II.) Summary


Call:
lm(formula = length ~ Xray, data = senic)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.9226 -1.0810 -0.2708  0.8200  8.7008 

Coefficients:
            Estimate Std. Error t value            Pr(>|t|)    
(Intercept) 6.566373   0.726094   9.043 0.00000000000000567 ***
Xray        0.037756   0.008657   4.361 0.00002905559455877 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.774 on 111 degrees of freedom
Multiple R-squared:  0.1463,    Adjusted R-squared:  0.1386 
F-statistic: 19.02 on 1 and 111 DF,  p-value: 0.00002906
[1] 9.964413

Call:
lm(formula = length ~ facility, data = senic)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.2712 -1.0716 -0.2816  0.7584  9.5433 

Coefficients:
            Estimate Std. Error t value             Pr(>|t|)    
(Intercept)  7.71877    0.51020  15.129 < 0.0000000000000002 ***
facility     0.04471    0.01116   4.008             0.000111 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.795 on 111 degrees of freedom
Multiple R-squared:  0.1264,    Adjusted R-squared:  0.1185 
F-statistic: 16.06 on 1 and 111 DF,  p-value: 0.0001113
[1] 8.61297

Call:
lm(formula = length ~ infection, data = senic)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.0587 -0.7776 -0.1487  0.7159  8.2805 

Coefficients:
            Estimate Std. Error t value             Pr(>|t|)    
(Intercept)   6.3368     0.5213  12.156 < 0.0000000000000002 ***
infection     0.7604     0.1144   6.645        0.00000000118 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.624 on 111 degrees of freedom
Multiple R-squared:  0.2846,    Adjusted R-squared:  0.2781 
F-statistic: 44.15 on 1 and 111 DF,  p-value: 0.000000001177
[1] 9.15028
       fit      lwr      upr
1 9.150344 5.914575 12.38611
       fit      lwr      upr
1 8.612921 5.004609 12.22123
       fit      lwr      upr
1 9.964398 6.430556 13.49824

R Appendix

knitr::opts_chunk$set(echo = FALSE, comment = NA, message = FALSE)
options(scipen = 999) #Remove the scientific notation
senic = read.csv("SENIC.csv")
length = senic$length
infection = senic$infection
facility = senic$facility
Xray = senic$Xray
xray.model <- lm(formula = length ~ Xray, data = senic)
summary(xray.model)
0.037756*90 + 6.566373
facility.model <- lm(length ~ facility, data = senic)
summary(facility.model)
0.04471*20+7.71877
infection.model <- lm(length ~ infection, data = senic)
summary(infection.model)
0.7604*3.7 + 6.3368
predict(infection.model, newdata = data.frame(infection = 3.7), interval = "predict", level = 0.95)
predict(facility.model, newdata = data.frame(facility = 20), interval = "predict", level = 0.95)
predict(xray.model, newdata = data.frame(Xray = 90), interval = "predict", level = 0.95)