 82             121
## 65                38  674072710                 63              79
## 66                43 1755214421                196               2
## 67                23  404562836                 37              55
## 68                56  373199958                105              64
## 69                36   14780425                 36              32
## 70                24   39578178                 32              93
## 71                35   54266102                 42              80
## 72                63 2557975762                386             144
## 73                36  751134527                 70              58
## 74                61 2282771485                166              87
## 75                45 1356565093                 94              65
## 76                62 1592909789                233               0
## 77                23  635412045                 94              85
## 78                42 1230675890                216             108
## 79                38  585695368                 47              74
## 80                20   43857627                 12              16
## 81                55 2009094673                300              65
## 82                30  600976848                 60              96
## 83                 9   39709092                  9               6
## 84                17   39228929                 16              72
## 85                36 2665343922                492              99
## 86                44  223633238                 80              75
## 87                53 2887241814                440             125
## 88                43 1440757818                104             120
## 89                53  165484133                150             148
## 90                50   58054811                  1              52
## 91                12  157058870                 57              97
## 92                25   95131998                 29              76
## 93                38  250305248                 28              89
## 94                23  685032533                 19              45
## 95                39   38411956                  2             107
## 96                23  144565150                 69             145
## 97                46  127567540                 49             105
## 98                25  399686758                 58             156
## 99                52  983637508                 89             143
##    in_deezer_playlists in_deezer_charts in_shazam_charts bpm key  mode
## 1                   45               10              826 125   B Major
## 2                   58               14              382  92  C# Major
## 3                   91               14              949 138   F Major
## 4                  125               12              548 170   A Major
## 5                   87               15              425 144   A Minor
## 6                   88               17              946 141  C# Major
## 7                   43               13              418 148   F Minor
## 8                   30               13              194 100   F Major
## 9                   48               11              953 130  C# Minor
## 10                  66               13              339 170   D Minor
## 11                  54               12              251  83  F# Minor
## 12                  21                5              168 150   F Minor
## 13                 745               58            1,021 118     Major
## 14                 182               24            1,281 130   D Minor
## 15                 863               46                  174  F# Minor
## 16                 161               12              187  89  G# Major
## 17                  78                6                0 120   B Minor
## 18                  95               24            1,173  78     Major
## 19                  54               14              187 100   B Major
## 20                  23                2               29 120   G Major
## 21                  10                4                0 140   F Minor
## 22                  42                1              150 123  F# Major
## 23                 582                2               73 135     Minor
## 24                  32               11              139 133   F Minor
## 25                  87               14            1,093  99  C# Major
## 26                  10                5              168 130   G Minor
## 27                 318               38               96 107   B Major
## 28                  41               14              211 122  F# Minor
## 29                  15                1              325 204  F# Major
## 30                 143               38                0 110   B Minor
## 31                  50                1              294 126   F Minor
## 32                  13                8              197 168  F# Major
## 33                 245               23               27  98  C# Minor
## 34                 165                9              310  97   E Major
## 35                 184               18              354 180   E Minor
## 36                  34                7              184 120     Major
## 37                  24                9              212 150  F# Major
## 38                 410                2               81  96   F Major
## 39                 151                4               82  95   D Major
## 40                  15                6              100 125   F Minor
## 41                   6                3               62 144   A Minor
## 42                 843                4               69  90   D Major
## 43                 537               45              727 128   G Minor
## 44                 247                1              311  79  F# Major
## 45                  65               16            1,133 144     Major
## 46                 138                1              102 122   F Major
## 47                 458               37              332 140     Major
## 48                  24                0              259 134  C# Minor
## 49               2,445                1              140 186   G Major
## 50                  74                1               16  67  C# Minor
## 51                  57               10              110 106  A# Minor
## 52                 213               11              810 128   G Major
## 53                  23               10              176 107  F# Minor
## 54                 109               17                0 130   G Minor
## 55               3,394               19                  123   E Minor
## 56               3,421               20                  171  C# Major
## 57                  57                1              615 137   G Minor
## 58                 161               15              210 125   G Minor
## 59                  39                6              216 128     Minor
## 60                 142                4              215 130     Minor
## 61                  73                4              167 130   B Major
## 62                 102               14               37 133   F Major
## 63                   4                0                0 101   D Major
## 64                 182               12              171  95   F Minor
## 65                  89               11               16  98  C# Minor
## 66               4,053                5                0 173   B Major
## 67                  32                0              272  90  G# Major
## 68                 169                8              529 198  A# Minor
## 69                  31                1               26 140  C# Major
## 70                   8                2                5  82  G# Major
## 71                  58                3              169 130  C# Minor
## 72                 707               28                   81   B Major
## 73                 109               18              230  94  C# Minor
## 74               1,056                1                  124  A# Major
## 75                 164               14              176 128   D Major
## 76               4,095                9                0 138   F Minor
## 77                  68                1               84 132   E Major
## 78                 331               26              154 131   D Major
## 79                  80               14              194 168  F# Minor
## 80                  18                4               93  98  C# Major
## 81               1,003                1                0 102  C# Major
## 82                  71                0              115 101  A# Major
## 83                  25                2               72 130   F Major
## 84                   5                0                8 142   D Major
## 85                 798               31                0 170  C# Major
## 86                 110               11              323 124  G# Minor
## 87               1,800                0                  110  C# Major
## 88                 141               26               49  92  C# Minor
## 89               2,703               22            1,451 116   D Major
## 90                   8                0            1,170 129   A Major
## 91                  35                0              429  98  G# Major
## 92                  24                0              162 172  C# Minor
## 93                  29                5               82 150   D Major
## 94                   0                0               10 136   A Minor
## 95                   8                0                0  88  C# Minor
## 96                  69                2              478 143  D# Major
## 97                  63                1                0 100  F# Minor
## 98                  42                1              236 143   F Major
## 99               1,632                3              200 112  C# Minor

‘spotify’ is a sample data.

#a. and b. structure and summary of the data
str(data)#structure
## 'data.frame':    99 obs. of  17 variables:
##  $ track_name          : chr  "Seven (feat. Latto) (Explicit Ver.)" "LALA" "vampire" "Cruel Summer" ...
##  $ artist.s._name      : chr  "Latto, Jung Kook" "Myke Towers" "Olivia Rodrigo" "Taylor Swift" ...
##  $ artist_count        : int  2 1 1 1 1 2 2 1 1 2 ...
##  $ released_year       : int  2023 2023 2023 2019 2023 2023 2023 2023 2023 2023 ...
##  $ released_month      : int  7 3 6 8 5 6 3 7 5 3 ...
##  $ released_day        : int  14 23 30 23 18 1 16 7 15 17 ...
##  $ in_spotify_playlists: int  553 1474 1397 7858 3133 2186 3090 714 1096 2953 ...
##  $ in_spotify_charts   : int  147 48 113 100 50 91 50 43 83 44 ...
##  $ streams             : num  1.41e+08 1.34e+08 1.40e+08 8.01e+08 3.03e+08 ...
##  $ in_apple_playlists  : int  43 48 94 116 84 67 34 25 60 49 ...
##  $ in_apple_charts     : int  263 126 207 207 133 213 222 89 210 110 ...
##  $ in_deezer_playlists : chr  "45" "58" "91" "125" ...
##  $ in_deezer_charts    : int  10 14 14 12 15 17 13 13 11 13 ...
##  $ in_shazam_charts    : chr  "826" "382" "949" "548" ...
##  $ bpm                 : int  125 92 138 170 144 141 148 100 130 170 ...
##  $ key                 : chr  "B" "C#" "F" "A" ...
##  $ mode                : chr  "Major" "Major" "Major" "Major" ...
summary(data)#summary
##   track_name        artist.s._name      artist_count   released_year 
##  Length:99          Length:99          Min.   :1.000   Min.   :1975  
##  Class :character   Class :character   1st Qu.:1.000   1st Qu.:2022  
##  Mode  :character   Mode  :character   Median :1.000   Median :2023  
##                                        Mean   :1.566   Mean   :2021  
##                                        3rd Qu.:2.000   3rd Qu.:2023  
##                                        Max.   :8.000   Max.   :2023  
##  released_month    released_day   in_spotify_playlists in_spotify_charts
##  Min.   : 1.000   Min.   : 1.00   Min.   :   31        Min.   :  9.00   
##  1st Qu.: 3.000   1st Qu.: 7.00   1st Qu.: 1050        1st Qu.: 36.00   
##  Median : 6.000   Median :17.00   Median : 2953        Median : 45.00   
##  Mean   : 5.677   Mean   :15.54   Mean   : 6324        Mean   : 52.64   
##  3rd Qu.: 7.000   3rd Qu.:23.00   3rd Qu.: 7890        3rd Qu.: 67.00   
##  Max.   :12.000   Max.   :31.00   Max.   :43899        Max.   :147.00   
##     streams          in_apple_playlists in_apple_charts in_deezer_playlists
##  Min.   :1.478e+07   Min.   :  0.0      Min.   :  0.0   Length:99          
##  1st Qu.:1.192e+08   1st Qu.: 34.0      1st Qu.: 75.5   Class :character   
##  Median :3.732e+08   Median : 68.0      Median :110.0   Mode  :character   
##  Mean   :6.830e+08   Mean   :105.9      Mean   :112.4                      
##  3rd Qu.:9.917e+08   3rd Qu.:115.5      3rd Qu.:146.5                      
##  Max.   :3.704e+09   Max.   :672.0      Max.   :263.0                      
##  in_deezer_charts in_shazam_charts        bpm            key           
##  Min.   : 0.00    Length:99          Min.   : 67.0   Length:99         
##  1st Qu.: 1.50    Class :character   1st Qu.:100.5   Class :character  
##  Median : 8.00    Mode  :character   Median :128.0   Mode  :character  
##  Mean   :10.63                       Mean   :125.4                     
##  3rd Qu.:14.00                       3rd Qu.:140.0                     
##  Max.   :58.00                       Max.   :204.0                     
##      mode          
##  Length:99         
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
#conversion functions 
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Example 1: Convert a column to a different data type (e.g., from character to numeric)
my_data <- as.numeric(data$artist.s._name)
## Warning: NAs introduced by coercion
my_data
##  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
# Example 2: Convert a column to a factor
my_data <- as.factor(data$artist_count)
my_data
##  [1] 2 1 1 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 2 1 3 1 1 2 3 1 2 2 1 1 1 2 3 1 2 8 2 1
## [39] 1 1 2 2 2 3 3 1 1 1 2 2 3 3 1 1 1 1 1 1 1 1 2 2 3 2 2 1 1 1 1 1 2 1 1 1 2 1
## [77] 1 2 2 1 1 2 2 1 2 2 1 2 1 2 1 1 2 1 1 2 1 1 1
## Levels: 1 2 3 8
# After performing the desired conversion and transformation operations, you can view the modified data frame:
str(my_data)
##  Factor w/ 4 levels "1","2","3","8": 2 1 1 1 1 2 2 1 1 2 ...

dplyr is an R package for efficient data manipulation. It offers easy-to-use functions like filtering, sorting, and summarizing data, following tidy data principles for analysis.

#c.head of the data
head(data)
##                            track_name    artist.s._name artist_count
## 1 Seven (feat. Latto) (Explicit Ver.)  Latto, Jung Kook            2
## 2                                LALA       Myke Towers            1
## 3                             vampire    Olivia Rodrigo            1
## 4                        Cruel Summer      Taylor Swift            1
## 5                      WHERE SHE GOES         Bad Bunny            1
## 6                            Sprinter Dave, Central Cee            2
##   released_year released_month released_day in_spotify_playlists
## 1          2023              7           14                  553
## 2          2023              3           23                 1474
## 3          2023              6           30                 1397
## 4          2019              8           23                 7858
## 5          2023              5           18                 3133
## 6          2023              6            1                 2186
##   in_spotify_charts   streams in_apple_playlists in_apple_charts
## 1               147 141381703                 43             263
## 2                48 133716286                 48             126
## 3               113 140003974                 94             207
## 4               100 800840817                116             207
## 5                50 303236322                 84             133
## 6                91 183706234                 67             213
##   in_deezer_playlists in_deezer_charts in_shazam_charts bpm key  mode
## 1                  45               10              826 125   B Major
## 2                  58               14              382  92  C# Major
## 3                  91               14              949 138   F Major
## 4                 125               12              548 170   A Major
## 5                  87               15              425 144   A Minor
## 6                  88               17              946 141  C# Major
# Load the stringr package to use str_detect
library(stringr)
# Print pattern matched data
print("Pattern Matched Data:")
## [1] "Pattern Matched Data:"

The stringr package is an R package that provides a set of functions for working with strings, making string manipulation and pattern matching more convenient and intuitive.

# g) Write data to a CSV file
write.csv(data, file = "data.csv", row.names = FALSE)
# h) View the structure and summary of the given data
str(data)
## 'data.frame':    99 obs. of  17 variables:
##  $ track_name          : chr  "Seven (feat. Latto) (Explicit Ver.)" "LALA" "vampire" "Cruel Summer" ...
##  $ artist.s._name      : chr  "Latto, Jung Kook" "Myke Towers" "Olivia Rodrigo" "Taylor Swift" ...
##  $ artist_count        : int  2 1 1 1 1 2 2 1 1 2 ...
##  $ released_year       : int  2023 2023 2023 2019 2023 2023 2023 2023 2023 2023 ...
##  $ released_month      : int  7 3 6 8 5 6 3 7 5 3 ...
##  $ released_day        : int  14 23 30 23 18 1 16 7 15 17 ...
##  $ in_spotify_playlists: int  553 1474 1397 7858 3133 2186 3090 714 1096 2953 ...
##  $ in_spotify_charts   : int  147 48 113 100 50 91 50 43 83 44 ...
##  $ streams             : num  1.41e+08 1.34e+08 1.40e+08 8.01e+08 3.03e+08 ...
##  $ in_apple_playlists  : int  43 48 94 116 84 67 34 25 60 49 ...
##  $ in_apple_charts     : int  263 126 207 207 133 213 222 89 210 110 ...
##  $ in_deezer_playlists : chr  "45" "58" "91" "125" ...
##  $ in_deezer_charts    : int  10 14 14 12 15 17 13 13 11 13 ...
##  $ in_shazam_charts    : chr  "826" "382" "949" "548" ...
##  $ bpm                 : int  125 92 138 170 144 141 148 100 130 170 ...
##  $ key                 : chr  "B" "C#" "F" "A" ...
##  $ mode                : chr  "Major" "Major" "Major" "Major" ...
summary(data)
##   track_name        artist.s._name      artist_count   released_year 
##  Length:99          Length:99          Min.   :1.000   Min.   :1975  
##  Class :character   Class :character   1st Qu.:1.000   1st Qu.:2022  
##  Mode  :character   Mode  :character   Median :1.000   Median :2023  
##                                        Mean   :1.566   Mean   :2021  
##                                        3rd Qu.:2.000   3rd Qu.:2023  
##                                        Max.   :8.000   Max.   :2023  
##  released_month    released_day   in_spotify_playlists in_spotify_charts
##  Min.   : 1.000   Min.   : 1.00   Min.   :   31        Min.   :  9.00   
##  1st Qu.: 3.000   1st Qu.: 7.00   1st Qu.: 1050        1st Qu.: 36.00   
##  Median : 6.000   Median :17.00   Median : 2953        Median : 45.00   
##  Mean   : 5.677   Mean   :15.54   Mean   : 6324        Mean   : 52.64   
##  3rd Qu.: 7.000   3rd Qu.:23.00   3rd Qu.: 7890        3rd Qu.: 67.00   
##  Max.   :12.000   Max.   :31.00   Max.   :43899        Max.   :147.00   
##     streams          in_apple_playlists in_apple_charts in_deezer_playlists
##  Min.   :1.478e+07   Min.   :  0.0      Min.   :  0.0   Length:99          
##  1st Qu.:1.192e+08   1st Qu.: 34.0      1st Qu.: 75.5   Class :character   
##  Median :3.732e+08   Median : 68.0      Median :110.0   Mode  :character   
##  Mean   :6.830e+08   Mean   :105.9      Mean   :112.4                      
##  3rd Qu.:9.917e+08   3rd Qu.:115.5      3rd Qu.:146.5                      
##  Max.   :3.704e+09   Max.   :672.0      Max.   :263.0                      
##  in_deezer_charts in_shazam_charts        bpm            key           
##  Min.   : 0.00    Length:99          Min.   : 67.0   Length:99         
##  1st Qu.: 1.50    Class :character   1st Qu.:100.5   Class :character  
##  Median : 8.00    Mode  :character   Median :128.0   Mode  :character  
##  Mean   :10.63                       Mean   :125.4                     
##  3rd Qu.:14.00                       3rd Qu.:140.0                     
##  Max.   :58.00                       Max.   :204.0                     
##      mode          
##  Length:99         
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
# i) Convert the 'Total' column to a numeric variable
data$released_month <- as.numeric(data$released_month)
data$released_month
##  [1]  7  3  6  8  5  6  3  7  5  3  4  7  1  4  3 12  2  7  3  3  6  7  1  5  6
## [26]  6  3  6  1  5  7  6 12 10  2  6  4  1  1  5  2 10  8  7  6 11  5 11  9  2
## [51]  6  4  2  6 10 11  2  5  7  7  5  2  6  3 10  1 10 12  7  7  6  6  7  5  7
## [76]  1  7  9 12  6  1  4  6  7  7  3 11  5  6  6  3  3  3 11  6  5  3 12  1
#mtcars dataset
data("mtcars")
mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
summary(mtcars)
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000
str(mtcars)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
is.null(mtcars)
## [1] FALSE

mtcars is an in-built dataset of rstudio. no null values are there in this dataset.

selecting specific columns using select function:

# Select the mpg and cyl columns
mtcars_select <- select(mtcars, mpg, cyl)
mtcars_select
##                      mpg cyl
## Mazda RX4           21.0   6
## Mazda RX4 Wag       21.0   6
## Datsun 710          22.8   4
## Hornet 4 Drive      21.4   6
## Hornet Sportabout   18.7   8
## Valiant             18.1   6
## Duster 360          14.3   8
## Merc 240D           24.4   4
## Merc 230            22.8   4
## Merc 280            19.2   6
## Merc 280C           17.8   6
## Merc 450SE          16.4   8
## Merc 450SL          17.3   8
## Merc 450SLC         15.2   8
## Cadillac Fleetwood  10.4   8
## Lincoln Continental 10.4   8
## Chrysler Imperial   14.7   8
## Fiat 128            32.4   4
## Honda Civic         30.4   4
## Toyota Corolla      33.9   4
## Toyota Corona       21.5   4
## Dodge Challenger    15.5   8
## AMC Javelin         15.2   8
## Camaro Z28          13.3   8
## Pontiac Firebird    19.2   8
## Fiat X1-9           27.3   4
## Porsche 914-2       26.0   4
## Lotus Europa        30.4   4
## Ford Pantera L      15.8   8
## Ferrari Dino        19.7   6
## Maserati Bora       15.0   8
## Volvo 142E          21.4   4

filtering the data through filter function using a condition:

# Filter for cars with more than 6 cylinders
mtcars_filter <- filter(mtcars, cyl > 6)
mtcars_filter
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

sorting using arrange function:

# Arrange the dataset by descending mpg
mtcars_arrange <- arrange(mtcars, desc(mpg))
mtcars_arrange
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4

desc function sorts data in descending order.

renaming a column using rename function:

# Rename the mpg column to miles_per_gallon
mtcars_rename <- rename(mtcars, miles_per_gallon = mpg)
mtcars_rename
##                     miles_per_gallon cyl  disp  hp drat    wt  qsec vs am gear
## Mazda RX4                       21.0   6 160.0 110 3.90 2.620 16.46  0  1    4
## Mazda RX4 Wag                   21.0   6 160.0 110 3.90 2.875 17.02  0  1    4
## Datsun 710                      22.8   4 108.0  93 3.85 2.320 18.61  1  1    4
## Hornet 4 Drive                  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3
## Hornet Sportabout               18.7   8 360.0 175 3.15 3.440 17.02  0  0    3
## Valiant                         18.1   6 225.0 105 2.76 3.460 20.22  1  0    3
## Duster 360                      14.3   8 360.0 245 3.21 3.570 15.84  0  0    3
## Merc 240D                       24.4   4 146.7  62 3.69 3.190 20.00  1  0    4
## Merc 230                        22.8   4 140.8  95 3.92 3.150 22.90  1  0    4
## Merc 280                        19.2   6 167.6 123 3.92 3.440 18.30  1  0    4
## Merc 280C                       17.8   6 167.6 123 3.92 3.440 18.90  1  0    4
## Merc 450SE                      16.4   8 275.8 180 3.07 4.070 17.40  0  0    3
## Merc 450SL                      17.3   8 275.8 180 3.07 3.730 17.60  0  0    3
## Merc 450SLC                     15.2   8 275.8 180 3.07 3.780 18.00  0  0    3
## Cadillac Fleetwood              10.4   8 472.0 205 2.93 5.250 17.98  0  0    3
## Lincoln Continental             10.4   8 460.0 215 3.00 5.424 17.82  0  0    3
## Chrysler Imperial               14.7   8 440.0 230 3.23 5.345 17.42  0  0    3
## Fiat 128                        32.4   4  78.7  66 4.08 2.200 19.47  1  1    4
## Honda Civic                     30.4   4  75.7  52 4.93 1.615 18.52  1  1    4
## Toyota Corolla                  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4
## Toyota Corona                   21.5   4 120.1  97 3.70 2.465 20.01  1  0    3
## Dodge Challenger                15.5   8 318.0 150 2.76 3.520 16.87  0  0    3
## AMC Javelin                     15.2   8 304.0 150 3.15 3.435 17.30  0  0    3
## Camaro Z28                      13.3   8 350.0 245 3.73 3.840 15.41  0  0    3
## Pontiac Firebird                19.2   8 400.0 175 3.08 3.845 17.05  0  0    3
## Fiat X1-9                       27.3   4  79.0  66 4.08 1.935 18.90  1  1    4
## Porsche 914-2                   26.0   4 120.3  91 4.43 2.140 16.70  0  1    5
## Lotus Europa                    30.4   4  95.1 113 3.77 1.513 16.90  1  1    5
## Ford Pantera L                  15.8   8 351.0 264 4.22 3.170 14.50  0  1    5
## Ferrari Dino                    19.7   6 145.0 175 3.62 2.770 15.50  0  1    5
## Maserati Bora                   15.0   8 301.0 335 3.54 3.570 14.60  0  1    5
## Volvo 142E                      21.4   4 121.0 109 4.11 2.780 18.60  1  1    4
##                     carb
## Mazda RX4              4
## Mazda RX4 Wag          4
## Datsun 710             1
## Hornet 4 Drive         1
## Hornet Sportabout      2
## Valiant                1
## Duster 360             4
## Merc 240D              2
## Merc 230               2
## Merc 280               4
## Merc 280C              4
## Merc 450SE             3
## Merc 450SL             3
## Merc 450SLC            3
## Cadillac Fleetwood     4
## Lincoln Continental    4
## Chrysler Imperial      4
## Fiat 128               1
## Honda Civic            2
## Toyota Corolla         1
## Toyota Corona          1
## Dodge Challenger       2
## AMC Javelin            2
## Camaro Z28             4
## Pontiac Firebird       2
## Fiat X1-9              1
## Porsche 914-2          2
## Lotus Europa           2
## Ford Pantera L         4
## Ferrari Dino           6
## Maserati Bora          8
## Volvo 142E             2

add a column using mutate function:

# Add a new column for horsepower per weight
mtcars_mutate <- mutate(mtcars, hp_per_wt = hp / wt)
mtcars_mutate
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
##                     hp_per_wt
## Mazda RX4            41.98473
## Mazda RX4 Wag        38.26087
## Datsun 710           40.08621
## Hornet 4 Drive       34.21462
## Hornet Sportabout    50.87209
## Valiant              30.34682
## Duster 360           68.62745
## Merc 240D            19.43574
## Merc 230             30.15873
## Merc 280             35.75581
## Merc 280C            35.75581
## Merc 450SE           44.22604
## Merc 450SL           48.25737
## Merc 450SLC          47.61905
## Cadillac Fleetwood   39.04762
## Lincoln Continental  39.63864
## Chrysler Imperial    43.03087
## Fiat 128             30.00000
## Honda Civic          32.19814
## Toyota Corolla       35.42234
## Toyota Corona        39.35091
## Dodge Challenger     42.61364
## AMC Javelin          43.66812
## Camaro Z28           63.80208
## Pontiac Firebird     45.51365
## Fiat X1-9            34.10853
## Porsche 914-2        42.52336
## Lotus Europa         74.68605
## Ford Pantera L       83.28076
## Ferrari Dino         63.17690
## Maserati Bora        93.83754
## Volvo 142E           39.20863
# Combine two datasets with the same columns
mtcars_combined <- bind_rows(mtcars, mtcars)
mtcars_combined
##                           mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4...1            21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag...2        21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710...3           22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive...4       21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout...5    18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant...6              18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360...7           14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D...8            24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230...9             22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280...10            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C...11           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE...12          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL...13          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC...14         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood...15  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental...16 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial...17   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128...18            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic...19         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla...20      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona...21       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger...22    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin...23         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28...24          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird...25    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9...26           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2...27       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa...28        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L...29      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino...30        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora...31       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E...32          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
## Mazda RX4...33           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag...34       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710...35          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive...36      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout...37   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant...38             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360...39          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D...40           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230...41            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280...42            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C...43           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE...44          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL...45          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC...46         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood...47  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental...48 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial...49   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128...50            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic...51         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla...52      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona...53       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger...54    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin...55         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28...56          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird...57    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9...58           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2...59       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa...60        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L...61      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino...62        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora...63       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E...64          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
# Group the dataset by number of cylinders and summarize the mean mpg
mtcars_grouped <- group_by(mtcars, cyl)
mtcars_summarized <- summarize(mtcars_grouped, mean_mpg = mean(mpg))
mtcars_grouped
## # A tibble: 32 × 11
## # Groups:   cyl [3]
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
##  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
##  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
##  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
##  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
##  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
##  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
##  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
##  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
## 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
## # ℹ 22 more rows
mtcars_summarized
## # A tibble: 3 × 2
##     cyl mean_mpg
##   <dbl>    <dbl>
## 1     4     26.7
## 2     6     19.7
## 3     8     15.1

the above functions are called data manipulation functions. these functions are available in dplyr package.