Gracia María Lemus Mejía
LM21017
Literal A
Matriz de varianza covarianza
2. Usando el comando cov de R base
library(dplyr)
library(kableExtra)
cov(mat_X) %>%
kable(caption="Cálculo de V(X) a través de R base",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Cálculo de V(X) a través de R base
|
|
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
V7
|
V8
|
V9
|
V10
|
|
V1
|
1.80
|
1.92
|
1.32
|
1.73
|
-0.62
|
-0.31
|
0.36
|
-1.21
|
-1.27
|
-0.90
|
|
V2
|
1.92
|
2.67
|
1.42
|
2.14
|
-0.66
|
-0.14
|
0.52
|
-1.78
|
-1.81
|
-1.54
|
|
V3
|
1.32
|
1.42
|
1.42
|
1.53
|
-0.53
|
-0.32
|
0.29
|
-0.92
|
-1.11
|
-0.87
|
|
V4
|
1.73
|
2.14
|
1.53
|
2.48
|
-0.80
|
-0.48
|
0.35
|
-1.61
|
-1.83
|
-1.39
|
|
V5
|
-0.62
|
-0.66
|
-0.53
|
-0.80
|
0.85
|
0.80
|
0.21
|
0.37
|
0.46
|
0.15
|
|
V6
|
-0.31
|
-0.14
|
-0.32
|
-0.48
|
0.80
|
1.38
|
0.63
|
0.22
|
0.09
|
-0.37
|
|
V7
|
0.36
|
0.52
|
0.29
|
0.35
|
0.21
|
0.63
|
1.61
|
-0.53
|
-0.34
|
-0.71
|
|
V8
|
-1.21
|
-1.78
|
-0.92
|
-1.61
|
0.37
|
0.22
|
-0.53
|
1.92
|
1.81
|
1.37
|
|
V9
|
-1.27
|
-1.81
|
-1.11
|
-1.83
|
0.46
|
0.09
|
-0.34
|
1.81
|
2.17
|
1.56
|
|
V10
|
-0.90
|
-1.54
|
-0.87
|
-1.39
|
0.15
|
-0.37
|
-0.71
|
1.37
|
1.56
|
1.82
|
Literal B
matriz de correlación
2. Usando el comando cor de R base
library(dplyr)
library(kableExtra)
cor(mat_X) %>%
kable(caption="Cálculo de R(X) a través de R base",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
Cálculo de R(X) a través de R base
|
|
V1
|
V2
|
V3
|
V4
|
V5
|
V6
|
V7
|
V8
|
V9
|
V10
|
|
V1
|
1.00
|
0.87
|
0.82
|
0.82
|
-0.50
|
-0.19
|
0.21
|
-0.65
|
-0.64
|
-0.50
|
|
V2
|
0.87
|
1.00
|
0.73
|
0.83
|
-0.44
|
-0.07
|
0.25
|
-0.78
|
-0.75
|
-0.70
|
|
V3
|
0.82
|
0.73
|
1.00
|
0.81
|
-0.48
|
-0.23
|
0.19
|
-0.56
|
-0.63
|
-0.54
|
|
V4
|
0.82
|
0.83
|
0.81
|
1.00
|
-0.55
|
-0.26
|
0.17
|
-0.74
|
-0.79
|
-0.65
|
|
V5
|
-0.50
|
-0.44
|
-0.48
|
-0.55
|
1.00
|
0.74
|
0.18
|
0.29
|
0.34
|
0.12
|
|
V6
|
-0.19
|
-0.07
|
-0.23
|
-0.26
|
0.74
|
1.00
|
0.42
|
0.13
|
0.05
|
-0.24
|
|
V7
|
0.21
|
0.25
|
0.19
|
0.17
|
0.18
|
0.42
|
1.00
|
-0.30
|
-0.18
|
-0.41
|
|
V8
|
-0.65
|
-0.78
|
-0.56
|
-0.74
|
0.29
|
0.13
|
-0.30
|
1.00
|
0.89
|
0.73
|
|
V9
|
-0.64
|
-0.75
|
-0.63
|
-0.79
|
0.34
|
0.05
|
-0.18
|
0.89
|
1.00
|
0.78
|
|
V10
|
-0.50
|
-0.70
|
-0.54
|
-0.65
|
0.12
|
-0.24
|
-0.41
|
0.73
|
0.78
|
1.00
|
3. Presenta la matriz de correlación
Corrplot
library(corrplot)
library(grDevices)
library(Hmisc)
Mat_R<-rcorr(as.matrix(mat_X))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
type="upper",
tl.col="black",
tl.srt = 20,
pch.col = "blue",
insig = "p-value",
sig.level = -1,
col = terrain.colors(100))

Literal C
Extracción de los Componentes usando R
library(dplyr)
library(factoextra)
library(kableExtra)
library(stargazer)
library(ggplot2)
options(scipen = 99999)
PC<-princomp(x = mat_X,cor = TRUE,fix_sign = FALSE)
factoextra::get_eig(PC) %>% kable(caption="Resumen de PCA",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("hover"))
Resumen de PCA
|
|
eigenvalue
|
variance.percent
|
cumulative.variance.percent
|
|
Dim.1
|
5.70
|
57.01
|
57.01
|
|
Dim.2
|
2.07
|
20.69
|
77.70
|
|
Dim.3
|
0.72
|
7.20
|
84.91
|
|
Dim.4
|
0.55
|
5.48
|
90.39
|
|
Dim.5
|
0.32
|
3.16
|
93.54
|
|
Dim.6
|
0.27
|
2.71
|
96.25
|
|
Dim.7
|
0.15
|
1.46
|
97.72
|
|
Dim.8
|
0.13
|
1.28
|
99.00
|
|
Dim.9
|
0.07
|
0.68
|
99.68
|
|
Dim.10
|
0.03
|
0.32
|
100.00
|
Graficos
fviz_eig(PC,
choice = "eigenvalue",
barcolor = "red",
barfill = "red",
addlabels = TRUE,
)+labs(title = "Gráfico de Sedimentación",subtitle = "Usando princomp, con Autovalores")+
xlab(label = "Componentes")+
ylab(label = "Autovalores")+geom_hline(yintercept = 1)

fviz_eig(PC,
choice = "variance",
barcolor = "green",
barfill = "green",
addlabels = TRUE,
)+labs(title = "Gráfico de Sedimentación",
subtitle = "Usando princomp, con %Varianza Explicada")+
xlab(label = "Componentes")+
ylab(label = "%Varianza")

a. ¿Cuántas Componentes habría que retener?
De acuerdo al criterio del codo se sugiere retener tres componentes
principales. Estas tres componentes principales explican aproximadamente
el 84.91% de la varianza acumulativa en los datos de la encuesta sobre
las preferencias del público en la compra de automóviles.
Esto significa que las tres primeras componentes capturan una
proporción sustancial de la variabilidad en los datos, lo que facilita
el análisis y la interpretación de las preferencias del público en la
compra de automóviles en relación con las diez características
evaluadas.