library(tidymodels)
library(tidyverse)
library(modeltime)
library(timetk)
Data was recorded from October 06, 2020, at 9:00 PM until April 26, 2021, at 2:00 PM with a 15-minute interval. The data contains heat index (Heat), Date and Time columns. Date and Time were combined to create a single variable Date_Time.
glimpse(usmdata)
## Rows: 18,591
## Columns: 2
## $ Heat <dbl> 26.6, 26.3, 26.2, 26.1, 25.9, 25.9, 25.8, 25.7, 25.6, 25.6, …
## $ Date_Time <dttm> 2020-10-06 21:00:00, 2020-10-06 21:15:00, 2020-10-06 21:30:…
head(usmdata, 10)
## # A tibble: 10 × 2
## Heat Date_Time
## <dbl> <dttm>
## 1 26.6 2020-10-06 21:00:00
## 2 26.3 2020-10-06 21:15:00
## 3 26.2 2020-10-06 21:30:00
## 4 26.1 2020-10-06 21:45:00
## 5 25.9 2020-10-06 22:00:00
## 6 25.9 2020-10-06 22:15:00
## 7 25.8 2020-10-06 22:30:00
## 8 25.7 2020-10-06 22:45:00
## 9 25.6 2020-10-06 23:00:00
## 10 25.6 2020-10-06 23:15:00
## <Training/Testing/Total>
## <16731/1860/18591>
## parsnip model object
##
## PROPHET Model
## - growth: 'linear'
## - n.changepoints: 25
## - changepoint.range: 0.8
## - yearly.seasonality: 'TRUE'
## - weekly.seasonality: 'TRUE'
## - daily.seasonality: 'TRUE'
## - seasonality.mode: 'additive'
## - changepoint.prior.scale: 0.05
## - seasonality.prior.scale: 10
## - holidays.prior.scale: 10
## - logistic_cap: NULL
## - logistic_floor: NULL
## - extra_regressors: 0
## frequency = 96 observations per 1 day
## parsnip model object
##
## Series: outcome
## ARIMA(4,0,1)(0,1,0)[96]
##
## Coefficients:
## ar1 ar2 ar3 ar4 ma1
## 0.7657 0.3603 -0.2877 0.0711 0.6969
## s.e. 0.1330 0.1956 0.0908 0.0223 0.1324
##
## sigma^2 = 4.695: log likelihood = -36465.86
## AIC=72943.73 AICc=72943.73 BIC=72990.04
## # A tibble: 2 × 9
## .model_id .model_desc .type mae mape mase smape rmse rsq
## <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 PROPHET Test 13.0 33.3 9.92 42.3 15.0 0.639
## 2 2 ARIMA(4,0,1)(0,1,0)[96] Test 7.94 17.7 6.06 19.5 11.8 0.426
## Using '.calibration_data' to forecast.