{modelr}
Compute model quality for a given dataset
Three summaries are immediately interpretible on the scale of the response variable:
rmse()
is the root-mean-squared-errormae()
is the mean absolute errorqae()
is quantiles of absolute error.
Root Mean Square Error
rmse(fit, data= cheddar)
## [1] 9.431174
mean absolute error
mae(fit, data= cheddar)
## [1] 7.586727
qae(fit, data= cheddar)
## 5% 25% 50% 75% 95%
## 1.051164 4.087882 5.238398 10.848030 16.609669
Other summaries
mape()
mean absolute percentage error.rsae()
is the relative sum of absolute errors.mse()
is the mean-squared-error.rsquare()
is the variance of the predictions divided by the variance of the response.
rsquare(fit, data= cheddar)
## [1] 0.6517747