Ejercicio: Una empresa especializada en el diseño de automóviles de turismo desea estudiar cuáles son los deseos del público que compra automóviles. Para ello diseña una encuesta con 10 preguntas donde se le pide a cada uno de los 20 encuestados que valore de 1 a 5 si una característica es o no muy importante. Los encuestados deberán contestar con un 5 si la característica es muy importante, un 4 si es importante, un 3 si tiene regular importancia, un 2 si es poco importante y un 1 si no es nada importante. Las 10 características (V1 a V10) a valorar son: precio, financiación, consumo, combustible, seguridad, confort, capacidad, prestaciones, modernidad y aerodinámica.

Importación de datos

#Carga de datos
load("C:/Users/johan/OneDrive/Documentos/A/MAE118/6-2.Rdata")

# Matriz de Variables centradas
library(dplyr)
library(kableExtra)

matriz_X<-X6_2
matriz_X %>% 
  head() %>% 
  kable(caption="Matriz de Informacion", align = "c",digits = 2) %>% 
  kable_material(html_font = "sans-serif") %>% 
  kable_styling(bootstrap_options = c("striped", "hover"))
Matriz de Informacion
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
4 1 4 3 3 2 4 4 4 4
5 5 4 4 3 3 4 1 1 3
2 1 3 1 4 2 1 5 4 5
1 1 1 1 4 4 2 5 5 4
1 1 2 1 5 5 4 3 3 2
5 5 5 5 3 3 4 2 2 1

Realizar un análisis de Componentes Principales, una solución adecuada de la cantidad de Componentes a retener y justifique su respuesta.

Literal 1

Calcula la matriz de varianza covarianza para la batería de indicadores: - De forma “manual” - Usando el comando cov de R base

Literal 1.1

De forma “manual”

centradol<-function(x){
  x-mean(x)
}

xcentrada<-apply(X=matriz_X, MARGIN = 2, centradol)
xcentrada %>% 
  head() %>% 
  kable(caption="Matriz de Variables centradas",
        align = "c",
        digits = 2) %>% 
  kable_material(html_font = "sans-serif") %>% 
  kable_styling(bootstrap_options = c("striped", "hover"))
Matriz de Variables centradas
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
0.3 -2.4 0.5 0.2 -0.7 -1.7 0.35 1.15 1.2 1.35
1.3 1.6 0.5 1.2 -0.7 -0.7 0.35 -1.85 -1.8 0.35
-1.7 -2.4 -0.5 -1.8 0.3 -1.7 -2.65 2.15 1.2 2.35
-2.7 -2.4 -2.5 -1.8 0.3 0.3 -1.65 2.15 2.2 1.35
-2.7 -2.4 -1.5 -1.8 1.3 1.3 0.35 0.15 0.2 -0.65
1.3 1.6 1.5 2.2 -0.7 -0.7 0.35 -0.85 -0.8 -1.65
n_obs<-nrow(matriz_X)
mat_V<-t(xcentrada)%*%xcentrada/(n_obs-1) 
mat_V %>% kable(caption ="Calculo de V(X) forma manual:" ,
                align = "c",
                digits = 2) %>% 
  kable_material(html_font = "sans-serif") %>% 
  kable_styling(bootstrap_options = c("striped", "hover"))
Calculo de V(X) forma manual:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.80 1.92 1.32 1.73 -0.62 -0.31 0.36 -1.21 -1.27 -0.90
V2 1.92 2.67 1.42 2.14 -0.66 -0.14 0.52 -1.78 -1.81 -1.54
V3 1.32 1.42 1.42 1.53 -0.53 -0.32 0.29 -0.92 -1.11 -0.87
V4 1.73 2.14 1.53 2.48 -0.80 -0.48 0.35 -1.61 -1.83 -1.39
V5 -0.62 -0.66 -0.53 -0.80 0.85 0.80 0.21 0.37 0.46 0.15
V6 -0.31 -0.14 -0.32 -0.48 0.80 1.38 0.63 0.22 0.09 -0.37
V7 0.36 0.52 0.29 0.35 0.21 0.63 1.61 -0.53 -0.34 -0.71
V8 -1.21 -1.78 -0.92 -1.61 0.37 0.22 -0.53 1.92 1.81 1.37
V9 -1.27 -1.81 -1.11 -1.83 0.46 0.09 -0.34 1.81 2.17 1.56
V10 -0.90 -1.54 -0.87 -1.39 0.15 -0.37 -0.71 1.37 1.56 1.82

Literal 1.2

Usando el comando cov de R base

cov(matriz_X) %>% 
  kable(caption="Calculo de V(x) usando el comando cov de R base",
        align = "c",
        digits = 2) %>% 
  kable_material(html_font = "sans-serif") %>% 
  kable_styling(bootstrap_options = c("striped", "hover"))
Calculo de V(x) usando el comando cov de R base
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.80 1.92 1.32 1.73 -0.62 -0.31 0.36 -1.21 -1.27 -0.90
V2 1.92 2.67 1.42 2.14 -0.66 -0.14 0.52 -1.78 -1.81 -1.54
V3 1.32 1.42 1.42 1.53 -0.53 -0.32 0.29 -0.92 -1.11 -0.87
V4 1.73 2.14 1.53 2.48 -0.80 -0.48 0.35 -1.61 -1.83 -1.39
V5 -0.62 -0.66 -0.53 -0.80 0.85 0.80 0.21 0.37 0.46 0.15
V6 -0.31 -0.14 -0.32 -0.48 0.80 1.38 0.63 0.22 0.09 -0.37
V7 0.36 0.52 0.29 0.35 0.21 0.63 1.61 -0.53 -0.34 -0.71
V8 -1.21 -1.78 -0.92 -1.61 0.37 0.22 -0.53 1.92 1.81 1.37
V9 -1.27 -1.81 -1.11 -1.83 0.46 0.09 -0.34 1.81 2.17 1.56
V10 -0.90 -1.54 -0.87 -1.39 0.15 -0.37 -0.71 1.37 1.56 1.82

Literal 2

Calcula la matriz de correlación para la batería de indicadores: - De forma “manual” - Usando el comando cor de R base - Presenta la matriz de correlación de forma gráfica

Literal 2.1

De forma “manual”

Zx<-scale(x = X6_2,center =TRUE)
Zx %>% head() %>% 
  kable(caption ="Matriz de Variables Estandarizadas:",
        align = "c",
        digits = 2) %>% 
  kable_material(html_font = "sans-serif")
Matriz de Variables Estandarizadas:
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
0.22 -1.47 0.42 0.13 -0.76 -1.45 0.28 0.83 0.81 1.00
0.97 0.98 0.42 0.76 -0.76 -0.60 0.28 -1.33 -1.22 0.26
-1.27 -1.47 -0.42 -1.14 0.32 -1.45 -2.09 1.55 0.81 1.74
-2.01 -1.47 -2.10 -1.14 0.32 0.26 -1.30 1.55 1.49 1.00
-2.01 -1.47 -1.26 -1.14 1.41 1.11 0.28 0.11 0.14 -0.48
0.97 0.98 1.26 1.40 -0.76 -0.60 0.28 -0.61 -0.54 -1.22
nr_obs<-nrow(matriz_X)
matriz_R<-t(Zx)%*%Zx/(nr_obs-1)
matriz_R %>% 
  kable(caption="Calculo de R(x) de forma Manual",
        align = "c",
        digits = 2) %>% 
  kable_material(html_font = "sans-serif") %>% 
  kable_styling(bootstrap_options = c("striped", "hover"))
Calculo de R(x) de forma Manual
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.00 0.87 0.82 0.82 -0.50 -0.19 0.21 -0.65 -0.64 -0.50
V2 0.87 1.00 0.73 0.83 -0.44 -0.07 0.25 -0.78 -0.75 -0.70
V3 0.82 0.73 1.00 0.81 -0.48 -0.23 0.19 -0.56 -0.63 -0.54
V4 0.82 0.83 0.81 1.00 -0.55 -0.26 0.17 -0.74 -0.79 -0.65
V5 -0.50 -0.44 -0.48 -0.55 1.00 0.74 0.18 0.29 0.34 0.12
V6 -0.19 -0.07 -0.23 -0.26 0.74 1.00 0.42 0.13 0.05 -0.24
V7 0.21 0.25 0.19 0.17 0.18 0.42 1.00 -0.30 -0.18 -0.41
V8 -0.65 -0.78 -0.56 -0.74 0.29 0.13 -0.30 1.00 0.89 0.73
V9 -0.64 -0.75 -0.63 -0.79 0.34 0.05 -0.18 0.89 1.00 0.78
V10 -0.50 -0.70 -0.54 -0.65 0.12 -0.24 -0.41 0.73 0.78 1.00

Literal 2.2

Usando el comando cor de R base

cor(matriz_X) %>% 
  kable(caption="Calculo de R(x) usando el comando cor de R base",
        align = "c",
        digits = 2) %>% 
  kable_material(html_font = "sans-serif") %>% 
  kable_styling(bootstrap_options = c("striped", "hover"))
Calculo de R(x) usando el comando cor de R base
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
V1 1.00 0.87 0.82 0.82 -0.50 -0.19 0.21 -0.65 -0.64 -0.50
V2 0.87 1.00 0.73 0.83 -0.44 -0.07 0.25 -0.78 -0.75 -0.70
V3 0.82 0.73 1.00 0.81 -0.48 -0.23 0.19 -0.56 -0.63 -0.54
V4 0.82 0.83 0.81 1.00 -0.55 -0.26 0.17 -0.74 -0.79 -0.65
V5 -0.50 -0.44 -0.48 -0.55 1.00 0.74 0.18 0.29 0.34 0.12
V6 -0.19 -0.07 -0.23 -0.26 0.74 1.00 0.42 0.13 0.05 -0.24
V7 0.21 0.25 0.19 0.17 0.18 0.42 1.00 -0.30 -0.18 -0.41
V8 -0.65 -0.78 -0.56 -0.74 0.29 0.13 -0.30 1.00 0.89 0.73
V9 -0.64 -0.75 -0.63 -0.79 0.34 0.05 -0.18 0.89 1.00 0.78
V10 -0.50 -0.70 -0.54 -0.65 0.12 -0.24 -0.41 0.73 0.78 1.00

Literal 2.3

Matriz de correlación de forma gráfica

Usando PerformanceAnalytics

library(PerformanceAnalytics)
chart.Correlation(as.matrix(matriz_X), histogram = TRUE, pch=12)

Usando corrplot

library(corrplot)
library(grDevices)
library(Hmisc)
Mat_R<-rcorr(as.matrix(matriz_X))
corrplot(Mat_R$r,
         p.mat = Mat_R$r,
         type="upper",
         tl.col="black",
         tl.srt = 20,
         pch.col = "blue",
         insig = "p-value",
         sig.level = -1,
         col = terrain.colors(100))

Literal 3

Realiza un análisis de componentes principales, y con base en los criterios vistos en clase:

Literal 3.1

¿Cuántos Componentes habría que retener?

  • Según el criterio de porcentaje acumulado de la varianza o de los 3/4 (Criterio del 75%): Implica retener suficientes dimensiones para explicar al menos el 75% de la varianza total en los datos originales. En este caso, las dos primeras dimensiones explican el 77.70% de la varianza.

  • Según el criterio de la raíz latente: Implica retener las dimensiones con eigenvalues (autovalores) iguales o mayores que uno. En este caso, las Dimensiones 1 y 2 tienen eigenvalues superiores a uno, por lo tanto, según este criterio, se deben de retener esas dos dimensiones.

  • Según el criterio de Elbow: Se ha identificado un punto de codo en el gráfico de sedimentación y este ocurre en la Dimensión 3, entonces según el criterio de Elbow, se debe de retener las tres primeras dimensiones. Esto significa que estas tres dimensiones capturan una cantidad significativa de la varianza en los datos

Literal 3.2

Incluye las tablas y gráficos vistos en clase.

library(factoextra)
library(ggplot2)
options(scipen = 99999)
PC<-princomp(x = matriz_X, cor = TRUE, fix_sign = FALSE)
factoextra::get_eig(PC) %>% 
  kable(caption="Resumen de PCA",
        align = "c",
        digits = 2) %>% 
  kable_material(html_font = "sans-serif") %>% 
  kable_styling(bootstrap_options = c("striped", "hover"))
Resumen de PCA
eigenvalue variance.percent cumulative.variance.percent
Dim.1 5.70 57.01 57.01
Dim.2 2.07 20.69 77.70
Dim.3 0.72 7.20 84.91
Dim.4 0.55 5.48 90.39
Dim.5 0.32 3.16 93.54
Dim.6 0.27 2.71 96.25
Dim.7 0.15 1.46 97.72
Dim.8 0.13 1.28 99.00
Dim.9 0.07 0.68 99.68
Dim.10 0.03 0.32 100.00
fviz_eig(PC,
         choice = "eigenvalue",
         barcolor = "red",
         barfill = "red",
         addlabels = TRUE,
         )+labs(title = "Grafico de Sedimentacion (Grafico 1)",
                subtitle = "Usando princomp, con Autovalores")+
  xlab(label = "Componentes")+
  ylab(label = "Autovalores")+
  geom_hline(yintercept = 1)

fviz_eig(PC,
         choice = "variance",
         barcolor = "green",
         barfill = "green",
         addlabels = TRUE,
         )+labs(title = "Grafico de Sedimentacion (Grafico 2)",
                subtitle = "Usando princomp, con %Varianza Explicada")+
  xlab(label = "Componentes")+
  ylab(label = "%Varianza")