# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
# Choose stocks
symbols <- c("AAPL", "NKE", "GE", "DIS", "SBUX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
# Calculate monthly returns
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "DIS" "GE" "NKE" "SBUX"
# weight
weights <- c(0.25,
0.25,
0.20,
0.20,
0.10)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 DIS 0.25
## 3 GE 0.2
## 4 NKE 0.2
## 5 SBUX 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00658
## 2 2013-02-28 0.00714
## 3 2013-03-28 0.0296
## 4 2013-04-30 0.0396
## 5 2013-05-31 0.0141
## 6 2013-06-28 -0.0206
## 7 2013-07-31 0.0549
## 8 2013-08-30 -0.00593
## 9 2013-09-30 0.0549
## 10 2013-10-31 0.0700
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.659
portfolio_returns_tbl %>%
ggplot(aes(x = returns)) +
geom_histogram()
# Transform data
mean_kurt_tbl <- asset_returns_tbl %>%
# Calculate mean return and kurtosis for assets
group_by(asset) %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
ungroup()
# Add portfolio stats
add_row(portfolio_returns_tbl %>%
summarise(mean = mean(returns),
kurt = kurtosis(returns)) %>%
mutate(asset = "Portfolio"))
## # A tibble: 2 × 3
## mean kurt asset
## <dbl> <dbl> <chr>
## 1 0.0117 0.659 Portfolio
## 2 NA NA <NA>
# Plot
mean_kurt_tbl %>%
ggplot(aes(x = kurt, y = mean)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset, color = asset)) +
# Formatting
theme(legend.position = "none") +
scale_y_continuous(labels = scales::percent_format(accuracy = 0.1))+
# Labeling
labs(x = "Kurtosis",
y = "Expected Returns")
# Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "kurtosis",
title = paste0("Rolling ", window, "Month Kurtosis")) +
annotate(geom = "text", x = as.Date("2016-07-01"), y = 3,
size = 5, color = "red",
label = str_glue( " Downside risk skyrocketed
toward the end of 2017"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
The downside risk of my portfolio has decreased from 0.25 percent to -0.1 percent during the time period of 2017-2018. This means the risk has decreased since the kurtosis is falling.