\[A = \begin{pmatrix} 1 & 2 & 3 & 4\\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{pmatrix} \]
library(Matrix)
A = matrix(c(1,-1,0,5,2,0,1,4,3,1,-2,-2,4,3,1,-3),nrow=4,ncol=4,byrow=FALSE)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
#rank of the matrix
rankMatrix(A)[1]
## [1] 4
#determinant of the matrix
det(A)
## [1] -9
The rank is 4 because the determinant is -9 which is not equal to zero
The number of rows of a matrix is a limit on the rank of the matrix, which means the rank of the matrix cannot exceed the total number of rows in a matrix. However, the maximum rank for a non-square matrix is the value of the smaller dimension.
For the mxn matrix, the Minimum rank is 1 while the Maximum rank is n
\[What\ is\ the\ rank\ of\ matrix\ B?\ B = \begin{pmatrix} 1 & 2 & 1\\ 3 & 6 & 3 \\ 2 & 4 & 2 \\ \end{pmatrix} \]
library(Matrix)
B = matrix(c(1,3,2,2,6,4,1,3,2),nrow=3,ncol=3,byrow=FALSE)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
rankMatrix(B)[1]
## [1] 1
\[ A = \begin{pmatrix} 1 & 2 & 3\\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{pmatrix} \]
Av = λv
A = Square matrix
λ = eigen value
v = eigen vector
However, λ is the eigen value of A if det(λ*In - A) = 0.
In = Identity matrix
\[det(λ*\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} - \begin{pmatrix} 1 & 2 & 3\\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{pmatrix}) = 0 \]
Simplify the above:
\[ det(\left( \begin{array}{cc} λ & 0 & 0\\ 0 & λ & 0 \\ 0 & 0 & λ \\ \end{array} \right) - \left( \begin{array}{cc} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{array} \right)) = det(\left( \begin{array}{cc} λ-1 & -2 & -3 \\ 0 & λ-4 & -5 \\ 0 & 0 & λ-6 \end{array} \right)) = 0 \]
Simplify the determinant:
\[ The\ characteristic\ polynomial:\ λ^3-11{λ}^2+34λ-24\]
Confirmation of Eigen values using the R eigen() function:
A = matrix(c(1,0,0,2,4,0,3,5,6),nrow=3,ncol=3,byrow=FALSE)
eigen(A)$values
## [1] 6 4 1
To find the Eigen Vectors:
Eigen vector for λ=1;
(A−λI)x=0;
where x is the eigen vector
For λ=1;
\[Let\ x\ = \begin{pmatrix} u\\ v\\ w \end{pmatrix} \]
\[ (\begin{pmatrix} 1 & 2 & 3\\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{pmatrix} - λ*\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}) * x = 0 \]
\[ \left( \begin{array}{cc} 1-1 & 2-0 & 3-0 \\ 0-0 & 1-4 & 5-0 \\ 0-0 & 0-0 & 1-6 \end{array} \right) * \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = 0 \]
\[ \left( \begin{array}{cc} 0 & 2 & 3 \\ 0 & -3 & 5 \\ 0 & 0 & -5 \end{array} \right) * \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = 0 \]
Simplifying further, gives the below eigen vector
u = 1; v = 0; w = 0
\[ \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = \left( \begin{array}{cc} 1 \\ 0 \\ 0 \end{array} \right) \]
For λ=4;
\[Let\ x_2\ = \begin{pmatrix} u\\ v\\ w \end{pmatrix} \]
\[ (\begin{pmatrix} 1 & 2 & 3\\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{pmatrix} - λ*\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}) * x_2 = 0 \]
\[ \left( \begin{array}{cc} 4-1 & 2-0 & 3-0 \\ 0-0 & 4-4 & 5-0 \\ 0-0 & 0-0 & 4-6 \end{array} \right) * \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = 0 \]
\[ \left( \begin{array}{cc} 3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & -2 \end{array} \right) * \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = 0 \]
Simplifying further, gives the below eigen vector
u = 2; v = 3; w = 0
\[ \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = \left( \begin{array}{cc} 2 \\ 3 \\ 0 \end{array} \right) \]
For λ=6;
\[Let\ x_3\ = \begin{pmatrix} u\\ v\\ w \end{pmatrix} \]
\[ (\begin{pmatrix} 1 & 2 & 3\\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ \end{pmatrix} - λ*\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}) * x_3 = 0 \]
\[ \left( \begin{array}{cc} 6-1 & 2-0 & 3-0 \\ 0-0 & 6-4 & 5-0 \\ 0-0 & 0-0 & 6-6 \end{array} \right) * \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = 0 \]
\[ \left( \begin{array}{cc} 5 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 0 \end{array} \right) * \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = 0 \]
Simplifying further, gives the below eigen vector
u = 16; v = 25; w = 10
\[ \left( \begin{array}{cc} u \\ v \\ w \end{array} \right) = \left( \begin{array}{cc} 16 \\ 25 \\ 10 \end{array} \right) \]
\[ Eigen\ vectors\ are:\ x\ = \begin{pmatrix} x_1\\ x_2\\ x_3 \\ \end{pmatrix} = \begin{pmatrix} 1 & 2 & 16\\ 0 & 3 & 25 \\ 0 & 0 & 10 \\ \end{pmatrix} \]