## Warning: package 'readr' was built under R version 4.3.1
library(kableExtra)
load("C:/Users/reque/Downloads/Nicole Saraí Aguilar Hernández - 6-2.RData")
mat_x<-X6_2
mat_x %>%
head() %>%
kable(caption="Matriz de Informacion",
align = "c",
digits = 6) %>%
kable_material(html_font = "sans-serif")| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 4 | 3 | 3 | 2 | 4 | 4 | 4 | 4 |
| 5 | 5 | 4 | 4 | 3 | 3 | 4 | 1 | 1 | 3 |
| 2 | 1 | 3 | 1 | 4 | 2 | 1 | 5 | 4 | 5 |
| 1 | 1 | 1 | 1 | 4 | 4 | 2 | 5 | 5 | 4 |
| 1 | 1 | 2 | 1 | 5 | 5 | 4 | 3 | 3 | 2 |
| 5 | 5 | 5 | 5 | 3 | 3 | 4 | 2 | 2 | 1 |
## Warning: package 'dplyr' was built under R version 4.3.1
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(kableExtra)
centrado<-function(x){
x-mean(x)
}
Xcentrada<-apply(X = mat_x,MARGIN = 2,centrado)
Xcentrada %>% head() %>%
kable(caption ="Matriz de Variables centradas:",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif")| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
|---|---|---|---|---|---|---|---|---|---|
| 0.3 | -2.4 | 0.5 | 0.2 | -0.7 | -1.7 | 0.35 | 1.15 | 1.2 | 1.35 |
| 1.3 | 1.6 | 0.5 | 1.2 | -0.7 | -0.7 | 0.35 | -1.85 | -1.8 | 0.35 |
| -1.7 | -2.4 | -0.5 | -1.8 | 0.3 | -1.7 | -2.65 | 2.15 | 1.2 | 2.35 |
| -2.7 | -2.4 | -2.5 | -1.8 | 0.3 | 0.3 | -1.65 | 2.15 | 2.2 | 1.35 |
| -2.7 | -2.4 | -1.5 | -1.8 | 1.3 | 1.3 | 0.35 | 0.15 | 0.2 | -0.65 |
| 1.3 | 1.6 | 1.5 | 2.2 | -0.7 | -0.7 | 0.35 | -0.85 | -0.8 | -1.65 |
n_obs<-nrow(mat_x)
mat_V<-t(Xcentrada)%*%Xcentrada/(n_obs-1)
mat_V %>% kable(caption ="Cálculo de V(X) forma manual:" ,
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| V1 | 1.80 | 1.92 | 1.32 | 1.73 | -0.62 | -0.31 | 0.36 | -1.21 | -1.27 | -0.90 |
| V2 | 1.92 | 2.67 | 1.42 | 2.14 | -0.66 | -0.14 | 0.52 | -1.78 | -1.81 | -1.54 |
| V3 | 1.32 | 1.42 | 1.42 | 1.53 | -0.53 | -0.32 | 0.29 | -0.92 | -1.11 | -0.87 |
| V4 | 1.73 | 2.14 | 1.53 | 2.48 | -0.80 | -0.48 | 0.35 | -1.61 | -1.83 | -1.39 |
| V5 | -0.62 | -0.66 | -0.53 | -0.80 | 0.85 | 0.80 | 0.21 | 0.37 | 0.46 | 0.15 |
| V6 | -0.31 | -0.14 | -0.32 | -0.48 | 0.80 | 1.38 | 0.63 | 0.22 | 0.09 | -0.37 |
| V7 | 0.36 | 0.52 | 0.29 | 0.35 | 0.21 | 0.63 | 1.61 | -0.53 | -0.34 | -0.71 |
| V8 | -1.21 | -1.78 | -0.92 | -1.61 | 0.37 | 0.22 | -0.53 | 1.92 | 1.81 | 1.37 |
| V9 | -1.27 | -1.81 | -1.11 | -1.83 | 0.46 | 0.09 | -0.34 | 1.81 | 2.17 | 1.56 |
| V10 | -0.90 | -1.54 | -0.87 | -1.39 | 0.15 | -0.37 | -0.71 | 1.37 | 1.56 | 1.82 |
library(dplyr)
library(kableExtra)
cov(mat_x) %>%
kable(caption="Cálculo de V(X) a través de R base",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| V1 | 1.80 | 1.92 | 1.32 | 1.73 | -0.62 | -0.31 | 0.36 | -1.21 | -1.27 | -0.90 |
| V2 | 1.92 | 2.67 | 1.42 | 2.14 | -0.66 | -0.14 | 0.52 | -1.78 | -1.81 | -1.54 |
| V3 | 1.32 | 1.42 | 1.42 | 1.53 | -0.53 | -0.32 | 0.29 | -0.92 | -1.11 | -0.87 |
| V4 | 1.73 | 2.14 | 1.53 | 2.48 | -0.80 | -0.48 | 0.35 | -1.61 | -1.83 | -1.39 |
| V5 | -0.62 | -0.66 | -0.53 | -0.80 | 0.85 | 0.80 | 0.21 | 0.37 | 0.46 | 0.15 |
| V6 | -0.31 | -0.14 | -0.32 | -0.48 | 0.80 | 1.38 | 0.63 | 0.22 | 0.09 | -0.37 |
| V7 | 0.36 | 0.52 | 0.29 | 0.35 | 0.21 | 0.63 | 1.61 | -0.53 | -0.34 | -0.71 |
| V8 | -1.21 | -1.78 | -0.92 | -1.61 | 0.37 | 0.22 | -0.53 | 1.92 | 1.81 | 1.37 |
| V9 | -1.27 | -1.81 | -1.11 | -1.83 | 0.46 | 0.09 | -0.34 | 1.81 | 2.17 | 1.56 |
| V10 | -0.90 | -1.54 | -0.87 | -1.39 | 0.15 | -0.37 | -0.71 | 1.37 | 1.56 | 1.82 |
Zx<-scale(x = mat_x,center =TRUE)
Zx %>% head() %>%
kable(caption ="Matriz de Variables Estandarizadas:",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif")| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
|---|---|---|---|---|---|---|---|---|---|
| 0.22 | -1.47 | 0.42 | 0.13 | -0.76 | -1.45 | 0.28 | 0.83 | 0.81 | 1.00 |
| 0.97 | 0.98 | 0.42 | 0.76 | -0.76 | -0.60 | 0.28 | -1.33 | -1.22 | 0.26 |
| -1.27 | -1.47 | -0.42 | -1.14 | 0.32 | -1.45 | -2.09 | 1.55 | 0.81 | 1.74 |
| -2.01 | -1.47 | -2.10 | -1.14 | 0.32 | 0.26 | -1.30 | 1.55 | 1.49 | 1.00 |
| -2.01 | -1.47 | -1.26 | -1.14 | 1.41 | 1.11 | 0.28 | 0.11 | 0.14 | -0.48 |
| 0.97 | 0.98 | 1.26 | 1.40 | -0.76 | -0.60 | 0.28 | -0.61 | -0.54 | -1.22 |
n_obs<-nrow(mat_x)
mat_R<-t(Zx)%*%Zx/(n_obs-1)
mat_R %>% kable(caption ="Cálculo de R(X) forma manual:" ,
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| V1 | 1.00 | 0.87 | 0.82 | 0.82 | -0.50 | -0.19 | 0.21 | -0.65 | -0.64 | -0.50 |
| V2 | 0.87 | 1.00 | 0.73 | 0.83 | -0.44 | -0.07 | 0.25 | -0.78 | -0.75 | -0.70 |
| V3 | 0.82 | 0.73 | 1.00 | 0.81 | -0.48 | -0.23 | 0.19 | -0.56 | -0.63 | -0.54 |
| V4 | 0.82 | 0.83 | 0.81 | 1.00 | -0.55 | -0.26 | 0.17 | -0.74 | -0.79 | -0.65 |
| V5 | -0.50 | -0.44 | -0.48 | -0.55 | 1.00 | 0.74 | 0.18 | 0.29 | 0.34 | 0.12 |
| V6 | -0.19 | -0.07 | -0.23 | -0.26 | 0.74 | 1.00 | 0.42 | 0.13 | 0.05 | -0.24 |
| V7 | 0.21 | 0.25 | 0.19 | 0.17 | 0.18 | 0.42 | 1.00 | -0.30 | -0.18 | -0.41 |
| V8 | -0.65 | -0.78 | -0.56 | -0.74 | 0.29 | 0.13 | -0.30 | 1.00 | 0.89 | 0.73 |
| V9 | -0.64 | -0.75 | -0.63 | -0.79 | 0.34 | 0.05 | -0.18 | 0.89 | 1.00 | 0.78 |
| V10 | -0.50 | -0.70 | -0.54 | -0.65 | 0.12 | -0.24 | -0.41 | 0.73 | 0.78 | 1.00 |
library(dplyr)
library(kableExtra)
cor(mat_x) %>%
kable(caption="Cálculo de R(X) a través de R base",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("striped", "hover"))| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | |
|---|---|---|---|---|---|---|---|---|---|---|
| V1 | 1.00 | 0.87 | 0.82 | 0.82 | -0.50 | -0.19 | 0.21 | -0.65 | -0.64 | -0.50 |
| V2 | 0.87 | 1.00 | 0.73 | 0.83 | -0.44 | -0.07 | 0.25 | -0.78 | -0.75 | -0.70 |
| V3 | 0.82 | 0.73 | 1.00 | 0.81 | -0.48 | -0.23 | 0.19 | -0.56 | -0.63 | -0.54 |
| V4 | 0.82 | 0.83 | 0.81 | 1.00 | -0.55 | -0.26 | 0.17 | -0.74 | -0.79 | -0.65 |
| V5 | -0.50 | -0.44 | -0.48 | -0.55 | 1.00 | 0.74 | 0.18 | 0.29 | 0.34 | 0.12 |
| V6 | -0.19 | -0.07 | -0.23 | -0.26 | 0.74 | 1.00 | 0.42 | 0.13 | 0.05 | -0.24 |
| V7 | 0.21 | 0.25 | 0.19 | 0.17 | 0.18 | 0.42 | 1.00 | -0.30 | -0.18 | -0.41 |
| V8 | -0.65 | -0.78 | -0.56 | -0.74 | 0.29 | 0.13 | -0.30 | 1.00 | 0.89 | 0.73 |
| V9 | -0.64 | -0.75 | -0.63 | -0.79 | 0.34 | 0.05 | -0.18 | 0.89 | 1.00 | 0.78 |
| V10 | -0.50 | -0.70 | -0.54 | -0.65 | 0.12 | -0.24 | -0.41 | 0.73 | 0.78 | 1.00 |
propuestas en clase)
## Warning: package 'corrplot' was built under R version 4.3.1
## corrplot 0.92 loaded
## Warning: package 'Hmisc' was built under R version 4.3.1
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
Mat_R<-rcorr(as.matrix(mat_x))
corrplot(Mat_R$r,
p.mat = Mat_R$r,
type="upper",
tl.col="black",
tl.srt = 20,
pch.col = "blue",
insig = "p-value",
sig.level = -1,
col = terrain.colors(100))## Warning: package 'factoextra' was built under R version 4.3.1
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.1
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(ggplot2)
options(scipen = 99999)
PC<-princomp(x = mat_x,cor = TRUE,fix_sign = FALSE)
factoextra::get_eig(PC) %>% kable(caption="Resumen de PCA",
align = "c",
digits = 2) %>%
kable_material(html_font = "sans-serif") %>%
kable_styling(bootstrap_options = c("hover"))| eigenvalue | variance.percent | cumulative.variance.percent | |
|---|---|---|---|
| Dim.1 | 5.70 | 57.01 | 57.01 |
| Dim.2 | 2.07 | 20.69 | 77.70 |
| Dim.3 | 0.72 | 7.20 | 84.91 |
| Dim.4 | 0.55 | 5.48 | 90.39 |
| Dim.5 | 0.32 | 3.16 | 93.54 |
| Dim.6 | 0.27 | 2.71 | 96.25 |
| Dim.7 | 0.15 | 1.46 | 97.72 |
| Dim.8 | 0.13 | 1.28 | 99.00 |
| Dim.9 | 0.07 | 0.68 | 99.68 |
| Dim.10 | 0.03 | 0.32 | 100.00 |
Criterio de los tres cuartos: se deberian retener tantas dimensiones de manera tal que se explique al menos el 75% de la varianza de los datos originales, por lo que bajo este criterio se deberian retener 2 componentes ya que es 77.70 y cubre el criterio del 75%.
criterio de la raiz latente: unicamente retener aquellas dimensiones cuyo autovalor sea mayor o igual a 1 por lo que bajo este criterio se deberian retener 2 variables latentes.
Criterio de Elbow:unicamente se retendran las dimensiones exactamente donde ocurre el codo presentado a continuación:
fviz_eig(PC,
choice = "eigenvalue",
barcolor = "blue",
barfill = "blue",
addlabels = TRUE,
)+labs(title = "Gráfico de Sedimentación",subtitle = "Usando princomp, con Autovalores")+
xlab(label = "Componentes")+
ylab(label = "Autovalores")+geom_hline(yintercept = 1)
Por lo que bajo este criterio y en base al Grafico anterior de
sedimentación, el codo se da en la dimensión 3, por lo tanto se debe de
retener 3 dimensiones.
fviz_eig(PC,
choice = "variance",
barcolor = "purple",
barfill = "purple",
addlabels = TRUE,
)+labs(title = "Gráfico de Sedimentación",
subtitle = "Usando princomp, con %Varianza Explicada")+
xlab(label = "Componentes")+
ylab(label = "%Varianza")