{modelr}

Compute model quality for a given dataset

Three summaries are immediately interpretible on the scale of the response variable:

Root Mean Square Error

rmse(fit, data= cheddar)
## [1] 9.431174

mean absolute error

mae(fit, data= cheddar)
## [1] 7.586727
qae(fit, data= cheddar)
##        5%       25%       50%       75%       95% 
##  1.051164  4.087882  5.238398 10.848030 16.609669

Other summaries

  • mape() mean absolute percentage error.
  • rsae() is the relative sum of absolute errors.
  • mse() is the mean-squared-error.
  • rsquare() is the variance of the predictions divided by the variance of the response.
rsquare(fit, data= cheddar)
## [1] 0.6517747