Import your data
bee_colonies <- read_excel("../00_data/MyData3.xlsx")
set.seed(123)
bee_colonies_smaller <- bee_colonies %>%
select(year, state, colony_lost) %>%
sample_n(10)
bee_colonies_smaller
## # A tibble: 10 × 3
## year state colony_lost
## <dbl> <chr> <dbl>
## 1 2017 Utah 2700
## 2 2017 Vermont 170
## 3 2015 Texas 25000
## 4 2017 Hawaii 130
## 5 2016 Florida 45000
## 6 2019 Wyoming 3300
## 7 2021 Kansas 1400
## 8 2020 California 69000
## 9 2018 Florida 30000
## 10 2018 Texas 22000
Separating and Uniting
Unite two columns
beecolony_united <- bee_colonies %>%
unite(col = "month & state", months:state, sep = "/", remove = TRUE)
beecolony_united
## # A tibble: 1,222 × 9
## year `month & state` colony_size colony_max colony_lost colony_lost_pct
## <dbl> <chr> <dbl> <chr> <dbl> <dbl>
## 1 2015 January-March/Alaba… 7000 7000 1800 26
## 2 2015 January-March/Arizo… 35000 35000 4600 13
## 3 2015 January-March/Arkan… 13000 14000 1500 11
## 4 2015 January-March/Calif… 1440000 1690000 255000 15
## 5 2015 January-March/Color… 3500 12500 1500 12
## 6 2015 January-March/Conne… 3900 3900 870 22
## 7 2015 January-March/Flori… 305000 315000 42000 13
## 8 2015 January-March/Georg… 104000 105000 14500 14
## 9 2015 January-March/Hawaii 10500 10500 380 4
## 10 2015 January-March/Idaho 81000 88000 3700 4
## # ℹ 1,212 more rows
## # ℹ 3 more variables: colony_added <chr>, colony_reno <chr>,
## # colony_reno_pct <chr>
Separate a column
beecolony_united %>%
separate(col = `month & state`, into = c("months", "state"), sep = "/")
## # A tibble: 1,222 × 10
## year months state colony_size colony_max colony_lost colony_lost_pct
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 2015 January-March Alaba… 7000 7000 1800 26
## 2 2015 January-March Arizo… 35000 35000 4600 13
## 3 2015 January-March Arkan… 13000 14000 1500 11
## 4 2015 January-March Calif… 1440000 1690000 255000 15
## 5 2015 January-March Color… 3500 12500 1500 12
## 6 2015 January-March Conne… 3900 3900 870 22
## 7 2015 January-March Flori… 305000 315000 42000 13
## 8 2015 January-March Georg… 104000 105000 14500 14
## 9 2015 January-March Hawaii 10500 10500 380 4
## 10 2015 January-March Idaho 81000 88000 3700 4
## # ℹ 1,212 more rows
## # ℹ 3 more variables: colony_added <chr>, colony_reno <chr>,
## # colony_reno_pct <chr>
Missing Values
bee_colonies_smaller %>%
complete(year, state)
## # A tibble: 56 × 3
## year state colony_lost
## <dbl> <chr> <dbl>
## 1 2015 California NA
## 2 2015 Florida NA
## 3 2015 Hawaii NA
## 4 2015 Kansas NA
## 5 2015 Texas 25000
## 6 2015 Utah NA
## 7 2015 Vermont NA
## 8 2015 Wyoming NA
## 9 2016 California NA
## 10 2016 Florida 45000
## # ℹ 46 more rows